mirror of
https://github.com/adulau/aha.git
synced 2024-12-29 12:16:20 +00:00
5a982cbc7b
With numa enabled, some callers could have a range of memory on one node but try to free that on other node. This can cause some pages to be freed wrongly. For example: when we try to allocate 128g boot ram early for gart/swiotlb, and free that range later so gart/swiotlb can get some range afterwards. With this patch, we don't need to care which node holds the range, just loop to call free_bootmem_node for all online nodes. This patch makes free_bootmem_core() more robust by trimming the sidx and eidx according the ram range that the node has. And make the free_bootmem_core handle this out of range case. We could use bdata_list to make sure the range can be freed for sure. So next time, we don't need to loop online nodes and could use free_bootmem directly. Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Andi Kleen <ak@suse.de> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Ingo Molnar <mingo@elte.hu> Tested-by: Ingo Molnar <mingo@elte.hu> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
517 lines
13 KiB
C
517 lines
13 KiB
C
/*
|
|
* linux/mm/bootmem.c
|
|
*
|
|
* Copyright (C) 1999 Ingo Molnar
|
|
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
|
|
*
|
|
* simple boot-time physical memory area allocator and
|
|
* free memory collector. It's used to deal with reserved
|
|
* system memory and memory holes as well.
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/bug.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Access to this subsystem has to be serialized externally. (this is
|
|
* true for the boot process anyway)
|
|
*/
|
|
unsigned long max_low_pfn;
|
|
unsigned long min_low_pfn;
|
|
unsigned long max_pfn;
|
|
|
|
static LIST_HEAD(bdata_list);
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
/*
|
|
* If we have booted due to a crash, max_pfn will be a very low value. We need
|
|
* to know the amount of memory that the previous kernel used.
|
|
*/
|
|
unsigned long saved_max_pfn;
|
|
#endif
|
|
|
|
/* return the number of _pages_ that will be allocated for the boot bitmap */
|
|
unsigned long __init bootmem_bootmap_pages(unsigned long pages)
|
|
{
|
|
unsigned long mapsize;
|
|
|
|
mapsize = (pages+7)/8;
|
|
mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
|
|
mapsize >>= PAGE_SHIFT;
|
|
|
|
return mapsize;
|
|
}
|
|
|
|
/*
|
|
* link bdata in order
|
|
*/
|
|
static void __init link_bootmem(bootmem_data_t *bdata)
|
|
{
|
|
bootmem_data_t *ent;
|
|
|
|
if (list_empty(&bdata_list)) {
|
|
list_add(&bdata->list, &bdata_list);
|
|
return;
|
|
}
|
|
/* insert in order */
|
|
list_for_each_entry(ent, &bdata_list, list) {
|
|
if (bdata->node_boot_start < ent->node_boot_start) {
|
|
list_add_tail(&bdata->list, &ent->list);
|
|
return;
|
|
}
|
|
}
|
|
list_add_tail(&bdata->list, &bdata_list);
|
|
}
|
|
|
|
/*
|
|
* Given an initialised bdata, it returns the size of the boot bitmap
|
|
*/
|
|
static unsigned long __init get_mapsize(bootmem_data_t *bdata)
|
|
{
|
|
unsigned long mapsize;
|
|
unsigned long start = PFN_DOWN(bdata->node_boot_start);
|
|
unsigned long end = bdata->node_low_pfn;
|
|
|
|
mapsize = ((end - start) + 7) / 8;
|
|
return ALIGN(mapsize, sizeof(long));
|
|
}
|
|
|
|
/*
|
|
* Called once to set up the allocator itself.
|
|
*/
|
|
static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
|
|
unsigned long mapstart, unsigned long start, unsigned long end)
|
|
{
|
|
bootmem_data_t *bdata = pgdat->bdata;
|
|
unsigned long mapsize;
|
|
|
|
bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
|
|
bdata->node_boot_start = PFN_PHYS(start);
|
|
bdata->node_low_pfn = end;
|
|
link_bootmem(bdata);
|
|
|
|
/*
|
|
* Initially all pages are reserved - setup_arch() has to
|
|
* register free RAM areas explicitly.
|
|
*/
|
|
mapsize = get_mapsize(bdata);
|
|
memset(bdata->node_bootmem_map, 0xff, mapsize);
|
|
|
|
return mapsize;
|
|
}
|
|
|
|
/*
|
|
* Marks a particular physical memory range as unallocatable. Usable RAM
|
|
* might be used for boot-time allocations - or it might get added
|
|
* to the free page pool later on.
|
|
*/
|
|
static int __init reserve_bootmem_core(bootmem_data_t *bdata,
|
|
unsigned long addr, unsigned long size, int flags)
|
|
{
|
|
unsigned long sidx, eidx;
|
|
unsigned long i;
|
|
int ret;
|
|
|
|
/*
|
|
* round up, partially reserved pages are considered
|
|
* fully reserved.
|
|
*/
|
|
BUG_ON(!size);
|
|
BUG_ON(PFN_DOWN(addr) >= bdata->node_low_pfn);
|
|
BUG_ON(PFN_UP(addr + size) > bdata->node_low_pfn);
|
|
BUG_ON(addr < bdata->node_boot_start);
|
|
|
|
sidx = PFN_DOWN(addr - bdata->node_boot_start);
|
|
eidx = PFN_UP(addr + size - bdata->node_boot_start);
|
|
|
|
for (i = sidx; i < eidx; i++)
|
|
if (test_and_set_bit(i, bdata->node_bootmem_map)) {
|
|
#ifdef CONFIG_DEBUG_BOOTMEM
|
|
printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
|
|
#endif
|
|
if (flags & BOOTMEM_EXCLUSIVE) {
|
|
ret = -EBUSY;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
/* unreserve memory we accidentally reserved */
|
|
for (i--; i >= sidx; i--)
|
|
clear_bit(i, bdata->node_bootmem_map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
|
|
unsigned long size)
|
|
{
|
|
unsigned long sidx, eidx;
|
|
unsigned long i;
|
|
|
|
BUG_ON(!size);
|
|
|
|
/* out range */
|
|
if (addr + size < bdata->node_boot_start ||
|
|
PFN_DOWN(addr) > bdata->node_low_pfn)
|
|
return;
|
|
/*
|
|
* round down end of usable mem, partially free pages are
|
|
* considered reserved.
|
|
*/
|
|
|
|
if (addr >= bdata->node_boot_start && addr < bdata->last_success)
|
|
bdata->last_success = addr;
|
|
|
|
/*
|
|
* Round up to index to the range.
|
|
*/
|
|
if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
|
|
sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
|
|
else
|
|
sidx = 0;
|
|
|
|
eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
|
|
if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
|
|
eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
|
|
|
|
for (i = sidx; i < eidx; i++) {
|
|
if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We 'merge' subsequent allocations to save space. We might 'lose'
|
|
* some fraction of a page if allocations cannot be satisfied due to
|
|
* size constraints on boxes where there is physical RAM space
|
|
* fragmentation - in these cases (mostly large memory boxes) this
|
|
* is not a problem.
|
|
*
|
|
* On low memory boxes we get it right in 100% of the cases.
|
|
*
|
|
* alignment has to be a power of 2 value.
|
|
*
|
|
* NOTE: This function is _not_ reentrant.
|
|
*/
|
|
void * __init
|
|
__alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
|
|
unsigned long align, unsigned long goal, unsigned long limit)
|
|
{
|
|
unsigned long offset, remaining_size, areasize, preferred;
|
|
unsigned long i, start = 0, incr, eidx, end_pfn;
|
|
void *ret;
|
|
|
|
if (!size) {
|
|
printk("__alloc_bootmem_core(): zero-sized request\n");
|
|
BUG();
|
|
}
|
|
BUG_ON(align & (align-1));
|
|
|
|
if (limit && bdata->node_boot_start >= limit)
|
|
return NULL;
|
|
|
|
/* on nodes without memory - bootmem_map is NULL */
|
|
if (!bdata->node_bootmem_map)
|
|
return NULL;
|
|
|
|
end_pfn = bdata->node_low_pfn;
|
|
limit = PFN_DOWN(limit);
|
|
if (limit && end_pfn > limit)
|
|
end_pfn = limit;
|
|
|
|
eidx = end_pfn - PFN_DOWN(bdata->node_boot_start);
|
|
offset = 0;
|
|
if (align && (bdata->node_boot_start & (align - 1UL)) != 0)
|
|
offset = align - (bdata->node_boot_start & (align - 1UL));
|
|
offset = PFN_DOWN(offset);
|
|
|
|
/*
|
|
* We try to allocate bootmem pages above 'goal'
|
|
* first, then we try to allocate lower pages.
|
|
*/
|
|
if (goal && goal >= bdata->node_boot_start && PFN_DOWN(goal) < end_pfn) {
|
|
preferred = goal - bdata->node_boot_start;
|
|
|
|
if (bdata->last_success >= preferred)
|
|
if (!limit || (limit && limit > bdata->last_success))
|
|
preferred = bdata->last_success;
|
|
} else
|
|
preferred = 0;
|
|
|
|
preferred = PFN_DOWN(ALIGN(preferred, align)) + offset;
|
|
areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
|
|
incr = align >> PAGE_SHIFT ? : 1;
|
|
|
|
restart_scan:
|
|
for (i = preferred; i < eidx; i += incr) {
|
|
unsigned long j;
|
|
i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
|
|
i = ALIGN(i, incr);
|
|
if (i >= eidx)
|
|
break;
|
|
if (test_bit(i, bdata->node_bootmem_map))
|
|
continue;
|
|
for (j = i + 1; j < i + areasize; ++j) {
|
|
if (j >= eidx)
|
|
goto fail_block;
|
|
if (test_bit(j, bdata->node_bootmem_map))
|
|
goto fail_block;
|
|
}
|
|
start = i;
|
|
goto found;
|
|
fail_block:
|
|
i = ALIGN(j, incr);
|
|
}
|
|
|
|
if (preferred > offset) {
|
|
preferred = offset;
|
|
goto restart_scan;
|
|
}
|
|
return NULL;
|
|
|
|
found:
|
|
bdata->last_success = PFN_PHYS(start);
|
|
BUG_ON(start >= eidx);
|
|
|
|
/*
|
|
* Is the next page of the previous allocation-end the start
|
|
* of this allocation's buffer? If yes then we can 'merge'
|
|
* the previous partial page with this allocation.
|
|
*/
|
|
if (align < PAGE_SIZE &&
|
|
bdata->last_offset && bdata->last_pos+1 == start) {
|
|
offset = ALIGN(bdata->last_offset, align);
|
|
BUG_ON(offset > PAGE_SIZE);
|
|
remaining_size = PAGE_SIZE - offset;
|
|
if (size < remaining_size) {
|
|
areasize = 0;
|
|
/* last_pos unchanged */
|
|
bdata->last_offset = offset + size;
|
|
ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
|
|
offset +
|
|
bdata->node_boot_start);
|
|
} else {
|
|
remaining_size = size - remaining_size;
|
|
areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
|
|
ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
|
|
offset +
|
|
bdata->node_boot_start);
|
|
bdata->last_pos = start + areasize - 1;
|
|
bdata->last_offset = remaining_size;
|
|
}
|
|
bdata->last_offset &= ~PAGE_MASK;
|
|
} else {
|
|
bdata->last_pos = start + areasize - 1;
|
|
bdata->last_offset = size & ~PAGE_MASK;
|
|
ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
|
|
}
|
|
|
|
/*
|
|
* Reserve the area now:
|
|
*/
|
|
for (i = start; i < start + areasize; i++)
|
|
if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
|
|
BUG();
|
|
memset(ret, 0, size);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
|
|
{
|
|
struct page *page;
|
|
unsigned long pfn;
|
|
bootmem_data_t *bdata = pgdat->bdata;
|
|
unsigned long i, count, total = 0;
|
|
unsigned long idx;
|
|
unsigned long *map;
|
|
int gofast = 0;
|
|
|
|
BUG_ON(!bdata->node_bootmem_map);
|
|
|
|
count = 0;
|
|
/* first extant page of the node */
|
|
pfn = PFN_DOWN(bdata->node_boot_start);
|
|
idx = bdata->node_low_pfn - pfn;
|
|
map = bdata->node_bootmem_map;
|
|
/* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
|
|
if (bdata->node_boot_start == 0 ||
|
|
ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
|
|
gofast = 1;
|
|
for (i = 0; i < idx; ) {
|
|
unsigned long v = ~map[i / BITS_PER_LONG];
|
|
|
|
if (gofast && v == ~0UL) {
|
|
int order;
|
|
|
|
page = pfn_to_page(pfn);
|
|
count += BITS_PER_LONG;
|
|
order = ffs(BITS_PER_LONG) - 1;
|
|
__free_pages_bootmem(page, order);
|
|
i += BITS_PER_LONG;
|
|
page += BITS_PER_LONG;
|
|
} else if (v) {
|
|
unsigned long m;
|
|
|
|
page = pfn_to_page(pfn);
|
|
for (m = 1; m && i < idx; m<<=1, page++, i++) {
|
|
if (v & m) {
|
|
count++;
|
|
__free_pages_bootmem(page, 0);
|
|
}
|
|
}
|
|
} else {
|
|
i += BITS_PER_LONG;
|
|
}
|
|
pfn += BITS_PER_LONG;
|
|
}
|
|
total += count;
|
|
|
|
/*
|
|
* Now free the allocator bitmap itself, it's not
|
|
* needed anymore:
|
|
*/
|
|
page = virt_to_page(bdata->node_bootmem_map);
|
|
count = 0;
|
|
idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
|
|
for (i = 0; i < idx; i++, page++) {
|
|
__free_pages_bootmem(page, 0);
|
|
count++;
|
|
}
|
|
total += count;
|
|
bdata->node_bootmem_map = NULL;
|
|
|
|
return total;
|
|
}
|
|
|
|
unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
|
|
unsigned long startpfn, unsigned long endpfn)
|
|
{
|
|
return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
|
|
}
|
|
|
|
void __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
|
|
unsigned long size, int flags)
|
|
{
|
|
reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
|
|
}
|
|
|
|
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
|
|
unsigned long size)
|
|
{
|
|
free_bootmem_core(pgdat->bdata, physaddr, size);
|
|
}
|
|
|
|
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
|
|
{
|
|
return free_all_bootmem_core(pgdat);
|
|
}
|
|
|
|
unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
|
|
{
|
|
max_low_pfn = pages;
|
|
min_low_pfn = start;
|
|
return init_bootmem_core(NODE_DATA(0), start, 0, pages);
|
|
}
|
|
|
|
#ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
|
|
int __init reserve_bootmem(unsigned long addr, unsigned long size,
|
|
int flags)
|
|
{
|
|
return reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size, flags);
|
|
}
|
|
#endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
|
|
|
|
void __init free_bootmem(unsigned long addr, unsigned long size)
|
|
{
|
|
bootmem_data_t *bdata;
|
|
list_for_each_entry(bdata, &bdata_list, list)
|
|
free_bootmem_core(bdata, addr, size);
|
|
}
|
|
|
|
unsigned long __init free_all_bootmem(void)
|
|
{
|
|
return free_all_bootmem_core(NODE_DATA(0));
|
|
}
|
|
|
|
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
bootmem_data_t *bdata;
|
|
void *ptr;
|
|
|
|
list_for_each_entry(bdata, &bdata_list, list) {
|
|
ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
|
|
if (ptr)
|
|
return ptr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
void *mem = __alloc_bootmem_nopanic(size,align,goal);
|
|
|
|
if (mem)
|
|
return mem;
|
|
/*
|
|
* Whoops, we cannot satisfy the allocation request.
|
|
*/
|
|
printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
|
|
panic("Out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal)
|
|
{
|
|
void *ptr;
|
|
|
|
ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
|
|
if (ptr)
|
|
return ptr;
|
|
|
|
return __alloc_bootmem(size, align, goal);
|
|
}
|
|
|
|
#ifndef ARCH_LOW_ADDRESS_LIMIT
|
|
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
|
|
#endif
|
|
|
|
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
bootmem_data_t *bdata;
|
|
void *ptr;
|
|
|
|
list_for_each_entry(bdata, &bdata_list, list) {
|
|
ptr = __alloc_bootmem_core(bdata, size, align, goal,
|
|
ARCH_LOW_ADDRESS_LIMIT);
|
|
if (ptr)
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Whoops, we cannot satisfy the allocation request.
|
|
*/
|
|
printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
|
|
panic("Out of low memory");
|
|
return NULL;
|
|
}
|
|
|
|
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal)
|
|
{
|
|
return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
|
|
ARCH_LOW_ADDRESS_LIMIT);
|
|
}
|