Napkin is a simple tool to produce statistical analysis of a text
Find a file
2020-10-11 14:29:46 +02:00
bin chg: [readable] add span description (token/word queried) 2020-10-11 11:38:06 +02:00
doc chg: [doc] show the scope of spacy.io library 2020-10-11 14:29:46 +02:00
logo chg: [logo] added 2020-10-09 21:53:08 +02:00
samples add: [sample] french text - Alice in Wonderland 2020-10-11 10:45:36 +02:00
.gitignore Initial commit 2020-08-18 16:49:24 +02:00
LICENSE Initial commit 2020-08-18 16:49:24 +02:00
README.md new: [option] --token-span to find a specific token in a sentence 2020-10-11 11:24:17 +02:00
requirements.txt new: [requirement] requirement file added 2020-10-09 20:50:40 +02:00

napkin-text-analysis

napkin text analysis - logo

Napkin is a Python tool to produce statistical analysis of a text.

Analysis features are :

  • Verbs frequency
  • Nouns frequency
  • Digit frequency
  • Labels frequency such as (Person, organisation, product, location) as defined in spacy.io named entities
  • URL frequency
  • Email frequency
  • Mention frequency (everything prefixed with an @ symbol)
  • Out-Of-Vocabulary (OOV) word frequency meaning any words outside English dictionary

Verbs and nouns are in their lemmatized form by default but the option --verbatim allows to keep the original inflection.

Intermediate results are stored in a Redis database to allow the analysis of multiple text files.

requirements

  • Python >= 3.6
  • spacy.io
  • redis (a redis server running on port 6380 is required)
  • pycld3
  • tabulate

how to use napkin

usage: napkin.py [-h] [-v V] [-f F] [-t T] [-s] [-o O] [-l L] [--verbatim]
                 [--no-flushdb] [--binary] [--analysis ANALYSIS]
                 [--disable-parser] [--disable-tagger]
                 [--token-span TOKEN_SPAN]

Extract statistical analysis of text

optional arguments:
  -h, --help            show this help message and exit
  -v V                  verbose output
  -f F                  file to analyse
  -t T                  maximum value for the top list (default is 100) -1 is
                        no limit
  -s                    display the overall statistics (default is False)
  -o O                  output format (default is csv), json, readable
  -l L                  language used for the analysis (default is en)
  --verbatim            Don't use the lemmatized form, use verbatim. (default
                        is the lematized form)
  --no-flushdb          Don't flush the redisdb, useful when you want to
                        process multiple files and aggregate the results. (by
                        default the redis database is flushed at each run)
  --binary              set output in binary instead of UTF-8 (default)
  --analysis ANALYSIS   Limit output to a specific analysis (verb, noun,
                        hashtag, mention, digit, url, oov, labels, punct).
                        (Default is all analysis are displayed)
  --disable-parser      disable parser component in Spacy
  --disable-tagger      disable tagger component in Spacy
  --token-span TOKEN_SPAN
                        Find the sentences where a specific token is located

example usage of napkin

Generate all analysis for a given text

A sample file "The Prince, by Nicoló Machiavelli" is included to test napkin.

python3 ./bin/napkin.py -o readable -f samples/the-prince.txt -t 4

Example output:

╒═════════════════╕
│ Top 4 of verb   │
╞═════════════════╡
│ 116 occurences  │
├─────────────────┤
│ make            │
├─────────────────┤
│ 106 occurences  │
├─────────────────┤
│ may             │
├─────────────────┤
│ 102 occurences  │
├─────────────────┤
│ would           │
╘═════════════════╛
╒═════════════════╕
│ Top 4 of noun   │
╞═════════════════╡
│ 108 occurences  │
├─────────────────┤
│ state           │
├─────────────────┤
│ 90 occurences   │
├─────────────────┤
│ people          │
├─────────────────┤
│ one             │
╘═════════════════╛
╒════════════════════╕
│ Top 4 of hashtag   │
╞════════════════════╡
╘════════════════════╛
╒════════════════════╕
│ Top 4 of mention   │
╞════════════════════╡
╘════════════════════╛
╒══════════════════╕
│   Top 4 of digit │
╞══════════════════╡
│           750175 │
├──────────────────┤
│          6221541 │
├──────────────────┤
│            57037 │
╘══════════════════╛
╒═════════════════════════════════════════╕
│ Top 4 of url                            │
╞═════════════════════════════════════════╡
│ 1 occurences                            │
├─────────────────────────────────────────┤
│ www.gutenberg.org/license               │
├─────────────────────────────────────────┤
│ www.gutenberg.org/contact               │
├─────────────────────────────────────────┤
│ http://www.gutenberg.org/5/7/0/3/57037/ │
╘═════════════════════════════════════════╛
╒════════════════╕
│ Top 4 of oov   │
╞════════════════╡
│ 6 occurences   │
├────────────────┤
│ Vitelli        │
├────────────────┤
│ Pertinax       │
├────────────────┤
│ Orsinis        │
╘════════════════╛
╒═══════════════════╕
│ Top 4 of labels   │
╞═══════════════════╡
│ 197 occurences    │
├───────────────────┤
│ CARDINAL          │
├───────────────────┤
│ 189 occurences    │
├───────────────────┤
│ ORG               │
├───────────────────┤
│ 131 occurences    │
├───────────────────┤
│ NORP              │
╘═══════════════════╛

Extract the sentences associated to a specific token

python3 ./bin/napkin.py -o readable -f samples/the-prince.txt -t 4 --token-span "Vitelli"

╒════════════════════════════════════════════════════════════════════════╕
│ Top 4 of span                                                          │
╞════════════════════════════════════════════════════════════════════════╡
│ Nevertheless, Messer Niccolo Vitelli has been seen in                  │
│ our own time to destroy two fortresses in Città di Castello in order   │
│ to keep that state.                                                    │
├────────────────────────────────────────────────────────────────────────┤
│ And the                                                                │
│ difference between these forces can be easily seen if one considers    │
│ the difference between the reputation of the duke when he had only the │
│ French, when he had the Orsini and Vitelli, and when he had to rely    │
│ on himself and his own soldiers.                                       │
├────────────────────────────────────────────────────────────────────────┤
│ And that his foundations were                                          │
│ good is seen from the fact that the Romagna waited for him more than a │
│ month; in Rome, although half dead, he remained secure, and although   │
│ the Baglioni, Vitelli, and Orsini entered Rome they found no followers │
│ against him.                                                           │
╘════════════════════════════════════════════════════════════════════════╛

what about the name?

The name 'napkin' came after a first sketch of the idea on a napkin. The goal was also to provide a simple text analysis tool which can be run on the corner of table in a kitchen.

LICENSE

napkin is free software under the AGPLv3 license.

Copyright (C) 2020 Alexandre Dulaunoy
Copyright (C) 2020 Pauline Bourmeau