mirror of
https://github.com/adulau/aha.git
synced 2024-12-28 03:36:19 +00:00
f8381cba04
With Ingo Molnar <mingo@elte.hu> Add broadcast functionality, so per cpu clock event devices can be registered as dummy devices or switched from/to broadcast on demand. The broadcast function distributes the events via the broadcast function of the clock event device. This is primarily designed to replace the switch apic timer to / from IPI in power states, where the apic stops. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
270 lines
6.4 KiB
C
270 lines
6.4 KiB
C
/*
|
|
* linux/kernel/time/tick-broadcast.c
|
|
*
|
|
* This file contains functions which emulate a local clock-event
|
|
* device via a broadcast event source.
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
|
|
*
|
|
* This code is licenced under the GPL version 2. For details see
|
|
* kernel-base/COPYING.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tick.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Broadcast support for broken x86 hardware, where the local apic
|
|
* timer stops in C3 state.
|
|
*/
|
|
|
|
struct tick_device tick_broadcast_device;
|
|
static cpumask_t tick_broadcast_mask;
|
|
DEFINE_SPINLOCK(tick_broadcast_lock);
|
|
|
|
/*
|
|
* Start the device in periodic mode
|
|
*/
|
|
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
|
|
{
|
|
if (bc && bc->mode == CLOCK_EVT_MODE_SHUTDOWN)
|
|
tick_setup_periodic(bc, 1);
|
|
}
|
|
|
|
/*
|
|
* Check, if the device can be utilized as broadcast device:
|
|
*/
|
|
int tick_check_broadcast_device(struct clock_event_device *dev)
|
|
{
|
|
if (tick_broadcast_device.evtdev ||
|
|
(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return 0;
|
|
|
|
clockevents_exchange_device(NULL, dev);
|
|
tick_broadcast_device.evtdev = dev;
|
|
if (!cpus_empty(tick_broadcast_mask))
|
|
tick_broadcast_start_periodic(dev);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check, if the device is the broadcast device
|
|
*/
|
|
int tick_is_broadcast_device(struct clock_event_device *dev)
|
|
{
|
|
return (dev && tick_broadcast_device.evtdev == dev);
|
|
}
|
|
|
|
/*
|
|
* Check, if the device is disfunctional and a place holder, which
|
|
* needs to be handled by the broadcast device.
|
|
*/
|
|
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
/*
|
|
* Devices might be registered with both periodic and oneshot
|
|
* mode disabled. This signals, that the device needs to be
|
|
* operated from the broadcast device and is a placeholder for
|
|
* the cpu local device.
|
|
*/
|
|
if (!tick_device_is_functional(dev)) {
|
|
dev->event_handler = tick_handle_periodic;
|
|
cpu_set(cpu, tick_broadcast_mask);
|
|
tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
|
|
ret = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Broadcast the event to the cpus, which are set in the mask
|
|
*/
|
|
int tick_do_broadcast(cpumask_t mask)
|
|
{
|
|
int ret = 0, cpu = smp_processor_id();
|
|
struct tick_device *td;
|
|
|
|
/*
|
|
* Check, if the current cpu is in the mask
|
|
*/
|
|
if (cpu_isset(cpu, mask)) {
|
|
cpu_clear(cpu, mask);
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
td->evtdev->event_handler(td->evtdev);
|
|
ret = 1;
|
|
}
|
|
|
|
if (!cpus_empty(mask)) {
|
|
/*
|
|
* It might be necessary to actually check whether the devices
|
|
* have different broadcast functions. For now, just use the
|
|
* one of the first device. This works as long as we have this
|
|
* misfeature only on x86 (lapic)
|
|
*/
|
|
cpu = first_cpu(mask);
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
td->evtdev->broadcast(mask);
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Periodic broadcast:
|
|
* - invoke the broadcast handlers
|
|
*/
|
|
static void tick_do_periodic_broadcast(void)
|
|
{
|
|
cpumask_t mask;
|
|
|
|
spin_lock(&tick_broadcast_lock);
|
|
|
|
cpus_and(mask, cpu_online_map, tick_broadcast_mask);
|
|
tick_do_broadcast(mask);
|
|
|
|
spin_unlock(&tick_broadcast_lock);
|
|
}
|
|
|
|
/*
|
|
* Event handler for periodic broadcast ticks
|
|
*/
|
|
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
|
|
{
|
|
dev->next_event.tv64 = KTIME_MAX;
|
|
|
|
tick_do_periodic_broadcast();
|
|
|
|
/*
|
|
* The device is in periodic mode. No reprogramming necessary:
|
|
*/
|
|
if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
|
|
return;
|
|
|
|
/*
|
|
* Setup the next period for devices, which do not have
|
|
* periodic mode:
|
|
*/
|
|
for (;;) {
|
|
ktime_t next = ktime_add(dev->next_event, tick_period);
|
|
|
|
if (!clockevents_program_event(dev, next, ktime_get()))
|
|
return;
|
|
tick_do_periodic_broadcast();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Powerstate information: The system enters/leaves a state, where
|
|
* affected devices might stop
|
|
*/
|
|
static void tick_do_broadcast_on_off(void *why)
|
|
{
|
|
struct clock_event_device *bc, *dev;
|
|
struct tick_device *td;
|
|
unsigned long flags, *reason = why;
|
|
int cpu;
|
|
|
|
spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
cpu = smp_processor_id();
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
dev = td->evtdev;
|
|
bc = tick_broadcast_device.evtdev;
|
|
|
|
/*
|
|
* Is the device in broadcast mode forever or is it not
|
|
* affected by the powerstate ?
|
|
*/
|
|
if (!dev || !tick_device_is_functional(dev) ||
|
|
!(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
goto out;
|
|
|
|
if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
|
|
if (!cpu_isset(cpu, tick_broadcast_mask)) {
|
|
cpu_set(cpu, tick_broadcast_mask);
|
|
if (td->mode == TICKDEV_MODE_PERIODIC)
|
|
clockevents_set_mode(dev,
|
|
CLOCK_EVT_MODE_SHUTDOWN);
|
|
}
|
|
} else {
|
|
if (cpu_isset(cpu, tick_broadcast_mask)) {
|
|
cpu_clear(cpu, tick_broadcast_mask);
|
|
if (td->mode == TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(dev, 0);
|
|
}
|
|
}
|
|
|
|
if (cpus_empty(tick_broadcast_mask))
|
|
clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
|
|
else {
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
|
|
tick_broadcast_start_periodic(bc);
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Powerstate information: The system enters/leaves a state, where
|
|
* affected devices might stop.
|
|
*/
|
|
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
|
|
{
|
|
int cpu = get_cpu();
|
|
|
|
if (cpu == *oncpu)
|
|
tick_do_broadcast_on_off(&reason);
|
|
else
|
|
smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
|
|
&reason, 1, 1);
|
|
put_cpu();
|
|
}
|
|
|
|
/*
|
|
* Set the periodic handler depending on broadcast on/off
|
|
*/
|
|
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
|
|
{
|
|
if (!broadcast)
|
|
dev->event_handler = tick_handle_periodic;
|
|
else
|
|
dev->event_handler = tick_handle_periodic_broadcast;
|
|
}
|
|
|
|
/*
|
|
* Remove a CPU from broadcasting
|
|
*/
|
|
void tick_shutdown_broadcast(unsigned int *cpup)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
unsigned int cpu = *cpup;
|
|
|
|
spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
cpu_clear(cpu, tick_broadcast_mask);
|
|
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
|
|
if (bc && cpus_empty(tick_broadcast_mask))
|
|
clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|