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ABSTRACT
Recent Botnets such as Conficker, Kraken and Torpig have
used DNS based“domain fluxing” for command-and-control,
where each Bot queries for existence of a series of domain
names and the owner has to register only one such domain
name. In this paper, we develop a methodology to detect
such “domain fluxes” in DNS traffic by looking for patterns
inherent to domain names that are generated algorithmi-
cally, in contrast to those generated by humans. In partic-
ular, we look at distribution of alphanumeric characters as
well as bigrams in all domains that are mapped to the same
set of IP-addresses. We present and compare the perfor-
mance of several distance metrics, including KL-distance,
Edit distance and Jaccard measure. We train by using a
good data set of domains obtained via a crawl of domains
mapped to all IPv4 address space and modeling bad data
sets based on behaviors seen so far and expected. We also
apply our methodology to packet traces collected at a Tier-1
ISP and show we can automatically detect domain fluxing
as used by Conficker botnet with minimal false positives.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms
Measurement, Security, Verification

Keywords
Components, Domain flux, Domain names, Edit distance,
Entropy, IP Fast Flux, Jaccard Index, Malicious
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1. INTRODUCTION
Recent botnets such as Conficker, Kraken and Torpig have

brought in vogue a new method for botnet operators to con-
trol their bots: DNS “domain fluxing”. In this method, each
bot algorithmically generates a large set of domain names
and queries each of them until one of them is resolved and
then the bot contacts the corresponding IP-address obtained
that is typically used to host the command-and-control (C&C)
server. Besides for command-and-control, spammers also
routinely generate random domain names in order to avoid
detection. For instance, spammers advertise randomly gen-
erated domain names in their spam emails to avoid detection
by regular expression based domain blacklists that maintain
signatures for recently ‘spamvertised’ domain names.

The botnets that have used random domain name gener-
ation vary widely in the random word generation algorithm
as well as the way it is seeded. For instance, Conficker-A
[27] bots generate 250 domains every three hours while us-
ing the current date and time at UTC (in seconds) as the
seed, which in turn is obtained by sending empty HTTP
GET queries to a few legitimate sites such as google.com,
baidu.com, answers.com etc. This way, all bots would gen-
erate the same domain names every day. In order to make
it harder for a security vendor to pre-register the domain
names, the next version, Conficker-C [28] increased the num-
ber of randomly generated domain names per bot to 50K.
Torpig [30, 6] bots employ an interesting trick where the
seed for the random string generator is based on one of the
most popular trending topics in Twitter. Kraken employs a
much more sophisticated random word generator and con-
structs English-language alike words with properly matched
vowels and consonants. Moreover, the randomly generated
word is combined with a suffix chosen randomly from a pool
of common English nouns, verbs, adjective and adverb suf-
fixes, such as -able, -dom, -hood, -ment, -ship, or -ly.

From the point of view of botnet owner, the economics
work out quite well. They only have to register one or a
few domains out of the several domains that each bot would
query every day. Whereas, security vendors would have to
pre-register all the domains that a bot queries every day,
even before the botnet owner registers them. In all the cases
above, the security vendors had to reverse engineer the bot
executable to derive the exact algorithm being used for gen-
erating domain names. In some cases, their algorithm would
predict domains successfully until the botnet owner would



patch all his bots with a repurposed executable with a dif-
ferent domain generation algorithm [30].
We argue that reverse engineering of botnet executables

is resource- and time-intensive and precious time may be
lost before the domain generation algorithm is cracked and
consequently before such domain name queries generated
by bots are detected. In this regards, we raise the follow-
ing question: can we detect algorithmically generated domain
names while monitoring DNS traffic even when a reverse en-
gineered domain generation algorithm may not be available?
Hence, we propose a methodology that analyzes DNS traf-

fic to detect if and when domain names are being generated
algorithmically as a line of first defense. In this regards,
our proposed methodology can point to the presence of bots
within a network and the network administrator can dis-
connect bots from their C&C server by filtering out DNS
queries to such algorithmically generated domain names.
Our proposed methodology is based on the following ob-

servation: current botnets do not use well formed and pro-
nounceable language words since the likelihood that such a
word is already registered at a domain registrar is very high;
which could be self-defeating as the botnet owner would
then not be able to control his bots. In turn this means
that such algorithmically generated domain names can be
expected to exhibit characteristics vastly different from legit-
imate domain names. Hence, we develop metrics using tech-
niques from signal detection theory and statistical learning
which can detect algorithmically generated domain names
that may be generated via a myriad of techniques: (i) those
generated via pseudo-random string generation algorithms
as well as (ii) dictionary-based generators, for instance the
one used by Kraken[5, 3, 4] as well as a publicly available
tool, Kwyjibo [12] which can generate words that are pro-
nounceable yet not in the english dictionary.
Our method of detection comprises of two parts. First,

we propose several ways to group together DNS queries: (i)
either by the Top Level Domain (TLD) they all correspond
to or; (ii) the IP-address that they are mapped to or; (iii)
the connected component that they belong to, as determined
via connected component analysis of the IP-domain bipar-
tite graph. Second, for each such group, we compute metrics
that characterize the distribution of the alphanumeric char-
acters or bigrams (two consecutive alphanumeric characters)
within the set of domain names. Specifically, we propose the
following metrics to quickly differentiate a set of legitimate
domain names from malicious ones: (i) Information entropy
of the distribution of alphanumerics (unigrams and bigrams)
within a group of domains; (ii) Jaccard index to compare
the set of bigrams between a malicious domain name with
good domains and; (iii) Edit-distance which measures the
number of character changes needed to convert one domain
name to another.
We apply our methodology to a variety of data sets. First,

we obtain a set of legitimate domain names via reverse DNS
crawl of the entire IPv4 address space. Next, we obtain a
set of malicious domain names as generated by Conficker,
Kraken and Torpig as well as model a much more sophis-
ticated domain name generation algorithm: Kwyjibo [12].
Finally, we apply our methodology to one day of network
traffic from one of the largest Tier-1 ISPs in Asia and South
America and show how we can detect Conficker as well as
a botnet hitherto unknown, which we call Mjuyh (details in
Section 5).

Our extensive experiments allow us to characterize the ef-
fectiveness of each metric in detecting algorithmically gener-
ated domain names in different attack scenarios. We model
different attack intensities as number of domain names that
an algorithm generates. For instance, in the extreme sce-
nario that a botnet generates 50 domains mapped to the
same TLD, we show that KL-divergence over unigrams achieves
100% detection accuracy albeit at 15% false positive rate (le-
gitimate domain groups classified as algorithmic). We show
how our detection improves significantly with much lower
false positives as the number of words generated per TLD
increases, e.g., when 200 domains are generated per TLD,
then Edit distance achieves 100% detection accuracy with
8% false positives and when 500 domains are generated per
TLD, Jaccard Index achieves 100% detection with 0% false
positives.

Finally, our methodology of grouping together domains
via connected components allows us to detect not only “do-
main fluxing” but also if it was used in combination with
“IP fluxing”. Moreover, computing the metrics over compo-
nents yields better and faster detection than other group-
ing methods. Intuitively, even if botnets were to generate
random words and combine them with multiple TLDs in
order to spread the domain names thus generated (poten-
tially to evade detection), as long as they map these do-
mains such that at least one IP-address is shared in common,
then they reveal a group structure that can be exploited by
our methodology for quick detection. We show that per-
component analysis detects 26.32% more IP addresses than
using per-IP analysis and 16.13% more hostnames than us-
ing per-domain analysis when we applied our methodology
to detect Conficker in a Tier-1 ISP trace.

The rest of this paper is organized as follows. In Section
2, we compare our work against related literature. In Sec-
tion 3, we present our detection methodology and introduce
the metrics we have developed. In Section 4, we present
the various ways by which domains can be grouped in order
to compute the different metrics over them. Next, in Sec-
tion 5, we present results to compare each metric as applied
to different data sets and trace data. Further, in Section
6, we present the detection of malicious domains in a su-
pervised learning framework, in particular, L1-regularized
linear regression. We present a discussion over the relative
computational complexity of each metric and the usefulness
of component analysis in Section 7. Finally, in Section 8 we
conclude.

2. RELATED WORK
Characteristics, such as IP addresses, whois records and

lexical features of phishing and non-phishing URLs have
been analyzed by McGrath and Gupta [22]. They observed
that the different URLs exhibited different alphabet distri-
butions. Our work builds on this earlier work and devel-
ops techniques for identifying domains employing algorith-
mically generated names, potentially for “domain fluxing”.
Ma, et al [17], employ statistical learning techniques based
on lexical features (length of domain names, host names,
number of dots in the URL etc.) and other features of
URLs to automatically determine if a URL is malicious, i.e.,
used for phishing or advertising spam. While they classify
each URL independently, our work is focused on classifying
a group of URLs as algorithmically generated or not, solely
by making use of the set of alphanumeric characters used.



In addition, we experimentally compare against their lexi-
cal features in Section 5 and show that our alphanumeric
distribution based features can detect algorithmically gen-
erated domain names with lower false positives than lexical
features. Overall, we consider our work as complimentary
and synergistic to the approach in [17].
With reference to the practice of “IP fast fluxing”, e.g.,

where the botnet owner constantly keeps changing the IP-
addresses mapped to a C&C server, [24] implements a de-
tection mechanism based on passive DNS traffic analysis. In
our work, we present a methodology to detect cases where
botnet owners may use a combination of both domain flux-
ing with IP fluxing, by having bots query a series of domain
names and at the same time map a few of those domain
names to an evolving set of IP-addresses. Also earlier pa-
pers [23, 20] have analyzed the inner-working of IP fast flux
networks for hiding spam and scam infrastructure. With
regards to botnet detection, [14, 15] perform correlation of
network activity in time and space at campus network edges,
and Xie et al in [33] focus on detecting spamming botnets
by developing regular expression based signatures from a
dataset of spam URLs .
We find that graph analysis of IP addresses and domain

names embedded in DNS queries and replies reveal inter-
esting macro relationships between different entities and en-
able identification of bot networks (Conficker) that seemed
to span many domains and TLDs. With reference to graph
based analysis, [34] utilizes rapid changes in user-bot graphs
structure to detect botnet accounts.
Statistical and learning techniques have been employed

by various studies for prediction [10, 25, 13]. We employed
results from detection theory in designing our strategies for
classification [31, 11].
Several studies have looked at understanding and reverse-

engineering the inner workings of botnets [5, 3, 4, 16, 30, 26,
29]. Botlab has carried out an extensive analysis of several
bot networks through active participation [19] and provided
us with many example datasets for malicious domains.

3. DETECTION METRICS
In this section, we present our detection methodology that

is based on computing the distribution of alphanumeric char-
acters for groups of domains. First, we motivate our metrics
by showing how algorithmically generated domain names
differ from legitimate ones in terms of distribution of al-
phanumeric characters. Next, we present our three metrics,
namely Kullback-Leibler (KL) distance, Jaccard Index (JI)
measure and Edit distance. Finally, in Section 4 we present
the methodology to group domain names.

3.1 Data Sets
We first describe the data sets and how we obtained them:

(i) Non-malicious ISP Dataset: We use network traf-
fic trace collected from across 100+ router links at a Tier-
1 ISP in Asia. The trace is one day long and provides
details of DNS requests and corresponding replies. There
are about 270,000 DNS name server replies. (ii) Non-
malicious DNS Dataset: We performed a reverse DNS
crawl of the entire IPv4 address space to obtain a list of
domain names and their corresponding IP-addresses. We
further divided this data set in to several parts, each com-
prising of domains which had 500, 200, 100 and 50 domain
labels. The DNS Dataset is considered as non-malicious

for the following reasons. Botnets may own only a limited
number of IP addresses. Based on our study, we find that a
DNS PTR request maps an IP address to only one domain
name. The dataset thus obtained will contain very few ma-
licious domain names per analyzed group. In the event that
the bots exhibit IP fluxing, it is noteworthy that the bot-
net owners cannot change the PTR DNS mapping for IP
addresses not owned. Although, the malicious name servers
may point to any IP address. (iii) Malicious datasets:
We obtained the list of domain names that were known to
have been generated by recent Botnets: Conficker [27, 28],
Torpig [30] and Kraken [5, 3]. As described earlier in the In-
troduction, Kraken exhibits the most sophisticated domain
generator by carefully matching the frequency of occurrence
of vowels and consonants as well as concatenating the re-
sulting word with common suffixes in the end such as -able,
-dom, etc. (iv) Kwyjibo: We model a much more sophis-
ticated algorithmic domain name generation algorithm by
using a publicly available tool, Kwyjibo [12] which generates
domain names that are pronounceable yet not in the English
language dictionary and hence much more likely to be avail-
able for registration at a domain registrar. The algorithm
uses a syllable generator, where they first learn the frequency
of one syllable following another in words in English dictio-
nary and then automatically generate pronounceable words
by modeling it as a Markov process.

3.2 Motivation
Our detection methodology is based on the observation

that algorithmically generated domains differ significantly
from legitimate (human) generated ones in terms of the dis-
tribution of alphanumeric characters. Figure 1(a) shows the
distribution of alphanumeric characters, defined as the set
of English alphabets (a-z) and digits (0-9) for both legiti-
mate as well as malicious domains 1. We derive the follow-
ing points: (i) First, note that both the non-malicious data
sets exhibit a non-uniform frequency distribution, e.g., let-
ters ‘m’ and ‘o’ appear most frequently in the non-malicious
ISP data set whereas the letter ‘s’ appears most frequently
in the non-malicious DNS data set. (ii) Even the most so-
phisticated algorithmic domain generator seen in the wild
for Kraken botnet has a fairly uniform distribution, albeit
with higher frequencies at the vowels: ‘a’, ‘e’ and ‘i’. (iii)
If botnets of future were to evolve and construct words that
are pronounceable yet not in the dictionary, then they would
not exhibit a uniform distribution as expected. For instance,
Kwyjibo exhibits higher frequencies at alphabets, ‘e’, ‘g’, ‘i’,
‘l’, ‘n’, etc. In this regards, techniques that are based on
only the distribution of unigrams (single alphanumeric char-
acters) may not be sufficient, as we will show through the
rest of this section.

The terminology used in this and the following sections is
as follows. For a hostname such as physics.university.edu,
we refer to university as the second-level domain label,
edu as the first-level domain, and university.edu as the
second-level domain. Similarly, physics.university.edu is
referred to as the third-level domain and physics is the
third-level domain label. The ccTLDs such as co.uk are
effectively considered as first-level domains.

1Even though domain names may contain characters such as
‘-’, we currently limit our study to alphanumeric characters
only.
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Figure 1: Probability distributions of malicious and non-malicious domains

3.3 Metrics for anomaly detection
The K-L(Kullback-Leibler) divergence metric is a non-

symmetric measure of ”distance“ between two probability
distributions. The divergence (or distance) between two dis-
cretized distributions P and Q is given by: DKL(P ||Q) =
∑n

i=1 P (i)log P (i)
Q(i)

.

where n is the number of possible values for a discrete
random variable. The probability distribution P represents
the test distribution and the distribution Q represents the
base distribution from which the metric is computed.
Since the K-L measure is asymmetric, we use a symmetric

form of the metric, which helps us deal with the possibility
of singular probabilities in either distribution. The modified
K-L metric is computed using the formula: Dsym(PQ) =
1
2
(DKL(P ||Q) +DKL(Q||P )).
Given a test distribution q computed for the domain to

be tested, and non-malicious and malicious probability dis-
tribution over the alphanumerics as g and b respectively,
we characterize the distribution as malicious or not via the
following optimal classifier (for proof see appendix):

Dsym(qb)−Dsym(qg)
g

≷
b

0 (1)

For the test distribution q to be classified as non-malicious,
we expect Dsym(qg) to be less than Dsym(qb). However,
if Dsym(qg) is greater than Dsym(qb), the distribution is
classified as malicious.

3.3.1 Measuring K-L divergence with unigrams
The first metric we design measures the KL-divergence of

unigrams by considering all domain names that belong to
the same group, e.g. all domains that map to the same IP-
address or those that belong to the same top-level domain.
We postpone discussion of groups to Section 4. Given a
group of domains for which we want to establish whether
they were generated algorithmically or not, we first com-
pute the distribution of alphanumeric characters to obtain
the test distribution. Next, we compute the KL-divergence

with a good distribution obtained from the non-malicious
data sets (ISP or DNS crawl) and a malicious distribution
obtained by modeling a botnet that uses generates alphanu-
merics uniformly. As expected, a simple unigram based
technique may not suffice, especially to detect Kraken or
Kwyjibo generated domains. Hence, we consider bigrams in
our next metric.

3.3.2 Measuring K-L divergence with bigrams
A simple obfuscation technique that can be employed by

algorithmically generated malicious domain names could be
to generate domain names by using the same distribution
of alphanumerics as commonly seen for legitimate domains.
Hence, in our next metric, we consider distribution of bi-
grams, i.e., two consecutive characters. We argue that it
would be harder for an algorithm to generate domain names
that exactly preserve a bigram distribution similar to legit-
imate domains since the algorithm would need to consider
the previous character already generated while generating
the current character. The choices for the current character
will be hence more restrictive than when choosing charac-
ters based on unigram distributions. Thus, the probability
of test bigrams matching a non-malicious bigram distribu-
tion, becomes smaller.

Analogous to the case above, given a group of domains, we
extract the set of bigrams present in it to form a bigram dis-
tribution. Note that for the set of alphanumeric characters
that we consider [a-z, 0-9], the total number of bigrams pos-
sible are 36x36, i.e., 1,296. Our improved hypothesis now
involves validating a given test bigram distribution against
the bigram distribution of non-malicious and malicious do-
main labels. We use the database of non-malicious words
to determine a non-malicious probability distribution. For
a sample malicious distribution, we generate bigrams ran-
domly. Here as well, we use KL-divergence over the bigram
distribution to determine if a test distribution is malicious
or legitimate.

3.3.3 Using Jaccard Index between bigrams
We present the second metric to measure the similarity



between a known set of components and a test distribution,
namely the Jaccard index measure. The metric is defined as

JI = A∩B
A∪B

where, A and B each represent the set of random variables.
For our particular case, the set comprises of bigrams that
compose a domain label or a hostname. Note that Jaccard
index (JI) measure based on bigrams is a commonly used
technique for web search engine spell-checking [21].
The core motivation behind using the JI measure is same

as that for KL-divergence. We expect that bigrams occur-
ring in randomized (or malicious) hostnames to be mostly
different when compared with the set of non-malicious bi-
grams. To elaborate, we construct a database of bigrams
which point to lists of non-malicious words, domain labels
or hostnames, as the case may be. Now for each sub-domain
present in a test set, we determine all non-malicious words
that contain at least 75% of the bigrams present in the test
word. Such a threshold helps us discard words with less simi-
larity. However, longer test words may implicitly satisfy this
criteria and may yield ambiguous JI value. As observed in
section 5, the word sizes for 95% of non-malicious words do
not exceed 24 characters, and hence we divide all test words
into units of 24 character strings. Figure 2 presents the CDF
of domain label sizes as observed in our DNS PTR dataset
(described in section 5).
Calculating the JI measure is best explained with an

example. Considering a randomized hostname such as
ickoxjsov.botnet.com, we determine the JI value of the
domain label ickoxjsov by first computing all bigrams
(eight, in this case). Next, we examine each bigram’s
queue of non-malicious domain labels, and short list
words with at least 75% of bigrams, i.e., six of the
eight bigrams. Words satisfying this criteria may include
thequickbrownfoxjumpsoverthelazydog (35 bigrams). How-
ever, such a word still has a low JI value owing to the large
number of bigrams in it. Therefore, the JI value is thus
computed as 6/(8 + 35 - 6) = 0.16. The low value indicates
that the randomized test word does not match too well with
the word from the non-malicious bigram database.
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The JI measure is thus computed for the remaining words.
The test words might comprise of a large number of bigrams

and therefore do not always ensure a high JI value. We
compute the JI measure using the equation described above
and average it for all test words belonging to a particular
group being analyzed. The averaged JI value for a non-
malicious domain is expected to be higher than those for
malicious groups.

As observed via our experiments in Section 5, the JI mea-
sure is better at determining domain based anomalies. How-
ever, it is also computationally expensive as the database of
non-malicious bigrams needs to be maintained in the mem-
ory. Also, classifying a non-malicious hosts will take more
CPU cycles as we would obtain and compare a large set of
words consisting of test word’s bigrams. Section 7 exam-
ines the computational complexity of various metrics that
we use.

3.3.4 Edit distance
Note that the two metrics described earlier, rely on defi-

nition of a “good” distribution (KL-divergence) or database
(JI measure). Hence, we define a third metric, Edit dis-
tance, which classifies a group of domains as malicious or
legitimate by only looking at the domains within the group,
and is hence not reliant on definition of a good database or
distribution. The Edit distance between two strings repre-
sents an integral value identifying the number of transfor-
mations required to transform one string to another. It is a
symmetric measure and provides a measure of intra-domain
entropy. The type of eligible transformations are addition,
deletion, and modification. For instance, to convert the word
cat to dog, the edit distance is three as it requires all three
characters to be replaced. With reference to determining
anomalous domains, we expect that all domain labels (or
hostnames) which are randomized, will, on an average, have
higher edit distance value. We use the Levenshtein edit dis-
tance dynamic algorithm for determining anomalies. The
algorithm for computing the Levenshtein edit distance has
been shown in Algorithm 1 [21].

Algorithm 1 Dynamic programming algorithm for finding
the edit distance
EditDist(s1,s2)

1. int m[i,j ] = 0

2. for i ← 1 to |s1|

3. do m[i,0] = i

4. for j ← 1 to |s2|

5. do m[0,j ] = j

6. for i ← 1 to |s1|

7. do for j ← 1 to |s2|

8. do m[i,j ] = min{m[[i-1,j -1] + if(s1[i] = s2[j ]) then 0 else 1
fi,

9. m[i-1,j ] + 1

10. m[i,j -1] + 1}

11. return m[|s1|,|s2|]

4. GROUPING DOMAIN NAMES
In this section, we present ways by which we group to-



gether domain names in order to compute metrics that were
defined in Section 3 earlier.

4.1 Per-domain analysis
Note that several botnets use several second-level domain

names to generate algorithmic sub-domains. Hence, one way
by which we group together domain names is via the second-
level domain name. The intention is that if we begin see-
ing several algorithmically generated domain names being
queried such that all of them correspond to the same second-
level domain, then this may be reflective of a few favorite
domains being exploited. Hence for all sub-domains, e.g.,
abc.examplesite.org, def.examplesite.org, etc., that have the
same second-level domain name examplesite.org, we com-
pute all the metrics over the alphanumeric characters and
bigrams of the corresponding domain labels. Since domain
fluxing involves a botnet generating a large number of do-
main names, we consider only domains which contain a suf-
ficient number of third-level domain labels, e.g., 50, 100, 200
and 500 sub-domains.

4.2 Per-IP analysis
As a second method of grouping, we consider all domains

that are mapped to the same IP-address. This would be re-
flective of a scenario where a botnet has registered several of
the algorithmic domain names to the same IP-address of a
command-and-control server. Determining if an IP address
is mapped to several such malicious domains is useful as
such an IP-address or its corresponding prefix can be quickly
blacklisted in order to sever the traffic between a command-
and-control server and its bots. We use the dataset from a
Tier-1 ISP to determine all IP-addresses which have multiple
hostnames mapped to it. For a large number of hostnames
representing one IP address, we explore the above described
metrics, and thus identify whether the IP address is mali-
cious or not.

4.3 Component analysis
A few botnets have taken the idea of domain fluxing fur-

ther and generate names that span multiple TLDs, e.g.,
Conficker-C generates domain names in 110 TLDs. At the
same time domain fluxing can be combined with another
technique, namely“IP fluxing” [24] where each domain name
is mapped to an ever changing set of IP-addresses in an at-
tempt to evade IP blacklists. Indeed, a combination of the
two is even harder to detect. Hence, we propose the third
method for grouping domain names into connected compo-
nents.
We first construct a bipartite graph G with IP-addresses

on one side and domain names on the other. An edge is
constructed between a domain name and an IP-address if
that IP-address was ever returned as one of the responses in
a DNS query. When multiple IP addresses are returned, we
draw edges between all the returned IP addresses and the
queried host name.
First, we determine the connected components of the bi-

partite graph G, where a connected component is defined as
one which does not have any edges with any other compo-
nents. Next, we compute the various metrics (KL-divergence
for unigrams and bigrams, JI measure for bigrams, Edit dis-
tance) for each component by considering all the domain
names within a component.
Component extraction separates the IP-domain graph into

components which can be classified in to the following classes:
(i) IP fan: these have one IP-address which is mapped
to several domain names. Besides the case where one IP-
address is mapped to several algorithmic domains, there are
several legitimate scenarios possible. First, this class could
include domain hosting services where one IP-address is used
to provide hosting to several domains, e.g. Google Sites, etc.
Other examples could be mail relay service where one mail
server is used to provide mail relay for several MX domains.
Another example could be when domain registrars provide
domain parking services, i.e., someone can purchase a do-
main name while asking the registrar to host it temporarily.
(ii) Domain fan: these consist of one domain name con-
nected to multiple IPs. This class will contain components
belonging to the legitimate content providers such as Google,
Yahoo!, etc. (iii)Many-to-many component: these are
components that have multiple IP addresses and multiple
domain names, e.g., Content Distribution Networks (CDNs)
such as Akamai.

In section 6, we briefly explain the classification algorithm
that we use to classify test components as malicious or not.

5. RESULTS
In this section, we present results of employing various

metrics across different groups, as described in section 3 and
4. We briefly describe the data set used for each experiment.

With all our experiments, we present the results based on
the consideration of increasing number of domain labels. In
general, we observe that using a larger test data set yields
better results.

5.1 Per-domain analysis

5.1.1 Data set
The analysis in this sub-section is based only on the do-

main labels belonging to a domain. The non-malicious dis-
tribution g may be obtained from various sources. For our
analysis, we use a database of DNS PTR records correspond-
ing to all IPv4 addresses. The database contains 659 second-
level domains with at least 50 third-level sub-domains, while
there are 103 second-level domains with at least 500 third-
level sub-domains. From the database, we extract all second-
level domains which have at least 50 third-level sub-domains.
All third-level domain labels corresponding to such domains
are used to generate the distribution g. For instance, a
second-level domain such as university.edu may have many
third-level domain labels such as physics, cse, humanities
etc. We use all such labels that belong to trusted domains,
for determining g.

To generate a malicious base distribution b, we randomly
generate as many characters as present in the non-malicious
distribution. We use domain labels belonging to well-known
malware based domains identified by Botlab, and also a pub-
licly available webspam database, as malicious domains [1,
9] for verification using our metrics. Botlab provides us with
various domains used by Kraken, Pushdo, Storm, MegaD,
and Srizbi [1]. For per-domain analysis, the test words used
are the third-level domain labels.

Figure 1(a) shows how malicious/non-malicious distribu-
tions appear for the DNS PTR dataset as well as the ISP
dataset described in the following sections.

We will present the results for all the four measures de-
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(a) K-L metric with unigram distribution (Per-domain).
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Figure 3: ROC curves for Per-domain analysis
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(a) Jaccard measure for bigrams (Per-domain).
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Figure 4: ROC curves for Per-domain analysis

scribed earlier, for domain-based analysis. In later sections,
we will only present data from one of the measures for brevity.

5.1.2 K-L divergence with unigram distribution
We measure the symmetrized K-L distance metric from

the test domain to the malicious/non-malicious alphabet
distributions. We classify the test domain as malicious or
non-malicious based on equation (10) in Appendix A. Figure
3(a) shows the results from our experiment presented as an
ROC curve.
The figure shows that the different sizes of test data sets

produce relatively different results. The area under the ROC
is a measure of the goodness of the metric. We observe that
with 200 or 500 domain labels, we cover a relatively greater
area, implying that using many domain labels helps obtain
accurate results. For example, using 500 labels, we obtain
100% detection rate with only 2.5% false positive rate. Note
that with a larger data set, we indeed expect higher true
positive rates for small false positive rates, as larger samples
will stabilize the evaluated metrics.
The number of domain labels required for accurate de-

tection corresponds to the latency of accurately classifying
a previously unseen domain. The results suggest that a
domain-fluxing domain can be accurately characterized by
the time it generates around 500 names.

5.1.3 K-L divergence with bigram distribution
Figure 3(b) presents the results of employing K-L distance

metric over bigram distributions. We observe again that us-
ing 200 or 500 domain labels does better than using smaller
number of labels, with 500 labels doing the best. Experi-
ments with 50/100 domain labels yield similar results.

We note that the performance with unigram distributions
is slightly better than using bigram distributions. However,
when botnets employ counter measures to our techniques,
the bigram distributions may provide better defense com-
pared to unigram distributions as they require more effort
to match the good distribution (g).

5.1.4 Jaccard measure of bigrams
The Jaccard Index measure does significantly better in



comparison to the previous metrics. From figure 4(a), it is
evident that using 500 domain labels gives us a clear separa-
tion for classification of test domains (and hence an area of
1). Using 50 or 100 labels is fairly equivalent with 200 labels
doing comparatively better. The JI measure produces higher
false positives for smaller number of domains (50/100/200)
than K-L distance measures.

5.1.5 Edit distance of domain labels
Figure 4(b) shows the performance using edit distance as

the evaluation metric. The detection rate for 50/100 test
words reaches 1 only for high false positive rates, indicating
that a larger test word set should be used. For 200/500 do-
main labels, 100% detection rate is achieved at false positive
rates of 5-7%.

5.1.6 Kwyjibo domain label analysis
Kwyjibo is a tool to generate random words which can be

used as domain labels [12]. The generated words are seem-
ingly closer to pronounceable words of the english language,
in addition to being random. Thus many such words can be
created in a short time. We anticipate that such a tool can
be used by attackers to generate domain labels or domain
names quickly with the aim of defeating our scheme. There-
fore, we analyze Kwyjibo based words, considering them as
domain labels belonging to a particular domain.
The names generated by Kwyjibo tool could be accurately

characterized by our measures given sufficient names. Ex-
ample results are presented in Fig. 5 with K-L distances over
unigram distributions. From figure 5, we observe that verifi-
cation with unigram frequency can lead to a high detection
rate with very low false positive rate. Again, the perfor-
mance using 500 labels is the best. We also observe a very
steep rise in detection rates for all the cases. The Kwyjibo
domains could be accurately characterized with false posi-
tive rates of 6% or less.
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Figure 5: ROC curve : K-L metric with unigram
distribution (Kwyjibo).

The initial detection rate for Kwyjibo is low as compared
to the per-domain analysis. This is because the presence of
highly probable non-malicious unigrams in Kwyjibo based
domains makes detection difficult at lower false positive rates.
The results with other measures (K-L distance over bigram
distributions, JI and edit distances) were similar: kwyjibo

domains could be accurately characterized at false positive
rates in the range of 10-12%, but detection rates were nearly
zero at false positive rates of 10% or less.

The scatter plot presented in Fig. 6 indicates the clear
separation obtained between non-malicious and malicious
domains. The plot represents the Jaccard measure using 500
test words. We highlight the detection of botnet based ma-
licious domains such as Kraken, MegaD, Pushdo, Srizbi, and
Storm. A few well-known non-malicious domains such as
apple.com, cisco.com, stanford.edu, mit.edu, and yahoo.com
have also been indicated for comparison purposes.
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Figure 6: Scatter plot with Jaccard Index for bi-
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5.1.7 Progressive demarcation
The earlier results have showed that very high good detec-

tion rates can be obtained at low false positive rates once we
have 500 or more hostnames of a test domain. As discussed
earlier, the number of hostnames required for our analysis
corresponds to latency of accurately characterizing a previ-
ously unseen domain. During our experiments, not all the
test domains required 500 hostnames for accurate charac-
terization since the distributions were either very close to
the good distribution g or bad distribution b. These test
domains could be characterized with a smaller latency (or
smaller number of hostnames).

In order to reduce the latency for such domains, we tried
an experiment at progressive demarcation or characteriza-
tion of the test domains. Intuitively, the idea is to draw two
thresholds above one there are clearly good domains, below
the second threshold there are clearly bad domains and the
domains between the two thresholds require more data (or
hostnames) for accurate characterization. These thresholds
are progressively brought closer (or made tighter) as more
hostnames become available, allowing more domains to be
accurately characterized until we get 500 or more hostnames
for each domain. The results of such an experiment using
the JI measure are shown in Fig. 7.

We establish the lower bound using the formula µb + σb

where µb is the mean of JI values observed for bad or ma-
licious domains and σb is the standard deviation. Sim-
ilarly, the upper bound is obtained using the expression
µg − σg where the subscript g implies good domains. Fig-
ure 7 shows the detection rate for the considered domains.



We see a monotonically increasing detection rate for both
good and bad domains. It is observed that 85% of bad do-
mains could be so characterized accurately with only 100
hostnames while only about 23% of good domains can be
so characterized with 100 hostnames. In addition, our ex-
periments indicate that only a small percentage of domains
require 200 or more hostnames for their characterization.
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Figure 7: Illustrating benefits of progressive demar-
cation with JI measure.

5.2 Per-IP analysis

5.2.1 Data set
Here, we present the evaluation of domain names that

map to an IP address. For analyzing the per-IP group, for
all hostnames mapping to an IP-address, we use the do-
main labels except the top-level domain TLD as the test
word. For instance, for hostnames physics.university.edu
and cse.university.edu mapping to an IP address, say 6.6.6.6,
we use physicsuniversity and cseuniversity as test words.
However, we only consider IP addresses with at least 50
hostnames mapping to it. We found 341 such IP addresses,
of which 53 were found to be malicious, and 288 were consid-
ered non-malicious. The data is obtained from DNS traces
of a Tier-1 ISP in Asia.
Many hostnames may map to the same IP address. Such

a mapping holds for botnets or other malicious entities utiliz-
ing a large set of hostnames mapping to fewer C&C(Command
and Control) servers. It may also be valid for legitimate in-
ternet service such as for Content Delivery Networks (CDNs).
We first classify the IPs obtained into two classes of mali-
cious and non-malicious IPs. The classification is done based
on manual checking, using blacklists, or publicly available
Web of Trust information [7]. We manually confirm the pres-
ence of Conficker based IP addresses and domain names [28].
The ground truth thus obtained may be used to verify the
accuracy of classification. Figure 1 shows the distribution of
non-malicious test words and the randomized distribution is
generated as described previously.
We discuss the results of per-IP analysis below. For the

sake of brevity, we present results based on K-L distances of
bigram distributions only. Summary of results from other
metrics is also provided.
The ROC curve for K-L metric shows that bigram distri-

bution can be effective in accurately characterizing the do-

main names belonging to different IP addresses. We observe
a very clear separation between malicious and non-malicious
IPs with 500, and even with 200 test words. With a low false
positive rate of 1%, high detection rates of 90% or more are
obtained with 100 or greater number of test words.

The bigram analysis was found to perform better than un-
igram distributions. The per-IP bigram analysis performed
better than per-domain bigram analysis. We believe that
the bigrams obtained from the ISP dataset provide a com-
prehensive non-malicious distribution. The second-level do-
main labels also assist in discarding false anomalies, and
therefore provide better accuracy.

The JI measure performed very well, even for small set of
test words. The area covered under the ROC curve was 1
for 200/500 test words. For the experiment with 100 test
words, we achieved the detection rates of 100% with false
positive rate of only 2%.

Edit distance with domains mapping to an IP, results in
a good performance in general. The experiments with 100
test words results in a low false positive rate of about 10%
for a 100% detection rate. However for using only 50 test
words, the detection rate reaches about 80% for a high false
positive rate of 20%. Thus, we conclude that for per-IP
based analysis, the JI measure performs relatively better
than previous measures applied to this group. However, as
highlighted in section 7, the time complexity for computing
jaccard index is higher.

Table 2: Summary of interesting networks discov-
ered through component analysis

Comp. #Comps. #domains #IPs
type

Conficker 1 1.9K 19
botnet

Helldark 1 28 5
botnet
Mjuyh 1 121 1.2K
botnet

Misspelt 5 215 17
Domains

Domain Parking 15 630 15
Adult content 4 349 13

Table 3: Domain names used by bots
Type of group Domain names

Conficker botnet
vddxnvzqjks.ws
gcvwknnxz.biz
joftvvtvmx.org

Mjuyh bot
935c4fe[0-9a-z]+.6.mjuyh.com
c2d026e[0-9a-z]+.6.mjuyh.com

Helldark Trojan
may.helldark.biz
X0R.ircdevils.net

www.BALDMANPOWER.ORG

5.3 Summary
For a larger set of test words, the relative order of efficacy

of different measures decreases from JI, to edit distance to



Table 1: Different types of classes
Type of class # of compo-

nents
# of IP ad-
dresses

# of domain
names

Types of components found

Many-to-many 440 11K 35K Legitimate services (Google, Ya-
hoo), CDNs, Cookie tracking, Mail
service, Conficker botnet

IP fans 1.6K 1.6K 44K Domain Parking, Adult content,
Blogs, small websites

Domain fans 930 8.9K 9.3K CDNs (Akamai), Ebay, Yahoo,
Mjuyh botnet

K-L distances over bigrams and unigrams. However, inter-
estingly, we observe the exact opposite order when using a
small set of test words. For instance, with 50 test words used
for the per-domain analysis, the false positive rates at which
we obtain 100% detection rates, are approximately 50% (JI),
20% (ED), 25% (K-L with bigram distribution), and 15%
(K-L with unigram distribution). Even though the proof in
the Appendix indicates that K-L divergence is an optimal
metric for classification, in practice, it does not hold as the
proof is based on the assumption that it is equally likely to
draw a test distribution from a good or a bad distribution.

6. DETECTION VIA SUPERVISED LEARN-
ING

As discussed in Section 5.3 immediately above, the rela-
tive merits of each measure vary depending, for instance, on
the number of subdomains present in a domain being tested.
In this section, we formulate detection of malicious domains
(algorithmically generated) as a supervised learning prob-
lem such that we can combine the benefits afforded by each
measure while learning the relative weights of each measure
during a training phase. We divide the one-day long trace
from the South Asian Tier-1 ISP in to two halves such that
the first one of 10 hours duration is used for training. We test
the learnt model on the remainder of the trace from South
Asian ISP as well as over a different trace from a Tier-1
ISP in South America. In this section, we use the grouping
methodology of connected components, where all “domain
name, response IP-address”pairs present during a time win-
dow (either during training or test phases) are grouped in
to connected components.

6.1 L1-regularized Linear Regression
We formulate the problem of classifying a component as

malicious (algorithmically generated) or legitimate in a su-
pervised learning setting as a linear regression or classifica-
tion problem. We first label all domains within the com-
ponents found in the training data set by querying against
domain reputation sites such as McAfee Site Advisor [2] and
Web of Trust [7] as well as by searching for the URLs on
search-engines [32]. Next, we label a component as good or
bad depending on a simple majority count, i.e., if more than
50% of domains in a component are classified as malicious
(adware, malware, spyware, etc.) by any of the reputation
engines, then we label that component as malicious.
Define the set of features as F which includes the follow-

ing metrics computed for each component: KL-distance on
unigrams, JI measure on bigrams and Edit distance. Also
define the set of Training examples as T and its size in terms

of number of components as |T |. Further, define the output
value for each component yi = 1 if it was labeled malicious
or = 0 if legitimate. We model the output value yi for any
component i ∈ T as a linear weighted sum of the values at-
tained by each feature where the weights are given by βj for
each feature j ∈ F : yi =

∑

j∈F βjxj + β0

In particular, we use the LASSO, also known as L1-regularized
Linear Regression [18], where an additional constraint on
each feature allows us to obtain a model with lower test
prediction errors than the non-regularized linear regression
since some variables can be adaptively shrunk towards lower
values. We use 10-fold cross validation to choose the value
of the regularization parameter λ ∈ [0-1] that provides the
minimum training error (equation below) and then use that
λ value in our tests:

argmin
β

|T |
∑

i=1

(yi − β0 −
∑

j∈F

βjxj)
2 + λ

∑

j∈F

|βj |. (2)

6.2 Results
First, note the various connected components present in

the South Asian trace as classified in to three classes: IP
fans, Domain fans and Many-to-many components in Table
1. During the training phase, while learning the LASSO
model, we mark 128 components as good (these consist of
CDNs, mail service providers, large networks such as Google)
and one component belonging to the Conficker botnet as
malicious. For each component, we compute the features of
KL-divergence, Jaccard Index measure and Edit distance.
We train the regression model using glmnet tool [18] in sta-
tistical package R, and obtain the value for the regulariza-
tion parameter λ as 1e − 4, that minimizes training error
during the training phase. We then test the model on the
remaining portion of the one day long trace. In this regard,
our goal is to check if our regression model can not only de-
tect Conficker botnet but whether it can also detect other
malicious domain groups during the testing phase over the
trace. During the testing stage, if a particular component
is flagged as suspicious then we check against Web of Trust
[7], McAfee Site Advisor [2] as well as via Whois queries,
search engines, to ascertain the exact behavior of the com-
ponent. Next, we explain the results of each of the classes
individually.

On applying our model to the rest of the trace, 29 com-
ponents (out of a total of 3K components) are classified as
malicious, and we find 27 of them to be malicious after cross
checking with external sources (Web of Trust, McAfee, etc.)
while two components (99 domains) are false positives and
comprise of Google and domains belonging to news blogs.



Note that here we use a broad definition of malicious do-
mains as those that could be used for any nefarious purposes
on the web, i.e., we do not necessarily restrict the definition
to only include botnet domain generation algorithm. Out of
the 27 components that were classified as malicious, one of
them corresponds to the Conficker botnet, which is as ex-
pected since our training incorporated features learnt from
Conficker. We next provide details on the remaining 26 com-
ponents that were determined as malicious (see Table 2).
Mjuyh Botnet: The most interesting discovery from our

component analysis is that of another Botnet, which we call
Mjuyh, since they use the domain name mjuyh.com (see
Table 3). The fourth-level domain label is generated ran-
domly and is 57 characters long. Each of the 121 domain
names belonging to this bot network return 10 different IP
addresses on a DNS query for a total of 1.2K IP-addresses.
Also, in some replies, there are invalid IP addresses like
0.116.157.148. All the 10 IP addresses returned for a given
domain name, belong to different network prefixes. Fur-
thermore, there is no intersection in the network prefixes
between the different domain names of the mjuyh bot. We
strongly suspect that this is a case of “domain fluxing”along
with “IP fast fluxing”, where each bot generated a different
randomized query which was resolved to a different set of
IP-addresses.
Helldark Trojan: We discovered a component contain-

ing five different third-level domains (a few sample domain
names are as shown in Table 3) The component comprises of
28 different domain names which were all found to be spread-
ing multiple Trojans. One such Trojan spread by these do-
mains is Win32/Hamweq.CW that spreads via removable
drives, such as USB memory sticks. They also have an IRC-
based backdoor, which may be used by a remote attacker
directing the affected machine to participate in Distributed
Denial of Service attacks, or to download and execute arbi-
trary files [8].
Mis-spelt component: There are about five compo-

nents (comprising 220 domain names) which used tricked
(mis-spelt or slightly different spelling) names of reputed
domain names. For example, these components use domain
names such as uahoo.co.uk to trick users trying to visit ya-
hoo.co.uk (since the alphabet ‘u’ is next to the alphabet ‘y’,
they expect users to enter this domain name by mistake).
Dizneyland.com is used to misdirect users trying to visit Dis-
neyland.com (which replaces the alphabet ‘s’ with alphabet
‘z’). We still consider these components as malicious since
they comprise of domains that exhibit unusual alphanumeric
features.
Domain Parking: We found 15 components (630 do-

main names) that were being used for domain parking, i.e.,
a practice where users register for a domain name without
actually using it, in which case the registrar’s IP-address is
returned as the DNS response. In these 15 components, one
belongs to GoDaddy (66 domain names), 13 of them belong
to Sedo domain parking (510 domain names) and one com-
ponent belongs to OpenDNS (57 domain names). Clearly
these components represent something abnormal as there
are many domains with widely disparate algorithmic fea-
tures clustered together on account of the same IP-address
they are mapped to.
Adult Content: We find four components that comprise

of 349 domains primarily used for hosting adult content sites.
Clearly this matches the well known fact, that in the world

of adult site hosting, the same set of IP-addresses are used
to host a vast number of domains, each of which in turn may
use very different words in an attempt to drive traffic.

In addition, for comparison purposes, we used the lexi-
cal features of the domain names such as the length of the
domain names, number of dots and the length of the second-
level domain name (for example, xyz.com) for training on the
same ISP trace, instead of using the KL-divergence, JI mea-
sure and Edit distance measures used in our study. These
lexical features were found to be useful in an earlier study
in identifying malicious URLs [17]. The model trained on
these lexical features correctly labeled four components as
malicious (Conficker bot network, three adult content com-
ponents and one component containing mis-spelt domain
names) during the testing phase, but it also resulted in 30
components which were legitimate as being labeled incor-
rectly; compare this against 27 components that were cor-
rectly classified as malicious and two that were false positives
on using our alphanumeric features.

We also test our model on a trace obtained from a South
America based Tier-1 ISP. This trace is about 20 hours long
and is collected on a smaller scale as compared to the ISP
trace from Asia. The time lag between the capture of S.
American Tier-1 ISP trace and the previously used ISP trace
from Asia, is about 15 days. We use the same training set
for the prediction model as we use for the ISP trace from
Asia. In the prediction stage, we successfully detect the
Conficker component with no false positives. The Conficker
component has 185 domain names and 10 IP addresses. Of
the 10 IP addresses determined for the Conficker component
of the South American trace, nine are common with the
Asia ISP trace’s Conficker component. We conclude that
Conficker based C&C servers have relatively large TTLs.
However, out of the 185 domain names only five domains are
common from this component and the component from the
ISP trace from Asia. Clearly, the Conficker botnet exhibits
rapid domain fluxing. Overall, this experiment shows that
a training model learnt in one network can be applied to
a completely different network and still successfully detect
malicious domain groups.

7. DISCUSSION

7.1 Usefulness of component analysis
Conficker botnet, present in our ISP trace, employs do-

main fluxing across TLDs, that became directly visible after
IP-domain components were extracted and analyzed from
the trace. The component analysis allowed the application
of our detection methods across several different domains,
which otherwise would have been separated from each other.
In addition, component analysis allowed us to detect Con-
ficker domains that would not have been detectable with our
approach when applied to domain names alone since some
of these domains contained fewer than 50 names needed for
accurate analysis. Similarly, some of the IP addresses in
the component hosted fewer than 50 names and would not
have been detected with the IP address based analysis either.
However, these domains will be included in the component
analysis as long as the component has altogether more than
50 names.

Let Dc be the number of hostnames and Ic be the number
of IP addresses in the component. If Dd, Id are the num-
ber of hostnames and corresponding IP addresses detected



through domain level analysis, we define domain level com-
pleteness ratios as Dd/Dc and Id/Ic. Similarly, we can de-
fine the completeness ratios for IP-based analysis as Di/Dc

and Ii/Ic, where Di and Ii correspond to the total num-
ber of hostnames and IP addresses of the Conficker botnet
detected by the IP-based analysis.
For the Conficker botnet, these completeness ratios for IP-

based analysis were 73.68% for IP addresses and 98.56% for
hostnames. This implies that we are able to detect an addi-
tional 26.32% of IP addresses and a relatively small fraction
of 1.44% of hostnames for those IP addresses. The complete-
ness ratios for domain based analysis were found to be 100%
for IP addresses and 83.87% for the hostnames. Therefore,
we do 16.13% better in terms of determining the hostnames
using the per-domain analysis. This shows that the com-
ponent level analysis provides additional value in analyzing
the trace for malicious domains.

7.2 Complexity of various measures
Table 4 identifies the computational complexity for every

metric, and for all groups that we use. We observe that K-L
metrics analyzing unigram and bigram distributions can be
computed fairly efficiently. However, for the JI measure, the
size of the non-malicious database largely influences the time
taken to compute the measure. A good database size results
in a higher accuracy, at the cost of increased time taken
for analysis. Similarly, edit distance takes longer for large
word lengths, and the number of test words. However, it is
independent of any database, hence the space requirements
are smaller.

Notation
A Alphabet size
W Maximum word size
K Number of test words
K’ Number of test words in a component
Sg Number of words in non-malicious database

Table 4: Computational complexity

Grp. K-L K-L JI EDunigram bigram
dom. O(KW O(KW+ O(KW 2Sg) O(K2W 2)

+A) A2)
IP O(KW O(KW+ O(KW 2Sg) O(K2W 2)

+A) A2)
Com. O(K′W O(K′W O(K′W 2Sg) O(K′2W 2)

+A) +A2)

We briefly describe how we determine the bounds as ex-
pressed in table 4 for the per-domain group. For the K-L
unigram analysis since we examine every character of every
test word, the complexity is bounded byKW . We then com-
pute, for every character in the alphabet A, the divergence
values. Therefore, we obtain the complexity as O(KW +
A). Bigram distribution based K-L divergence is calculated
similarly except that the new alphabet size is A2. While cal-
culating the Jaccard index, note that the number of bigrams
obtained is O(W − 1). For each bigram, we examine the
queues pointing to words from the non-malicious database.
Thus, for each bigram, we examine O(WSg) bigrams. Since

we do it for K test words, we obtain O(KW 2Sg). For every

test word used while obtaining the edit distance, we exam-
ine it against the K - 1 test words. Therefore, the total
complexity is simply O(K2W 2). The expressions for per-IP
and per-component groups are obtained analogously.

It is interesting to note that A is of the size 36 (0-
9, a-z characters). K used in our analysis varies as
50/100/200/500. However, the average value forK’ is higher
in comparison. The DNS PTR dataset considered for per-
domain analysis has approximately 469,000 words used for
training purposes. This helps us estimate Sg. For the ISP
dataset, Sg is of the order of 11522 words. An estimate of
W for the DNS PTR dataset is obtained from figure 2.

8. CONCLUSIONS
In this paper, we propose a methodology for detecting al-

gorithmically generated domain names as used for “domain
fluxing” by several recent Botnets. We propose statistical
measures such as Kullback-Leibler divergence, Jaccard in-
dex, and Levenshtein edit distance for classifying a group
of domains as malicious (algorithmically generated) or not.
We perform a comprehensive analysis on several data sets
including a set of legitimate domain names obtained via a
crawl of IPv4 address space as well as DNS traffic from a
Tier-1 ISP in Asia. One of our key contributions is the rela-
tive performance characterization of each metric in different
scenarios. In general, the Jaccard measure performs the
best, followed by the Edit distance measure, and finally the
KL divergence. Furthermore, we show how our methodol-
ogy when applied to the Tier-1 ISP’s trace was able to detect
Conficker as well as a botnet yet unknown and unclassified,
which we call as Mjuyh. In this regards, our methodology
can be used as a first alarm to indicate the presence of do-
main fluxing in a network, and thereafter a network security
analyst can perform additional forensics to infer the exact
algorithm being used to generate the domain names. As
future work, we plan to generalize our metrics to work on
n-grams for values of n > 2.
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APPENDIX
Let A = {a1, a2, . . . , aM} denote M the letters of the al-
phabet from which the domain names are chosen (in our
case, this is English alphabet with spaces and special char-
acters). Let g = [g1, g2, . . . , gM ] and b = [b1, b2, . . . , bM ] be
the distribution of the letters in the good and bad domains,
respectively. Let x be the actual domain name of length
N , that has to be classified as being good or bad. Let the
letter ai appear ni times in x such that

∑

i
ni = N . Let

q = [q1, q2, . . . , qM ] be the distribution of the different let-
ters in x, i.e., qi = ni/N .

Under the assumption that a priori, x can belong to a
good or bad domain with equal probability, the classifier
that minimizes the probability of error (wrong classification)
is given by the maximum-likelihood classifier which classifies
x according to

P (x|g)
g

≷
b

P (x|b) (3)

Intuitively, x is classified as good, if it is more likely to have
resulted from the good distribution than from the bad dis-
tribution. The above classifier can be specified in terms of
the likelihood ratio given by

λ(x) =
P (x|g)

P (x|b)

g

≷
b

1 (4)



As we will see later, it is easier to work with an equivalent
quantity 1

N
log λ(x). The classifier is then given according

to

1

N
log λ(x) =

1

N
log

P (x|g)

P (x|b)

g

≷
b

0 (5)

Under the assumption that the letters in x have been gen-
erated independently from the same distribution, P (x|g) is
given by

P (x|g) =
N
∏

k=1

P (xk|g) =
M
∏

i=1

P (ai|g)
ni =

M
∏

i=1

gni

i =
M
∏

i=1

gqiNi .

(6)
The second equality follows by grouping all the occurrences
of the letters ai together and recall that there are ni such
occurrences. Similarly,

P (x|b) =

N
∏

k=1

P (xk|b) =

M
∏

i=1

P (ai|b)
ni =

M
∏

i=1

bni

i =

M
∏

i=1

bqiNi .

(7)
Using (6) and (7) in (5), the log-likelihood ratio can be seen
to be

1

N
log λ(x) =

1

N
log

P (x|g)

P (x|b)
= log

∏M

i=1 g
qi
i

∏M

i=1 b
qi
i

(8)

Dividing the numerator and the denominator by
∏

i qi
qi ,

we get

1

N
log λ(x) = log

∏M

i=1

(

gi
qi

)qi

∏M

i=1

(

bi
qi

)qi
(9)

=
∑

i

qi log
gi
qi

−
∑

i

qi log
bi
qi

(10)

= D(q|b)−D(q|g) (11)

where D(q|b) is the Kullback-Liebler (KL) distance be-
tween the two distributions. Thus, the optimal classifier
given in (5) is equivalent to

D(q|b)−D(q|g)
g

≷
b

0 (12)

This result is intuitively pleasing since the classifier essen-
tially computes the KL “distance” between q and the two
distributions and chooses the one that is ‘closer’.


