new: [napkin] first release

Napkin is a Python tool to produce statistical analysis of a text.

Analysis features are :

- Verbs frequency
- Nouns frequency
- Digit frequency
- Labels frequency such as (Person, organisation, product, location) as defined in spacy.io [named entities](https://spacy.io/api/annotation#named-entities)
- URL frequency
- Email frequency
- Mention frequency (everything prefixed with an @ symbol)
- Out-Of-Vocabulary (OOV) word frequency meaning any words outside English dictionary
This commit is contained in:
Alexandre Dulaunoy 2020-08-19 17:33:04 +02:00
parent e3e27c7ce9
commit dd7c796460
Signed by: adulau
GPG key ID: 09E2CD4944E6CBCD
3 changed files with 3557 additions and 1 deletions

166
README.md
View file

@ -1,2 +1,166 @@
# napkin-text-analysis
Napking is a simple tool to produce statistical analysis of a text
Napkin is a Python tool to produce statistical analysis of a text.
Analysis features are :
- Verbs frequency
- Nouns frequency
- Digit frequency
- Labels frequency such as (Person, organisation, product, location) as defined in spacy.io [named entities](https://spacy.io/api/annotation#named-entities)
- URL frequency
- Email frequency
- Mention frequency (everything prefixed with an @ symbol)
- Out-Of-Vocabulary (OOV) word frequency meaning any words outside English dictionary
# requirements
- Python >= 3.6
- spacy.io
- redis (a redis server running on port 6380)
# how to use napkin
~~~~
usage: napkin.py [-h] [-v V] [-f F] [-t T] [-o O]
Extract statistical analysis of text
optional arguments:
-h, --help show this help message and exit
-v V verbose output
-f F file to analyse
-t T maximum value for the top list (default is 100) -1 is no limit
-o O output format (default is csv)
~~~~
# example usage of napkin
A sample file "The Prince, by Nicoló Machiavelli" is included to test napkin.
`python3 napkin.py -f ../samples/the-prince.txt`
Example output:
~~~~
# Top 100 of verb:napkin
b'can',137.0
b'make',116.0
b'may',106.0
b'would',102.0
b'must',97.0
b'take',86.0
b'have',73.0
b'see',72.0
b'become',62.0
b'find',61.0
b'know',59.0
b'should',54.0
b'keep',53.0
b'give',53.0
b'hold',51.0
b'say',50.0
b'wish',48.0
b'could',48.0
b'fear',46.0
b'maintain',45.0
b'think',42.0
b'use',40.0
b'consider',40.0
b'come',40.0
b'lose',37.0
b'live',35.0
b'follow',33.0
b'do',33.0
b'remain',32.0
b'gain',31.0
b'avoid',31.0
b'arise',31.0
b'speak',29.0
...
# Top 100 of noun:napkin
b'man',120.0
b'state',108.0
b'people',90.0
b'one',90.0
b'time',85.0
b'work',83.0
b'other',82.0
b'thing',71.0
b'way',60.0
b'order',57.0
b'fortune',49.0
b'army',45.0
b'force',44.0
b'arm',44.0
b'soldier',43.0
b'subject',42.0
b'power',41.0
b'difficulty',39.0
b'law',34.0
b'reputation',33.0
b'position',33.0
b'enemy',33.0
b'war',32.0
b'kingdom',32.0
b'cause',31.0
b'possession',29.0
b'action',29.0
b'ruler',28.0
b'rule',28.0
b'example',28.0
b'hand',27.0
b'friend',27.0
b'country',27.0
b'king',26.0
b'case',26.0
...
# Top 100 of digit:napkin
b'84116',1.0
b'750175',1.0
b'6221541',1.0
b'57037',1.0
b'55901',1.0
#
# Top 100 of url:napking
#
# Top 100 of oov:napkin
b'Fermo',7.0
b'Vitelli',6.0
b'Pertinax',6.0
b'Orsinis',6.0
b'Colonnas',6.0
b'Bentivogli',6.0
b'Agathocles',6.0
b'Oliverotto',5.0
b'C\xc3\xa6sar',5.0
...
# Top 100 of labels:napkin
b'GPE',305.0
b'CARDINAL',197.0
b'ORG',189.0
b'NORP',131.0
b'ORDINAL',72.0
b'DATE',44.0
b'LAW',30.0
b'LOC',18.0
b'PRODUCT',9.0
b'LANGUAGE',5.0
b'WORK_OF_ART',4.0
b'QUANTITY',4.0
b'TIME',3.0
b'FAC',3.0
b'MONEY',2.0
b'PERCENT',1.0
b'EVENT',1.0
~~~~
# LICENSE
napkin is free software under the AGPLv3 license.
~~~~
Copyright (C) 2020 Alexandre Dulaunoy
Copyright (C) 2020 Pauline Bourmeau
~~~~

80
bin/napkin.py Normal file
View file

@ -0,0 +1,80 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import redis
import spacy
from spacy_langdetect import LanguageDetector
import argparse
import sys
parser = argparse.ArgumentParser(description="Extract statistical analysis of text")
parser.add_argument('-v', help="verbose output")
parser.add_argument('-f', help="file to analyse")
parser.add_argument('-t', help="maximum value for the top list (default is 100) -1 is no limit", default=100)
parser.add_argument('-o', help="output format (default is csv)", default="csv")
args = parser.parse_args()
if args.f is None:
parser.print_help()
sys.exit()
redisdb = redis.Redis(host="localhost", port=6380, db=5)
try:
redisdb.flushdb()
except:
print("Redis database on port 6380 is not running...", file=sys.stderr)
sys.exit()
nlp = spacy.load("en_core_web_md")
nlp.add_pipe(LanguageDetector(), name='language_detector', last=True)
nlp.max_length = 2000000
with open(args.f, 'r') as file:
text = file.read()
doc = nlp(text)
analysis = ["verb:napkin", "noun:napkin", "hashtag:napkin", "mention:napkin", "digit:napkin", "url:napking", "oov:napkin", "labels:napkin"]
for token in doc:
if token.pos_ == "VERB" and not token.is_oov:
redisdb.zincrby("verb:napkin", 1, token.lemma_)
continue
if token.pos_ == "NOUN" and not token.is_oov:
redisdb.zincrby("noun:napkin", 1, token.lemma_)
continue
if token.is_oov:
value = "{}".format(token)
if value.startswith('#'):
redisdb.zincrby("hashtag:napkin", 1, value[1:])
continue
if value.startswith('@'):
redisdb.zincrby("mention:napkin", 1, value[1:])
continue
if token.is_digit:
redisdb.zincrby("digit:napkin", 1, value)
continue
if token.is_space:
continue
if token.like_url:
redisdb.zincrby("url:napkin", 1, value)
continue
if token.like_email:
redisdb.zincrby("email:napkin", 1, value)
continue
redisdb.zincrby("oov:napkin", 1, value)
for entity in doc.ents:
redisdb.zincrby("labels:napkin", 1, entity.label_)
for anal in analysis:
x = redisdb.zrevrange(anal, 1, args.t, withscores=True)
print ("# Top {} of {}".format(args.t, anal))
for a in x:
if args.o == "csv":
print ("{},{}".format(a[0],a[1]))
print ("#")

3312
samples/the-prince.txt Normal file

File diff suppressed because it is too large Load diff