/* human.c -- print human readable file size Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Originally contributed by lm@sgi.com; --si, output block size selection, and large file support added by eggert@twinsun.com. */ #if HAVE_CONFIG_H # include #endif #include #include #if HAVE_LIMITS_H # include #endif #if HAVE_STRING_H # include #else # include #endif #ifndef CHAR_BIT # define CHAR_BIT 8 #endif #if HAVE_STDLIB_H # include #endif #if ENABLE_NLS # include # define _(Text) gettext (Text) #else # define _(Text) Text #endif #include #include #include "human.h" static const char suffixes[] = { 0, /* not used */ 'k', /* kilo */ 'M', /* Mega */ 'G', /* Giga */ 'T', /* Tera */ 'P', /* Peta */ 'E', /* Exa */ 'Z', /* Zetta */ 'Y' /* Yotta */ }; /* If INEXACT_STYLE is not human_round_to_even, and if easily possible, adjust VALUE according to the style. */ static double adjust_value (enum human_inexact_style inexact_style, double value) { /* Do not use the floor or ceil functions, as that would mean linking with the standard math library, which is a porting pain. So leave the value alone if it is too large to easily round. */ if (inexact_style != human_round_to_even && value < (uintmax_t) -1) { uintmax_t u = value; value = u + (inexact_style == human_ceiling && u != value); } return value; } /* Like human_readable_inexact, except always round to even. */ char * human_readable (uintmax_t n, char *buf, int from_block_size, int output_block_size) { return human_readable_inexact (n, buf, from_block_size, output_block_size, human_round_to_even); } /* Convert N to a human readable format in BUF. N is expressed in units of FROM_BLOCK_SIZE. FROM_BLOCK_SIZE must be nonnegative. OUTPUT_BLOCK_SIZE must be nonzero. If it is positive, use units of OUTPUT_BLOCK_SIZE in the output number. Use INEXACT_STYLE to determine whether to take the ceiling or floor of any result that cannot be expressed exactly. If OUTPUT_BLOCK_SIZE is negative, use a format like "127k" if possible, using powers of -OUTPUT_BLOCK_SIZE; otherwise, use ordinary decimal format. Normally -OUTPUT_BLOCK_SIZE is either 1000 or 1024; it must be at least 2. Most people visually process strings of 3-4 digits effectively, but longer strings of digits are more prone to misinterpretation. Hence, converting to an abbreviated form usually improves readability. Use a suffix indicating which power is being used. For example, assuming -OUTPUT_BLOCK_SIZE is 1024, 8500 would be converted to 8.3k, 133456345 to 127M, 56990456345 to 53G, and so on. Numbers smaller than -OUTPUT_BLOCK_SIZE aren't modified. */ char * human_readable_inexact (uintmax_t n, char *buf, int from_block_size, int output_block_size, enum human_inexact_style inexact_style) { uintmax_t amt; int base; int to_block_size; int tenths = 0; int power; char *p; /* 0 means adjusted N == AMT.TENTHS; 1 means AMT.TENTHS < adjusted N < AMT.TENTHS + 0.05; 2 means adjusted N == AMT.TENTHS + 0.05; 3 means AMT.TENTHS + 0.05 < adjusted N < AMT.TENTHS + 0.1. */ int rounding = 0; if (output_block_size < 0) { base = -output_block_size; to_block_size = 1; } else { base = 0; to_block_size = output_block_size; } p = buf + LONGEST_HUMAN_READABLE; *p = '\0'; #ifdef lint /* Suppress `used before initialized' warning. */ power = 0; #endif /* Adjust AMT out of FROM_BLOCK_SIZE units and into TO_BLOCK_SIZE units. */ { int multiplier; int divisor; int r2; int r10; if (to_block_size <= from_block_size ? (from_block_size % to_block_size != 0 || (multiplier = from_block_size / to_block_size, (amt = n * multiplier) / multiplier != n)) : (from_block_size == 0 || to_block_size % from_block_size != 0 || (divisor = to_block_size / from_block_size, r10 = (n % divisor) * 10, r2 = (r10 % divisor) * 2, amt = n / divisor, tenths = r10 / divisor, rounding = r2 < divisor ? 0 < r2 : 2 + (divisor < r2), 0))) { /* Either the result cannot be computed easily using uintmax_t, or from_block_size is zero. Fall back on floating point. FIXME: This can yield answers that are slightly off. */ double damt = n * (from_block_size / (double) to_block_size); if (! base) sprintf (buf, "%.0f", adjust_value (inexact_style, damt)); else { double e = 1; power = 0; do { e *= base; power++; } while (e * base <= damt && power < sizeof suffixes - 1); damt /= e; sprintf (buf, "%.1f%c", adjust_value (inexact_style, damt), suffixes[power]); if (4 < strlen (buf)) sprintf (buf, "%.0f%c", adjust_value (inexact_style, damt * 10) / 10, suffixes[power]); } return buf; } } /* Use power of BASE notation if adjusted AMT is large enough. */ if (base && base <= amt) { power = 0; do { int r10 = (amt % base) * 10 + tenths; int r2 = (r10 % base) * 2 + (rounding >> 1); amt /= base; tenths = r10 / base; rounding = (r2 < base ? 0 < r2 + rounding : 2 + (base < r2 + rounding)); power++; } while (base <= amt && power < sizeof suffixes - 1); *--p = suffixes[power]; if (amt < 10) { if (2 * (1 - (int) inexact_style) < rounding + (tenths & (inexact_style == human_round_to_even))) { tenths++; rounding = 0; if (tenths == 10) { amt++; tenths = 0; } } if (amt < 10) { *--p = '0' + tenths; *--p = '.'; tenths = rounding = 0; } } } if (inexact_style == human_ceiling ? 0 < tenths + rounding : inexact_style == human_round_to_even ? 5 < tenths + (2 < rounding + (amt & 1)) : /* inexact_style == human_floor */ 0) { amt++; if (amt == base && power < sizeof suffixes - 1) { *p = suffixes[power + 1]; *--p = '0'; *--p = '.'; amt = 1; } } do *--p = '0' + (int) (amt % 10); while ((amt /= 10) != 0); return p; } /* The default block size used for output. This number may change in the future as disks get larger. */ #ifndef DEFAULT_BLOCK_SIZE # define DEFAULT_BLOCK_SIZE 1024 #endif static char const *const block_size_args[] = { "human-readable", "si", 0 }; static int const block_size_types[] = { -1024, -1000 }; static int default_block_size (void) { return getenv ("POSIXLY_CORRECT") ? 512 : DEFAULT_BLOCK_SIZE; } static strtol_error humblock (char const *spec, int *block_size) { int i; if (! spec && ! (spec = getenv ("BLOCK_SIZE"))) *block_size = default_block_size (); else if (0 <= (i = ARGMATCH (spec, block_size_args, block_size_types))) *block_size = block_size_types[i]; else { char *ptr; unsigned long val; strtol_error e = xstrtoul (spec, &ptr, 0, &val, "eEgGkKmMpPtTyYzZ0"); if (e != LONGINT_OK) return e; if (*ptr) return LONGINT_INVALID_SUFFIX_CHAR; if ((int) val < 0 || val != (int) val) return LONGINT_OVERFLOW; *block_size = (int) val; } return LONGINT_OK; } void human_block_size (char const *spec, int report_errors, int *block_size) { strtol_error e = humblock (spec, block_size); if (*block_size == 0) { *block_size = default_block_size (); e = LONGINT_INVALID; } if (e != LONGINT_OK && report_errors) fprintf(stderr, "Invalid block size entered\n"); }