
Smart Card HOTP
Open Source HMAC-Based One-Time

Password Algorithm Implementation for *nix and
RADIUS capable hardware.

Wednesday, November 25, 2009

Agenda

Two Factor Authentication with HOTP.

Smart Cards & Readers.

Authentication Hooks into servers.

Admin tools for HOTP management.

Installation and Provisioning
walkthrough.

Wednesday, November 25, 2009

HOTP
Definition and security analysis of
algorithm in RFC 4226.

Authors members of the Open
AuTHentication Initiative OATH.

Open standard two factor
authentication algorithm.

Compete with existing vendor
proprietary solutions.

Wednesday, November 25, 2009

RFC 4226:

“The absence of open specifications
has led to solutions where hardware
and software components are tightly
coupled through proprietary
technology, resulting in high-cost
solutions, poor adoption, and limited
innovation.”

Wednesday, November 25, 2009

Two Factor
Authentication

Something you have -- a hardware
token generator, printed token list,
magnetic key card, RFID card, etc

Something you know -- a password.

Both are required for successful
authentication.

Wednesday, November 25, 2009

Given the
opportunity...

Easy to guess passwords are chosen.

Passwords will be shared among
systems creating transitive security
relationships.

Passwords will be cached, ssh
included (Windows ssh client clickbox).

Policy discouraging the above is
ineffective.

Wednesday, November 25, 2009

When a password is
not working...

Try your “other one”

Then the “other other one”

Common occurrence when password
changes notices are given.

Your router and VPN passwords just
got sent over an insecure link to a
hacked web site storing {srcIP,
username, password} combinations.

Wednesday, November 25, 2009

HOTP
Each token only works once.

Immune to replaying of captured,
guessed, or cracked passwords used
by end users.

Token is computationally infeasible to
generate without access to key
material (typically) not revealed to end
users.

Wednesday, November 25, 2009

Working system

End user token generator.

Authentication back end for systems
requiring HOTP logins.

Administrative tools to manage keys,
reset a user PIN, program smart cards
and reader.

Misc -- scripts to bulk configure users.

Wednesday, November 25, 2009

Existing solutions

Commercial and open source options
available

S/KEY (open source)

RSA Secure ID (proprietary)

Many others which fall somewhere
between open source and proprietary.

Wednesday, November 25, 2009

Commercial Vendors
Secure-ID, Crypto Card, others.

Geared toward enterprise
deployments, not easy to integrate into
corner cases such as a lone terminal
server at a remote site on a dialup
modem, or other one-off’s. Our
Policies require OTP everywhere. It
only takes one compromised backbone
router...

Wednesday, November 25, 2009

S/KEY One-Time
Password System

Open Source, Open Standard RFC
2289.

Widely implemented for *nix.

Somewhat unique in that server does
not share any key material with the
token generator.

Wednesday, November 25, 2009

S/KEY One-Time
Password System

A good hardware token generator not
available.

Does not work well for non technical
users.

Carrying a printed list for every system
requiring S/KEY access is not practical.

End user habits can easily compromise
security.

Wednesday, November 25, 2009

S/KEY One-Time
Password System

1: MID JURY ODD ALGA SAW YAM
2: ODIN GUT SLY COW CLAM LEER
3: EMIT COMB SAIL SEEK FIEF TON
4: DEFT ME OMEN MOO IOWA EROS
5: SWAG AGEE SORT BOMB BELT RIG
6: ALSO EASE NERO WIRE BAD TED
7: LIAR TOY MAD ROAR SOUL MILD
8: ABUT GYP THAT DEL MASH SHOT
9: KURD RAIN RYE JUG AWK BURG
10: ROBE MUCH ALVA IDEA DARN RULE

Wednesday, November 25, 2009

Wishlist
No dependencies on network based
authentication servers -- we must be
able to get into our equipment during
maintenance and outages without
special procedures. Equipment is
physically located at many sites across
the state.

* No client software -- too many
compatibility and support issues.

Wednesday, November 25, 2009

Wishlist
Easy to integrated into a variety of
hardware / authentication systems.

Open algorithm, not locked into a
single vendor.

Palatable to staff, low nuisance factor.

Low cost for small deployments, ie
single server with a few users.

Wednesday, November 25, 2009

New Requirements
Autonomy across groups (OARnet
Engineering, OARnet systems, OSC
HPC).

No dependencies across groups, HPC
not dependent on OARnet.

Open source the implementation. Try
to avoid being a poorly documented
unmaintained local hack.

Wednesday, November 25, 2009

Issues not addressed
by OTP’s

Login must be encrypted and mutually
authenticated (ssh/https) or session
can be hijacked. OTP is not a
replacement for strong encryption.

End user workstation must be secured.
Logging in from a hacked PC nullifies
OTP security. No remote logins,
servers, etc on staff workstations /
laptops.

Wednesday, November 25, 2009

Issues not addressed
by OTP’s

Poor key management with ssh and
HTTPS has trained end users to ignore
warnings indicating possible hijacked
sessions.

Hijacking a session (MIM attack) was
once considered difficult. No longer
with compromised end-user WIFI and
broadband routers.

Wednesday, November 25, 2009

HOTP Algorithm

HOTP(K,C) = Truncate(HMAC-
SHA-1(K,C)

K is a secret key.

C is a count which increases on each
successful authentication.

K and C are shared between the token
generator (end user) and auth server.

Wednesday, November 25, 2009

HMAC-SHA-1
Keyed-Hashing for Message
Authentication.

Defined in FIPS PUB 198 (US
Department of Commerce, Technology
Administration, NIST)

Apply a secure hash to a Key and a
Message (Counter for HOTP).

The result is the One Time Password.
Wednesday, November 25, 2009

In English...
The Token requires a secret key and
not secret count to generate.

The key can not be derived from the
Token except by brute force which is
computationally infeasible.

When the count changes (successful
authentication) the next token will also
change (OTP).

Wednesday, November 25, 2009

In English...
Once a count value has been used it is
never valid again. The server must
keep track of “old” count values by
increasing its copy of the count.

Without the shared secret a valid token
can not be generated.

End users should not have access to
the key material. The token generator
must be tamper resistant.

Wednesday, November 25, 2009

Implications...
The count must be synchronized
between the token generator and
server.

For optimum security the key should be
unique per user, per system. An end
user configured to login to multiple
servers will have multiple (logical)
token generators. Some cases where
this restriction can be relaxed.

Wednesday, November 25, 2009

Implications...
There must be a way for a token
generator to re-synchronize to the
server. If the user generates a token
and then does not use it the count will
not match the server resulting in a
failed authentication. The user could
manually enter the count, or the server
could “look ahead” for small synch
errors.

Wednesday, November 25, 2009

HOTP Algorithm

HOTP(K,C) = Truncate(HMAC-
SHA-1(K,C)

HMAC-SHA-1 produces 160 bits of
output, this is asking too much of
someone to type in. Truncate()
reduces the output, to say 40 bits
which can be represented as 10 HEX
nybbles.

Wednesday, November 25, 2009

HOTP Algorithm
Truncating to 40 bits greatly reduces
the security of the OTP. The server
must implement an authentication rate
limiting mechanism to prevent
exhaustive token space attacks. A limit
of one authentication per second
results in about 17,000 years for a 50%
probability of hitting the 40 bit token
(good enough).

Wednesday, November 25, 2009

Smart Cards
Contact and Contactless (RFID)

EEPROM (memory card, dumb device)

Microcontroller, Flash, RAM (MCU
card)

JAVA capable cards (high end MCU
type)

Purpose programmed cards:
PKSC#11, .NET Sun Ray...

Wednesday, November 25, 2009

Smart Cards
ISO-7816-* defines physical
characteristics, electrical signals and
protocols.

PC/SC API for interfacing software
through a smart card reader to a smart
card.

Broad range of capabilities depending
on vendor and model.

Wednesday, November 25, 2009

Smart Cards

Wednesday, November 25, 2009

BasicCard

ZC 3.9 $1.50 in single quantity. 256
bytes of RAM and 8K EEPROM.

Free Development IDE with crypto
library (Windows Based).

Sufficient resources for HOTP
implementation with 85 stored systems.

Wednesday, November 25, 2009

Balance Reader
Low Cost ($10 single quantity).

Used for E-Cache applications.

Popular in the UK.

Insert Smart Card, HOTP generated.

Limited to a single system (HOTP key).

No provisions for user input such as a
PIN or challenge request.

Wednesday, November 25, 2009

Stand-Alone Reader
Spyrus PAR II $60 single quantity.

PIC16F877 Microcontroller 14K
program memory, 368 bytes RAM, 256
bytes EEPROM.

Co-Controller to offload LCD, keypad,
and smart card interface.

Allows for PIN, multiple systems menu,
challenge entry.

Wednesday, November 25, 2009

Demo Reader
PIN: 12345

↓ menu activate

* change PIN

toggle challenge prompt

<enter> Generate HOTP token

nn shortcut to system
Wednesday, November 25, 2009

PC Based Readers
$15 single quantity.

USB or Serial.

Different form factors.

Reader == Reader/Writer. Same
interface. For MCU based cards,
readers are all alike. For proprietary
formats like EEPROM reader may
need to be paired with Smart Card.

Wednesday, November 25, 2009

Smart Card Firmware

T=1 (Block) Async Protocol

CLA,INS (Class, Instruction) - Function

Data block - In/Out data

Wednesday, November 25, 2009

Smart Card Firmware

#ifdef ENABLECGETVERSION
command &H80 &H52 GetVersion(V as Byte)

 V = HOTPCodeVersion

end command
#endif 'ENABLECGETVERSION

Wednesday, November 25, 2009

Smart Card Firmware
#ifdef ENABLECGETHOSTNAME
command &H80 &H44 GetHostName(Idx as Byte, myPIN as String*5,_
 HostName as String*12)

 if CheckPIN(myPIN) <> 0 then
 SW1SW2 = swAccessDenied
 Exit
 end if

 if CheckIndex(Idx) <> 0 then
 SW1SW2 = swDataNotFound
 Exit
 end if

 HostName = HOTPHost(idx)

end command
#endif 'ENABLECGETHOSTNAME

Wednesday, November 25, 2009

Smart Card Terminal
 scrio.tx_lc = ZC_VERSION_LEN;
 scrio.tx_le = ZC_VERSION_LEN;
 scrio.tx_delay = ZC_GETVERSION_DELAY;
 scrio.rx_buf_len = scrio.tx_le;
 i = 0;

 scrio.tx_buf[i++] = ZC_GETVERSION_CLA; /* CLA */
 scrio.tx_buf[i++] = ZC_GETVERSION_INS; /* INS */
 scrio.tx_buf[i++] = 0x0; /* P1 */
 scrio.tx_buf[i++] = 0x0; /* P2 */
 scrio.tx_buf[i++] = scrio.tx_lc; /* LC */
 for (j = 0; j < ZC_VERSION_LEN; ++j)
 scrio.tx_buf[i++] = 0;
 scrio.tx_buf[i++] = scrio.tx_le; /* LE */

 scrio.tx_buf_len = i;

Wednesday, November 25, 2009

Smart Card Terminal
 /* SC transaction */
 if (scr_ctx_cmd(scrctx, &scrio) < 0) {
 if (scrctx->verbose)
 xerr_warnx("sc_ctx_cmd(): failed.");
 return -1;
 }

 /* check response code and size */
 if ((r = scr_checksw1sw2_rx(&scrio, scrio.tx_le, 0x90, 0x00,
 scrctx->verbose)) != 0) {
 return -1;
 }

 /* copy out SC response */
 for (j = 0; j < ZC_VERSION_LEN; ++j)
 zc_version[j] = scrio.rx_buf[j];

Wednesday, November 25, 2009

Smart Card HOTP

Non volatile storage for n systems
{Hostname,Shared Key,Count}

Administrative commands for storing
and retrieving systems, reset user PIN

User commands to generate a HOTP
token, verify & reset PIN, list system
names.

Wednesday, November 25, 2009

' ZC commands CLA=80
' b = Byte Idx,Mode,Version
' i = Integer Count
' l = Long Count32,Capabilities
' sn = String length n Hostname(12),ZCKey(20),*PIN(5),HOTP(5),
' AdminKey(20),eeBlock(16), readerKey(5)
' INS Name Format CapabilityID
'--
' 00 PRDisplay (CLA=C8) - 00000001
' RecordNumber(byte), DataFormat(byte), DigitCount(byte)
' DecimalPoint(byte), Delay(byte), MoreData(byte),
' Data(String)
' 40 SetHost Idx,Count,Hostname,HOTPKey 00000002
' 42 GetHost Idx,Count,Hostname,HOTPKey 00000004
' 44 GetHostName Idx,myPIN,Hostname 00000008
' 46 GetHOTP Idx,myPIN,HOTP 00000010
' 48 SetAdminMode Mode,AdminKey 00000020
' 4A SetBalanceCardIndex Idx 00000040
' 4C SetPIN myPIN,newPIN 00000080
' 4E TestPIN myPIN 00000100
' 50 GetVersion Version 00000200
' 52 SetAdminKey AdminKey 00000400
' 54 SetHost32 Idx,Count32,Hostname,HOTPKey 00000800
' 56 GetHost32 Idx,Count32,Hostname,HOTPKey 00001000
' 58 GetHOTPCount32 Idx,myPIN,Count32,HOTP 00002000
' 5A GetHOTPHost Idx,myPIN,HOTP,Hostname 00004000
' 5C GetHOTPHostCount32 Idx,myPIN,Count,HOTP,Hostname 00008000
' 5E ClearAll 00010000
' 60 SetReaderKey readerKey 00020000

' 90 GetCapabilities Capabilities XXXXXXXX
' A0 GetEEBlock P1=Idx,eeBlock XXXXXXXX
' A1 SetEEBlock P1=Idx,eeBlock XXXXXXXX

Wednesday, November 25, 2009

otp-sct
Command line smart card terminal
program.

Same functionality of Spyrus reader
when smart card and reader are
connected to PC.

HOTP generated on the card and
presented to the user.

Reduces security of system.
Wednesday, November 25, 2009

otp-sct

otp-sct [-1hlpv?] [-c count] [-d debug_level] [-i index] [-r reader]
 -h : help
 -l : list SC readers
 -L : list hostnames
 -p : reset PIN
 -v : list SC firmware version

Wednesday, November 25, 2009

Working system

End user token generator.

Authentication back end for systems
requiring HOTP logins.

Administrative tools to manage keys,
reset a user PIN, program smart cards
and reader.

Misc -- scripts to bulk configure users.

Wednesday, November 25, 2009

Back end

C library implementation of HOTP
algorithm.

Maintain database of {Username,
Count, Count Ceiling, Shared Key, Last
Authentication Attempt, Account
Status}.

Authentication hooks.

Wednesday, November 25, 2009

pam_otp.so
Pluggable Authentication Module
(PAM)- de-facto standard for interfacing
authentication methods to Unix
servers.

Install OTP library, set PAM
configuration to include pam_otp.so in
the authentication chain.

OARnet deployment limited sshd.
Wednesday, November 25, 2009

urd

Micro RADIUS daemon for
authentication with OTP library.

Allows VPN appliance, routers,
switches, to authenticate with HOTP.

Wednesday, November 25, 2009

otp-openvpn

OpenVPN Authentication Plug-In
program for interfacing OpenVPN with
HOTP.

OpenVPN has some issues with OTP’s
in general....

Wednesday, November 25, 2009

C API
 if (!(otpctx = otp_db_open(otpdb_fname, db_flags)))
 xerr_errx(1, "otp_db_open(): failed.");

 if ((r = otp_user_exists(otpctx, username)) < 0)
 xerr_errx(1, "otp_user_exists(): failed.");

 if (r != 0)
 xerr_errx(1, "User %s does not exist in otp database.", username);

 if ((r = otp_user_auth(otpctx, username, pass, OTP_HOTP_WINDOW)) < 0)
 xerr_errx(1, "otp_user_auth(): failed.");

 if (otp_db_close(otpctx) < 0)
 xerr_errx(1, "otp_user_close(): failed.");

/*
 * r == OTP_AUTH_PASS then pass authentication
 * else fail.
 */

Wednesday, November 25, 2009

Working system

End user token generator.

Authentication back end for systems
requiring HOTP logins.

Administrative tools to manage keys,
reset a user PIN, program smart cards
and reader.

Misc -- scripts to bulk configure users.

Wednesday, November 25, 2009

otp-control

otp-contol maintains the back-end user
database.

Database is stored as ASCII files in a
format similar to passwd(5).

add, remove, modify, test key.

Requires escalated privileges to r/w the
OTP database. Not necessarily root.

Wednesday, November 25, 2009

otp-control
otp-control [-?hnv] [-c count] [-C count_ceil] [-F sc_flags] [-H sc_hostname]
 [-I sc_index] [-k key] [-m command_mode] [-o otbdb_pathname]
 [-u username] [-w window]

 -h : help
 -n : create database
 -v : enable verbose output

 sc_flags : 0=CHALLENGE, 1=READERKEY

 Mode Description

 add - Add user
 activate - Activate user
 create - Create database
 deactivate - Deactivate user
 disable - Disable user
 dump - ASCII dump user record(s)
 flags-dspcnt - Set user display count flag.
 flags-no-dspcnt - Clear user display count flag.
 generate - Generate HOTP for user
 list - List user record (printable)
 list-sc - List user record (SC friendly)
 load - ASCII load user record(s)
 remove - Remove user
 set-count - Reset count for user
 set-count-ceil - Reset count ceiling for user
 test - Test user

Wednesday, November 25, 2009

otp-sca

otp-sca maintains the database on the
end user smart cards via a PC
connected smart card reader.

add, remove, modify systems.

Reset a user PIN.

Test HOTP generation.

Wednesday, November 25, 2009

otp-sca
Admin functions require the use of an
admin key -- end users can not execute
the admin commands.

Enable/Disable balance card support.
Balance cards can not support PIN
functionality and may violate local
policies.

Implements other SC commands.
Wednesday, November 25, 2009

otp-sca
otp-sca [-hlp?] [-a admin_keyfile] [-c count] [-d debug_level]
 [-i index] [-m command_mode] [-M modifiers] [-r reader]
 [-R reader_keyfile] [-u username] [-v card_api_version]

 -h : help
 -l : list SC readers
 -p : no PIN required

 Command Mode Description Notes Modifiers

 admin-enable - Enable Admin Mode 1
 admin-disable - Disable Admin Mode
 adminkey-set - Set Admin Key 1
 balancecard-set - Set Balance Card Index 1
 capabilities-get - Get Capabilities
 host-get - Get host entry 1,2,4 d
 host-set - Set host entry 1,4
 hostname-get - Get Hostname for Index 2,3
 hotp-gen - Generate HOTP for Index 3 chr
 pin-set - Set PIN 3
 pin-test - Test/Verify PIN 3
 reader-key-set - Set Reader Key 1
 sc-clear - Clear all SC data 1
 spyrus-ee-get - Spyrus EEProm read 5
 spyrus-ee-set - Spyrus EEProm write 5
 version - Firmware version

 Notes (*):
 1 Admin Enable required.
 2 Iterate over all if no index specified.
 3 PIN or Admin Enable required.
 4 version 3 firmware supports 32 bit count, version 2 16 bit count.
 5 Spyrus customization SC firmware
 Modifiers: (version 3+ SC firmware)
 c pass count to SC.
 h return hostname from SC.
 d output in otpdb load friendly format.
 r include reader key in request.

Wednesday, November 25, 2009

htsoft-downloader
Spyrus PAR II reader microcontroller
(PIC16F877) must have HOTP terminal
firmware programmed.

Required for “new” vendor supplied
readers (done once).

RS232 downloader cable or USB to
RS232 adapter for laptops.

Windows version also available.
Wednesday, November 25, 2009

bcload

Zeitcontrol Smart Card microcontroller
must have HOTP card firmware
programmed.

Required for “new” vendor supplied
cards (done once).

Zeitcontrol supplied for Windows.

Local version for Unix.

Wednesday, November 25, 2009

Working system

End user token generator.

Authentication back end for systems
requiring HOTP logins.

Administrative tools to manage keys,
reset a user PIN, program smart cards
and reader.

Misc -- scripts to bulk configure users.

Wednesday, November 25, 2009

users2otpdb
otpdb2sc

In Unix tradition many small programs
which do a single task. Scripts used
for actual deployment with list of users.

Add a list of users to OTP db with
random keys.

Pull users from multiple OTP db’s and
create file ready to dump to smart card.

Wednesday, November 25, 2009

Working system

End user token generator.

Authentication back end for systems
requiring HOTP logins.

Administrative tools to manage keys,
reset a user PIN, program smart cards
and reader.

Misc -- scripts to bulk configure users.

Wednesday, November 25, 2009

Installation &
Provisioning
Walkthrough

Wednesday, November 25, 2009

Back End
Requirements

openssl - crypto library

pcsc-lite - optional open source PC/SC
drivers. Driver for ACR30S chipset
embedded in application. pcsc-lite
adds support for many smart card
readers. Used by otp-sct and otp-sca.

ccid - optional driver package for pcsc-
lite.

Wednesday, November 25, 2009

Back End
Requirements

acr38u - optional driver package for
pcsc-lite.

gcc and pam-development not installed
by default in some Linux distributions.

see QUICKSTART for package install
notes.

Wednesday, November 25, 2009

Build
Targets for Mac, FreeBSD, and Linux.

Not auto tooled yet.
build Intel Linux, pcsc-lite installed with yum
cd otp
cd common; make clean; make i386-yum-linux; cd ..
cd bcload; make clean; make i386-yum-linux; make install; cd ..
cd htsoft-downloader; make clean; make i386-linux; make install; cd ..
cd otp-control; make clean; make i386-linux; make install; cd ..
cd otp-pam; make clean; make i386-linux; make install; cd ..
cd otp-sca; make clean; make i386-yum-linux; make install; cd ..
cd otp-sct; make clean; make i386-yum-linux; make install; cd ..
cd otp-openvpn; make clean; make i386-linux; make install; cd ..
cd urd; make clean; make i386-linux; make install; cd ..
cd basiccard; make install; cd ..
cd spyrus-par2; make install; cd ..
cd scripts; make install; cd ..

Wednesday, November 25, 2009

Create OTP db

mkdir /etc/otpdb
chown root:wheel /etc/otpdb
chmod 700 /etc/otpdb

Wednesday, November 25, 2009

Install PAM module

linux
cp otp-pam/pam_otp.so /lib/security
chown root:wheel /lib/security/pam_otp.so
chmod 755 /lib/security/pam_otp.so
freebsd
cp otp-pam/pam_otp.so /usr/lib
chown root:wheel /usr/lin/pam_otp.so
chmod 755 /usr/lib/pam_otp.so

Wednesday, November 25, 2009

Add first user
cd otp-control
./otp-control -n -u joe -m add
./otp-control -u joe -m deactivate
./otp-control -u joe -m list

>Username.......joe
>Key............784F37E95A8410400700DF1E52466AB1704F487B
>Count..........0 (0x0)
>Count Ceiling..18446744073709551615 (0xFFFFFFFFFFFFFFFF)
>Version........1
>Status.........inactive (2)
>Format.........hex40 (1)
>Type...........HOTP (1)

Wednesday, November 25, 2009

Configure PAM/
SSHD

/etc/pam.d/sshd:
 # change auth lines:
 auth requisite pam_unix.so nullok try_first_pass
 auth required pam_otp.so expose_account display_count
allow_inactive debug
 # expose_account enabled verbose logging via syslog:
 # OTP username=joe response=0E3F8E7C47
 # display_count enables the HOTP count in the challenge prompt
 # HOTP Challenge (1843):
 # ^^^^ this is the count
 # allow_inactive will configure the module to allow a user in the OTP
 # database set to status inactive to pass authentication without an
OTP.

Wednesday, November 25, 2009

Configure PAM/
SSHD

/etc/ssh/sshd_config:
 # PasswordAuthentication must be turned off (default is on)
 # (note this is not true for all versions of sshd, see example
 # below.
 # SSH-2.0-OpenSSH_5.2 - PasswordAuthentication yes
 # SSH-2.0-OpenSSH_4.5p1 - PasswordAuthentication no
 PasswordAuthentication no
 # usePAM to yes (default)
 UsePAM yes
 # ChallengeResponseAuthentication is required for the pam OTP module
 # to interact with sshd
 ChallengeResponseAuthentication yes
 # Public Key Authentication must also be turned off
 RSAAuthentication no
 PubkeyAuthentication no

Wednesday, November 25, 2009

Restart sshd

restart sshd (linux)
/etc/init.d/sshd restart
restart sshd (FreeBSD)
/etc/rc.d/sshd restart

Wednesday, November 25, 2009

sshd behavior...

example of incorrectly configured system, note after 3 attempts
with PAM, sshd reverts to internal authentication code allowing the
OTP PAM module to be bypassed.
#
with later versions of sshd this is no longer true, ie
SSH-2.0-OpenSSH_5.2 is okay. The second password prompt will
also call pam_otp
#
 bastion.eng:~% ssh 10.1.0.25 -l 'joe'
 Password:
 Password:
 Password:
 joe@10.1.0.25's password:

Wednesday, November 25, 2009

mailto:joe@10.1.0.25
mailto:joe@10.1.0.25

Test sshd/OTP
generate OTP
./otp-control -u joe -m generate
 count=5 crsp=48B0D8D8E1

verify sshd is still working properly
bastion.eng:~% ssh 10.1.0.25
Password:
Last login: Tue Sep 1 23:21:20 2009 from 10.1.0.26

activate user
./otp-control -u joe -m activate

login with OTP generated earlier
bastion.eng:~% ssh 10.1.0.25
Password:
HOTP Challenge (5): 48B0D8D8E1
Last login: Wed Sep 2 00:22:03 2009 from 10.1.0.26
[joe@localhost ~]$

Wednesday, November 25, 2009

sshd with OTP and X
Login to bastion host once with X
forwarding enabled.

Start multiple xterm’s forwarded to local
display.

OARnet deployment requires OTP
authentication when logging in at start
of the day. Minimal nuisance/time
commitment.

Wednesday, November 25, 2009

Load SC firmware
(Windows)

Wednesday, November 25, 2009

Load SC firmware
(Unix)

./bcload -v -f $OOTP/firmware/HOTPC.IMG

Card/State: ZC3.9 test
EEChunkSize=2000
BCSetState: load
SC: Reset
EEStart=8020,EELen=1fa0
imgAddr=8020,imgLen=1fa0
Clear: addr=8020,len=1fa0
BCClearEEProm: success
SC: Reset
EEWRITE: nWrites=121,addr=8020,len=1e
EEWRITE: nWrites=120,addr=8038,len=10
EEWRITE: nWrites=119,addr=8170,len=38
EEWRITE: nWrites=118,addr=81a0,len=48
...
EEWRITE: nWrites=1,addr=9f40,len=48
EEWRITE: nWrites=0,addr=9f80,len=48
EECRC: nWrites=1,addr=8020,len=1fa0,imgCRC=7a3f
EECRC: SCCRC=7a3f
EECRC: nWrites=0,addr=8020,len=00,imgCRC=00
EECRC: SCCRC=0
BCSetState: test
SC: Reset

Wednesday, November 25, 2009

Load Spyrus PAR II
Firmware (Windows)

Wednesday, November 25, 2009

Load Spyrus PAR II
Firmware (Unix)

htsoft-downloader -v1 -f /dev/cuaU0 < ../spyrus-par2/spyrus1.1.hex

Press Enter on the spyrus reader to start the download application:

Waiting for bootloader......

DD
DD
DDDDDDDDDDDDDDDDDDwTwwwwPIC reset failed.
htsoft-downloader: htsoft_v1bl_done(): failed

Ignore the error, cosmetic bug in Spyrus bootloader code.

Wednesday, November 25, 2009

Firmware loads

Done once for factory supplied Smart
Cards and PAR II reader.

Wednesday, November 25, 2009

Set Smart Card
Admin Key

./otp-sca -l
embedded:acr30s
PCSC:OmniKey CardMan 1021 00 00

Enable admin mode with default key:

echo "30" >
default.key
./otp-sca -m admin-enable -a default.key

Create a new admin key with openssl and set the
smart card to use it:

openssl rand 160 | openssl sha1 > secret.key
./otp-sca -a secret.key -m adminkey-set

Wednesday, November 25, 2009

Provision Smart Card
Dump user joe in an otp-sca friendly format:

cd ../otp-control
./otp-control -u joe -m list-sc -I0 -Hcrypto |
tail -1 > /tmp/joe.bastion.card

cd ../otp-sca

Load the above record into the smart card index
00. The current compiled in
limit for a ZC3.9 card is 85 systems:

./otp-sca -m host-set < /tmp/joe/bastion.card

rm /tmp/joe.bastion.list

Outside test environment use a pipe instead of
temp files for added security.

Wednesday, November 25, 2009

Verify Provisioning
./otp-sca -m host-get

#index:count:hostname:key
00:00000000:63727970746F000000000000:784F37E95A841
0400700DF1E52466AB1704F487B

Note the hostname is encoded in hex. The key
matches the one programmed above
into the otpdb used with PAM. Initial count is
set to 0.

Dump the available hosts in a friendlier format.
The card is still in admin
mode so the PIN does not matter:

./otp-sca -m hostname-get
Enter PIN: 99999
00,crypto

Wednesday, November 25, 2009

Set PIN and Test
Disable admin mode:

./otp-sca -m admin-disable -a secret.key

Set PIN for card. The default 28165 PIN can not
be used to generate a HOTP:

./otp-sca -m pin-set
Enter PIN: 28165
New PIN: 12345
New PIN (again): 12345
SetPIN Good.

Generate a HOTP for user.

./otp-sca -m hotp-gen -Mch -c5
Enter PIN: 12345
HOTP: 48B0D8D8E1 -- crypto

Wednesday, November 25, 2009

Provisioning
Admin Key is typically shared for all
cards.

Steps to verify programming, set PIN,
test HOTP not normally done. Verbose
example.

Typically all the above steps would be
handled by the auto gen script fed with
a list of users and host systems.

Wednesday, November 25, 2009

In production...
% ssh dev1.eng.oar.net
Password:
HOTP Challenge (1880): ffaf2b77b2
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
 The Regents of the University of California. All rights reserved.

FreeBSD OARNET_20071228 (GENERIC) #0: Mon Dec 31 05:12:37 UTC 2007

 This system is for the use of authorized users only. Individuals using
 this computer system without authority, or in excess of their authority,
 are subject to having all of their activities on this system monitored
 and recorded by system personnel. In the course of monitoring individuals
 improperly using this system, or in the course of system maintenance,
 the activities of authorized users may also be monitored. Anyone using
 this system expressly consents to such monitoring and is advised that if
 such monitoring reveals possible evidence of criminal activity, system
 personnel may provide the evidence of such monitoring to law enforcement
 officials.

Wednesday, November 25, 2009

In production...

Wednesday, November 25, 2009

Deployment

Required/Production on bastion hosts
since Feb 2006, testing Jun 2005.
Protecting all backbone routers,
switches and servers.

Many recent software changes
including RADIUS support, PC/SC
support, formal documentation, new
features. In testing/review stage.

Wednesday, November 25, 2009

Implementation
security

Communication between the reader
and Smart Card is not encrypted.

HOTPC.IMG is distributed in test
mode, which may allow reading of the
BasicCard without the admin key.

Be careful with PAM and sshd
“PasswordAuthentication”. See
QUICKSTART

Wednesday, November 25, 2009

Implementation
security

User PIN is 5 digits. The Smart Card
will disable itself after 10 consecutive
failed attempts to protect against brute-
force attacks.

The HOTP token is 40 bits in this
implementation. To guard against
brute-force attacks otplib will rate-limit
authentication requests to 1 per
second.

Wednesday, November 25, 2009

Implementation
security

OpenSSL is required for the HMAC
implementation.

libcrypt is required for the RADIUS
daemon Unix password authentication.

pcsc-lite for SC maintenance tools.
pccs-lite is not used in the
authentication back-end (ie PAM
module).

Wednesday, November 25, 2009

Implementation
security

The HOTP database is not encrypted.
Use an encrypted filesystem if this is a
concern. An encrypted fs can also be
used for storing the user .card files SC
admin key, and READERKEY.

READERKEY is weak authentication
(40 bit shared key between PARII and
SC) to discourage use of HOTP
generation on PC connected readers.

Wednesday, November 25, 2009

Deployment
SSL/VPN Radius support will add OTP
protection for Optical network and
internal web services.

Challenge synch option on Spyrus
readers allows provisioning of two (or
more) smart cards per user. Useful for
staff who occasionally forget reader
and card at home.

Wednesday, November 25, 2009

Deployment
All OARnet engineering managed
systems will be behind OTP, including
one-off’s such as terminal servers on
dialup modems to conform with recent
security policy changes.

People forget the cards and reader at
home. Latest software will allow staff
to have multiple cards. With Spyrus
reader user has option to sync count.

Wednesday, November 25, 2009

Smart Card HOTP
Mark Fullmer

maf@eng.oar.net

Wednesday, November 25, 2009

mailto:maf@eng.oar.net
mailto:maf@eng.oar.net

