#!/usr/bin/env python3 # -*- coding: utf-8 -*- import redis import spacy from spacy_langdetect import LanguageDetector import argparse import sys import simplejson as json parser = argparse.ArgumentParser(description="Extract statistical analysis of text") parser.add_argument('-v', help="verbose output") parser.add_argument('-f', help="file to analyse") parser.add_argument('-t', help="maximum value for the top list (default is 100) -1 is no limit", default=100) parser.add_argument('-s', help="display the overall statistics (default is False)", default=False, action='store_true') parser.add_argument('-o', help="output format (default is csv), json", default="csv") parser.add_argument('-l', help="language used for the analysis (default is en)", default="en") parser.add_argument('--verbatim', help="Don't use the lemmatized form, use verbatim. (default is the lematized form)", default=False, action='store_true') parser.add_argument('--no-flushdb', help="Don't flush the redisdb, useful when you want to process multiple files and aggregate the results. (by default the redis database is flushed at each run)", default=False, action='store_true') parser.add_argument('--binary', help="Output response in binary instead of UTF-8 (default)", default=False, action='store_true') args = parser.parse_args() if args.f is None: parser.print_help() sys.exit() if not args.binary: redisdb = redis.Redis(host="localhost", port=6380, db=5, encoding='utf-8', decode_responses=True) else: redisdb = redis.Redis(host="localhost", port=6380, db=5) try: redisdb.ping() except: print("Redis database on port 6380 is not running...", file=sys.stderr) sys.exit() if not args.no_flushdb: redisdb.flushdb() if args.l == "fr": nlp = spacy.load("fr_core_news_md") else: nlp = spacy.load("en_core_web_md") nlp.add_pipe(LanguageDetector(), name='language_detector', last=True) nlp.max_length = 2000000 with open(args.f, 'r') as file: text = file.read() doc = nlp(text) analysis = ["verb", "noun", "hashtag", "mention", "digit", "url", "oov", "labels", "punct"] redisdb.hset("stats", "token", doc.__len__()) for token in doc: if token.pos_ == "VERB" and not token.is_oov: if not args.verbatim: redisdb.zincrby("verb", 1, token.lemma_) else: redisdb.zincrby("verb", 1, token.text) redisdb.hincrby("stats", "verb", 1) continue if token.pos_ == "NOUN" and not token.is_oov: if not args.verbatim: redisdb.zincrby("noun", 1, token.lemma_) else: redisdb.zincrby("noun", 1, token.text) redisdb.hincrby("stats", "noun", 1) continue if token.pos_ == "PUNCT" and not token.is_oov: redisdb.zincrby("punct", 1, value) redisdb.hincrby("stats", "punct", 1) continue if token.is_oov: value = "{}".format(token) if value.startswith('#'): redisdb.zincrby("hashtag", 1, value[1:]) redisdb.hincrby("stats", "hashtag", 1) continue if value.startswith('@'): redisdb.zincrby("mention", 1, value[1:]) redisdb.hincrby("stats", "mention", 1) continue if token.is_digit: redisdb.zincrby("digit", 1, value) redisdb.hincrby("stats", "digit", 1) continue if token.is_space: redisdb.hincrby("stats", "space", 1) continue if token.like_url: redisdb.zincrby("url", 1, value) redisdb.hincrby("stats", "url", 1) continue if token.like_email: redisdb.zincrby("email", 1, value) redisdb.hincrby("stats", "email", 1) continue redisdb.zincrby("oov", 1, value) redisdb.hincrby("stats", "oov", 1) for entity in doc.ents: redisdb.zincrby("labels", 1, entity.label_) if args.o == "json": output_json = {"format":"napkin"} for anal in analysis: x = redisdb.zrevrange(anal, 1, args.t, withscores=True) if args.o == "csv": print ("# Top {} of {}".format(args.t, anal)) elif args.o == "json": output_json.update({anal:[]}) for a in x: if args.o == "csv": print ("{},{}".format(a[0],a[1])) elif args.o == "json": output_json[anal].append(a) if args.o == "csv": print ("#") if args.s: print (redisdb.hgetall('stats')) if args.o == "json": print(json.dumps(output_json))