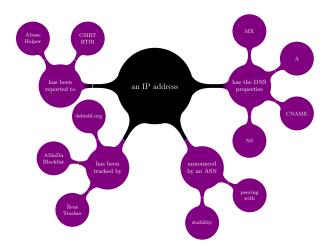
Scrutinizing a Country using Passive DNS and Picviz or how to analyze big dataset without loosing your mind

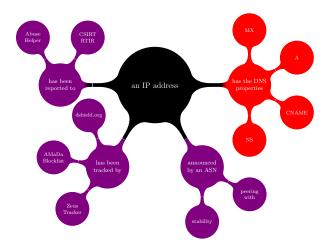
Sebastien Tricaud, Alexandre Dulaunov


March 10, 2012

Disclaimer

- Passive DNS is a technique to collect only valid answers from caching/recursive nameservers and authoritative nameservers
- By its design, privacy is preserved (e.g. no source IP addresses from resolvers are captured¹)
- The research is done in the sole purpose to detect malicious IP/domains or content to better protect users

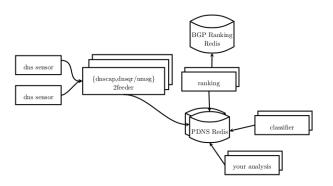
 $^{^{1}}_{2 \text{ of } 38}$ Except if the web application abused DNS answers to track back their users.


IP overview - some properties

Introduction or Problem Statement

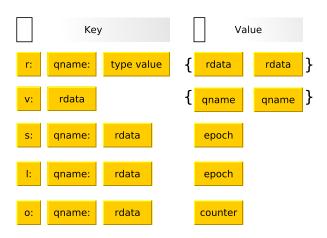
- Datasets become larger and larger (even for a small country)
- Malicious (and non malicious) activities are distributed across IP addresses or domain names
- Time to live of Internet resources (especially the malicious ones) is low
- → Attackers abuse and benefit from these facts

Passive DNS



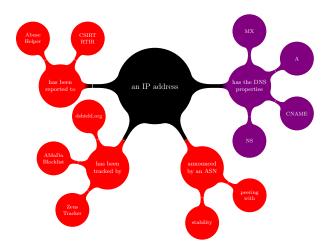
Storing Passive DNS or how to do trial and error?

- Implementing the storage of a Passive DNS can be challenging
- Starting from standard RDBMS to key-value store
- We learned to hate² hard disk drive and to love random access memory
- Loving memory is great especially when it's now cheap and addressable in 64bits


 $^{^2}_{6\text{ of }38}$ exception \rightarrow only used for data store snapshot

A minimalist and scalable implementation of a passive DNS

 Our passive DNS implementation is a toolkit for experimenting classification or visualization techniques


Redis - Passive DNS data structure

Redis - a sample query

```
redis> SMEMBERS "r:www.linkedin.com:5"
1) "dub.linkedin.com"
redis> SMEMBERS "r:dub.linkedin.com:1"
1) "91.225.248.80"
redis> SMEMBERS "v:dub.linkedin.com"
1) "www.linkedin.com"
redis> GET "s:www.linkedin.com:dub.linkedin.com"
"1331057300"
redis> GET "l:www.linkedin.com:dub.linkedin.com"
"1331057412"
redis> GET "o:www.linkedin.com:dub.linkedin.com"
"3"
```

BGP Ranking on IP attributes

AS Ranking Calculation

Formula

$$AS_{rank} = 1 + \left(rac{\left(\sum\limits_{s=1}^{\#s} (ext{ Occ } S_{impact})
ight)}{AS_{size}}
ight)$$

- Number of malicious occurrence per unique IP (Occ)
- Weight of the blacklist source (S_{impact})
- Grand total of IP addresses announced by the ASN (AS_{size})
- Each iteration of the Occ sum is saved (e.g. to discard a source blacklist from the ranking calculation)

Why Ranking ISPs?

- CSIRTs can assess the level of trust per ISPs (e.g. know to host drive-by-download website, reactive to abuse handling, ...)
- Improve assessment between ISPs (e.g. IP peering policies)
- Detecting common suspicious activities among ISPs/ASN
- Can be used as an additional weight factor to abuse handling (e.g. detect outliers in large set of IP addresses)

A daily use: ease your log analysis

- 300 million lines of proxy logs? You have 30 minutes to find out what's happened? or discarding the noise of "known" malware communication?
- Prefix the ranking AS15169,1.00273578519859,74.125.... to the log file
- logs-ranking \rightarrow sort -r -g -t"," -k2 proxy.log-ranked

A daily use: ease your memory dump analysis

- During large incident, we got many memory dumps in a single day
- Dumping all the memory per process and we extracted all URLs and IPs from each memory dump
- Ranking URLs and IPs, and analyzing the processes with the higher malicious rank
- Ranking can be used for a lot of reverse analysis techniques (from finding malicious process to artefacts of antivirus in memory)

Ranked domains - Where Picviz can help

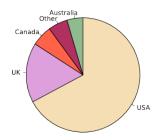
Now, we have 50 millions lines of ranked hostname...

```
www.stopacta.info. = 1.0
www.vista-care.com. = 1.0
breadworld.com. = 1.00002301767
o-o.resolver.A.B.C.D.5xevqnwsds5zdq34.metricz.\
l.google.com. = 1.00303388648
www.thechinagarden.com. = 1.00009822292
smtp10.dti.ne.jp. = 1.00010586629
...
```

Detection of multi-homed compromised systems

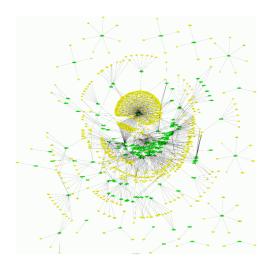
- Regularly malicious links are posted on compromised systems
- Ranking increased for the ASN and its announced subnet
- Passive DNS collects associated hostnamed to a subnet (usually filling the gap in the subnet)
- But how to find thoses cases?

Ooops wrong visualization

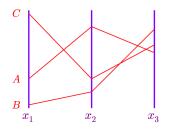


• For the ones who were at the party ;-)

Why visualization?

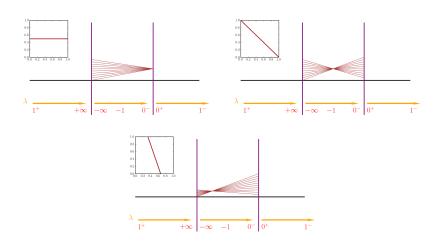

- Understand big data
- Find stuff we cannot guess

Problem with usual visualizations



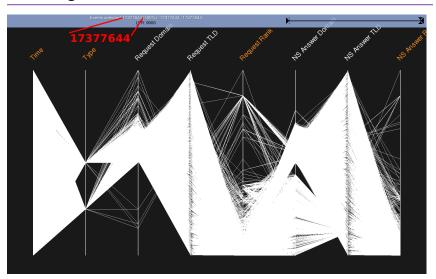
- Limited
 - o Top 10 (!)
 - Just to display tendencies. . .
 - Hide most of information
- Hard to get meaningful/useful information
- Folks mostly use it to display stuff in a different way

Problem with usual visualizations



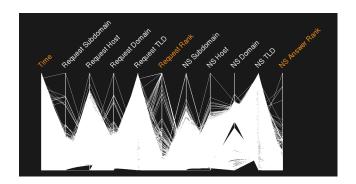
Choosing Parallel Coordinates

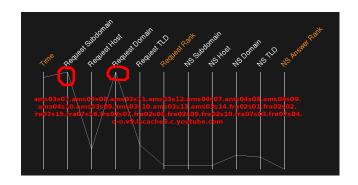
- Display as much dimensions wanted (yes, as many)
- Display as much data wanted (I mean it!)


Interesting patterns

Dataset

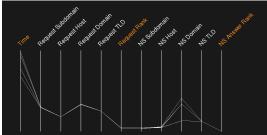
1313716097scareercloset.org	0	dns1.name-services.com	1.00129821958
1313250080 s thorstenschimmel.com	1.00059721139	ns2.webmailer.de	1.00098722699
1303867730s 170.161.119.in-addr.arpa	0	ns1.shoukedns.com	1.0
_1318350101s205.182.198.in-addr.arpa	0	dns2.lsus.edu	0
_1318243614s 203.131.177.122.sbl-xbl.spa	0	127.0.0.4	0
1313389794ssnocoaa.com	1.00229779412	ns1.lunarservers.com	1.0013560557
1314793983 s bree. hellocotton.com	1.00190723953	69.175.88.42	0
1313511298 s allmarks.com	1.00119609198	75.125.189.194	0
1327083205 s a1.sphotos.ak.fbcdn.net	1.00005667589	a1.sphotos.ak.fbcdn.net.e	1.00109021195
1319552814s 230.25.151.in-addr.arpa	0	ns2.libero.it	1.00024327551


Picvizing the whole dataset


Splitting the URL

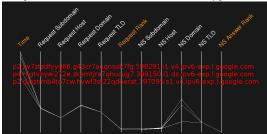
- We want to get the TLD, subdomains etc. . .
- A regex does not work: 192.168.0.1, http://localhost, google.com, www.slashdot.org:80, . . .
- · We simply put them according to their ascii value
 - o a is at the axis bottom
 - zzzzzzzzzzzzzzzz{500} is on the very top


Picviz with the whole url split

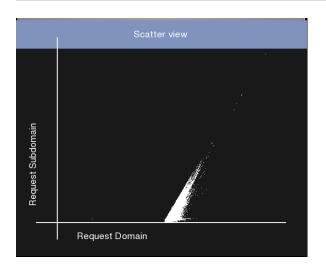


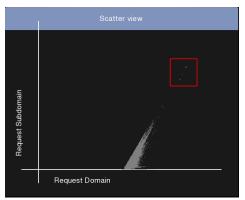
Reward: highest is youtube

Subdomain entropy



³Shannon entropy


Subdomain entropy

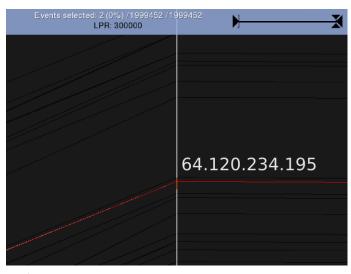


⁴Shannon entropy

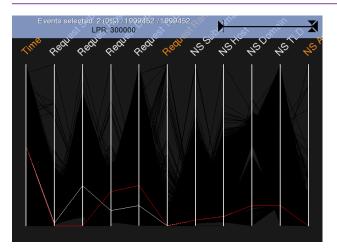
Scatter plot - finding outliers

Scatter plot - finding outliers - covert channel?

Searching for Zeus


Using the broad Polish CERT regex

 $[a-z0-9]{32,48}\.(ru|com|biz|info|org|net)$



- We get some cool domains:
 - o cg79wo20kl92doowfn01oqpo9mdieowv5tyj.com
 - o eef795a4eddaf1e7bd79212acc9dde16.net
- but more important we got a visualization profile to find outliers not matching the regexp

Zoom on NS answer domain

Back to the global view

• request domain: ns2.speed-tube.net

Investigating ns2.speed-tube.net

- Grab cool stuff that are not ranked like: adsforadsense.co.cc;1.0;ns2.speed-tube.net;1.0 extra-tube.net;1.0001125221;ns2.speed-tube.net;1.0 ...
- A recurring (reactivated or cached) malicious site: adsforadsense.co.cc rogue safebrowsing.clients.google.com 20110315 20110125

Conclusion

- Passive DNS is an infinite source of security data mining
- The toolkit is now available on github and this is the basis for more research
- (adequate) Visualization is an appropriate way to discover unknown malicious or suspicious services
- This finally helps CSIRTs to act earlier on the incidents

Free Software

 BGP Ranking software https://www.github.com/CIRCL/BGP-Ranking http://bgpranking.circl.lu/

- Passive DNS toolkit https://www.github.com/adulau/pdns-viz/ - first commit for CanSecWest - more modules to come
- Domain Classification https://www.github.com/adulau/DomainClassifier/

Q&A

- @adulau alexandre.dulaunoy@circl.lu
- @tricaud sebastien@honeynet.org