aha/drivers/char/rio/rioinit.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1617 lines
42 KiB
C

/*
** -----------------------------------------------------------------------------
**
** Perle Specialix driver for Linux
** Ported from existing RIO Driver for SCO sources.
*
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
** Module : rioinit.c
** SID : 1.3
** Last Modified : 11/6/98 10:33:43
** Retrieved : 11/6/98 10:33:49
**
** ident @(#)rioinit.c 1.3
**
** -----------------------------------------------------------------------------
*/
#ifdef SCCS_LABELS
static char *_rioinit_c_sccs_ = "@(#)rioinit.c 1.3";
#endif
#include <linux/config.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/string.h>
#include <asm/semaphore.h>
#include <asm/uaccess.h>
#include <linux/termios.h>
#include <linux/serial.h>
#include <linux/generic_serial.h>
#include "linux_compat.h"
#include "typdef.h"
#include "pkt.h"
#include "daemon.h"
#include "rio.h"
#include "riospace.h"
#include "top.h"
#include "cmdpkt.h"
#include "map.h"
#include "riotypes.h"
#include "rup.h"
#include "port.h"
#include "riodrvr.h"
#include "rioinfo.h"
#include "func.h"
#include "errors.h"
#include "pci.h"
#include "parmmap.h"
#include "unixrup.h"
#include "board.h"
#include "host.h"
#include "error.h"
#include "phb.h"
#include "link.h"
#include "cmdblk.h"
#include "route.h"
#include "control.h"
#include "cirrus.h"
#include "rioioctl.h"
#include "rio_linux.h"
#undef bcopy
#define bcopy rio_pcicopy
int RIOPCIinit(struct rio_info *p, int Mode);
#if 0
static void RIOAllocateInterrupts(struct rio_info *);
static int RIOReport(struct rio_info *);
static void RIOStopInterrupts(struct rio_info *, int, int);
#endif
static int RIOScrub(int, BYTE *, int);
#if 0
extern int rio_intr();
/*
** Init time code.
*/
void
rioinit( p, info )
struct rio_info * p;
struct RioHostInfo * info;
{
/*
** Multi-Host card support - taking the easy way out - sorry !
** We allocate and set up the Host and Port structs when the
** driver is called to 'install' the first host.
** We check for this first 'call' by testing the RIOPortp pointer.
*/
if ( !p->RIOPortp )
{
rio_dprintk (RIO_DEBUG_INIT, "Allocating and setting up driver data structures\n");
RIOAllocDataStructs(p); /* allocate host/port structs */
RIOSetupDataStructs(p); /* setup topology structs */
}
RIOInitHosts( p, info ); /* hunt down the hardware */
RIOAllocateInterrupts(p); /* allocate interrupts */
RIOReport(p); /* show what we found */
}
/*
** Initialise the Cards
*/
void
RIOInitHosts(p, info)
struct rio_info * p;
struct RioHostInfo * info;
{
/*
** 15.10.1998 ARG - ESIL 0762 part fix
** If there is no ISA card definition - we always look for PCI cards.
** As we currently only support one host card this lets an ISA card
** definition take precedence over PLUG and PLAY.
** No ISA card - we are PLUG and PLAY with PCI.
*/
/*
** Note - for PCI both these will be zero, that's okay because
** RIOPCIInit() fills them in if a card is found.
*/
p->RIOHosts[p->RIONumHosts].Ivec = info->vector;
p->RIOHosts[p->RIONumHosts].PaddrP = info->location;
/*
** Check that we are able to accommodate another host
*/
if ( p->RIONumHosts >= RIO_HOSTS )
{
p->RIOFailed++;
return;
}
if ( info->bus & ISA_BUS )
{
rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (ISA)\n", p->RIONumHosts);
RIOISAinit(p, p->mode);
}
else
{
rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (PCI)\n", p->RIONumHosts);
RIOPCIinit(p, RIO_PCI_DEFAULT_MODE);
}
rio_dprintk (RIO_DEBUG_INIT, "Total hosts initialised so far : %d\n", p->RIONumHosts);
#ifdef FUTURE_RELEASE
if (p->bus & EISA_BUS)
/* EISA card */
RIOEISAinit(p, RIO_EISA_DEFAULT_MODE);
if (p->bus & MCA_BUS)
/* MCA card */
RIOMCAinit(p, RIO_MCA_DEFAULT_MODE);
#endif
}
/*
** go through memory for an AT host that we pass in the device info
** structure and initialise
*/
void
RIOISAinit(p, mode)
struct rio_info * p;
int mode;
{
/* XXX Need to implement this. */
#if 0
p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec,
(int (*)())rio_intr, (char*)p->RIONumHosts);
rio_dprintk (RIO_DEBUG_INIT, "Set interrupt handler, intr_tid = 0x%x\n", p->intr_tid );
if (RIODoAT(p, p->RIOHosts[p->RIONumHosts].PaddrP, mode)) {
return;
}
else {
rio_dprintk (RIO_DEBUG_INIT, "RIODoAT failed\n");
p->RIOFailed++;
}
#endif
}
/*
** RIODoAT :
**
** Map in a boards physical address, check that the board is there,
** test the board and if everything is okay assign the board an entry
** in the Rio Hosts structure.
*/
int
RIODoAT(p, Base, mode)
struct rio_info * p;
int Base;
int mode;
{
#define FOUND 1
#define NOT_FOUND 0
caddr_t cardAddr;
/*
** Check to see if we actually have a board at this physical address.
*/
if ((cardAddr = RIOCheckForATCard(Base)) != 0) {
/*
** Now test the board to see if it is working.
*/
if (RIOBoardTest(Base, cardAddr, RIO_AT, 0) == RIO_SUCCESS) {
/*
** Fill out a slot in the Rio host structure.
*/
if (RIOAssignAT(p, Base, cardAddr, mode)) {
return(FOUND);
}
}
RIOMapout(Base, RIO_AT_MEM_SIZE, cardAddr);
}
return(NOT_FOUND);
}
caddr_t
RIOCheckForATCard(Base)
int Base;
{
int off;
struct DpRam *cardp; /* (Points at the host) */
caddr_t virtAddr;
unsigned char RIOSigTab[24];
/*
** Table of values to search for as prom signature of a host card
*/
strcpy(RIOSigTab, "JBJGPGGHINSMJPJR");
/*
** Hey! Yes, You reading this code! Yo, grab a load a this:
**
** IF the card is using WORD MODE rather than BYTE MODE
** then it will occupy 128K of PHYSICAL memory area. So,
** you might think that the following Mapin is wrong. Well,
** it isn't, because the SECOND 64K of occupied space is an
** EXACT COPY of the FIRST 64K. (good?), so, we need only
** map it in in one 64K block.
*/
if (RIOMapin(Base, RIO_AT_MEM_SIZE, &virtAddr) == -1) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't map the board in!\n");
return((caddr_t)0);
}
/*
** virtAddr points to the DP ram of the system.
** We now cast this to a pointer to a RIO Host,
** and have a rummage about in the PROM.
*/
cardp = (struct DpRam *)virtAddr;
for (off=0; RIOSigTab[off]; off++) {
if ((RBYTE(cardp->DpSignature[off]) & 0xFF) != RIOSigTab[off]) {
/*
** Signature mismatch - card not at this address
*/
RIOMapout(Base, RIO_AT_MEM_SIZE, virtAddr);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't match the signature 0x%x 0x%x!\n",
(int)cardp, off);
return((caddr_t)0);
}
}
/*
** If we get here then we must have found a valid board so return
** its virtual address.
*/
return(virtAddr);
}
#endif
/**
** RIOAssignAT :
**
** Fill out the fields in the p->RIOHosts structure now we know we know
** we have a board present.
**
** bits < 0 indicates 8 bit operation requested,
** bits > 0 indicates 16 bit operation.
*/
int
RIOAssignAT(p, Base, virtAddr, mode)
struct rio_info * p;
int Base;
caddr_t virtAddr;
int mode;
{
int bits;
struct DpRam *cardp = (struct DpRam *)virtAddr;
if ((Base < ONE_MEG) || (mode & BYTE_ACCESS_MODE))
bits = BYTE_OPERATION;
else
bits = WORD_OPERATION;
/*
** Board has passed its scrub test. Fill in all the
** transient stuff.
*/
p->RIOHosts[p->RIONumHosts].Caddr = virtAddr;
p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)virtAddr;
/*
** Revision 01 AT host cards don't support WORD operations,
*/
if ( RBYTE(cardp->DpRevision) == 01 )
bits = BYTE_OPERATION;
p->RIOHosts[p->RIONumHosts].Type = RIO_AT;
p->RIOHosts[p->RIONumHosts].Copy = bcopy;
/* set this later */
p->RIOHosts[p->RIONumHosts].Slot = -1;
p->RIOHosts[p->RIONumHosts].Mode = SLOW_LINKS | SLOW_AT_BUS | bits;
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
p->RIOHosts[p->RIONumHosts].Mode |
INTERRUPT_DISABLE );
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
p->RIOHosts[p->RIONumHosts].Mode |
INTERRUPT_DISABLE );
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
p->RIOHosts[p->RIONumHosts].UniqueNum =
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Uniquenum 0x%x\n",p->RIOHosts[p->RIONumHosts].UniqueNum);
p->RIONumHosts++;
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Tests Passed at 0x%x\n", Base);
return(1);
}
#if 0
#ifdef FUTURE_RELEASE
int RIOMCAinit(int Mode)
{
uchar SlotNumber;
caddr_t Caddr;
uint Paddr;
uint Ivec;
int Handle;
int ret = 0;
/*
** Valid mode information for MCA cards
** is only FAST LINKS
*/
Mode = (Mode & FAST_LINKS) ? McaTpFastLinks : McaTpSlowLinks;
rio_dprintk (RIO_DEBUG_INIT, "RIOMCAinit(%d)\n",Mode);
/*
** Check out each of the slots
*/
for (SlotNumber = 0; SlotNumber < McaMaxSlots; SlotNumber++) {
/*
** Enable the slot we want to talk to
*/
outb( McaSlotSelect, SlotNumber | McaSlotEnable );
/*
** Read the ID word from the slot
*/
if (((inb(McaIdHigh)<< 8)|inb(McaIdLow)) == McaRIOId)
{
rio_dprintk (RIO_DEBUG_INIT, "Potential MCA card in slot %d\n", SlotNumber);
/*
** Card appears to be a RIO MCA card!
*/
RIOMachineType |= (1<<RIO_MCA);
/*
** Just check we haven't found too many wonderful objects
*/
if ( RIONumHosts >= RIO_HOSTS )
{
Rprintf(RIOMesgTooManyCards);
return(ret);
}
/*
** McaIrqEnable contains the interrupt vector, and a card
** enable bit.
*/
Ivec = inb(McaIrqEnable);
rio_dprintk (RIO_DEBUG_INIT, "Ivec is %x\n", Ivec);
switch ( Ivec & McaIrqMask )
{
case McaIrq9:
rio_dprintk (RIO_DEBUG_INIT, "IRQ9\n");
break;
case McaIrq3:
rio_dprintk (RIO_DEBUG_INIT, "IRQ3\n");
break;
case McaIrq4:
rio_dprintk (RIO_DEBUG_INIT, "IRQ4\n");
break;
case McaIrq7:
rio_dprintk (RIO_DEBUG_INIT, "IRQ7\n");
break;
case McaIrq10:
rio_dprintk (RIO_DEBUG_INIT, "IRQ10\n");
break;
case McaIrq11:
rio_dprintk (RIO_DEBUG_INIT, "IRQ11\n");
break;
case McaIrq12:
rio_dprintk (RIO_DEBUG_INIT, "IRQ12\n");
break;
case McaIrq15:
rio_dprintk (RIO_DEBUG_INIT, "IRQ15\n");
break;
}
/*
** If the card enable bit isn't set, then set it!
*/
if ((Ivec & McaCardEnable) != McaCardEnable) {
rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable not set - setting!\n");
outb(McaIrqEnable,Ivec|McaCardEnable);
} else
rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable already set\n");
/*
** Convert the IRQ enable mask into something useful
*/
Ivec = RIOMcaToIvec[Ivec & McaIrqMask];
/*
** Find the physical address
*/
rio_dprintk (RIO_DEBUG_INIT, "inb(McaMemory) is %x\n", inb(McaMemory));
Paddr = McaAddress(inb(McaMemory));
rio_dprintk (RIO_DEBUG_INIT, "MCA card has Ivec %d Addr %x\n", Ivec, Paddr);
if ( Paddr != 0 )
{
/*
** Tell the memory mapper that we want to talk to it
*/
Handle = RIOMapin( Paddr, RIO_MCA_MEM_SIZE, &Caddr );
if ( Handle == -1 ) {
rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n", RIO_MCA_MEM_SIZE, Paddr;
continue;
}
rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr);
/*
** And check that it is actually there!
*/
if ( RIOBoardTest( Paddr,Caddr,RIO_MCA,SlotNumber ) == RIO_SUCCESS )
{
rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n");
rio_dprintk (RIO_DEBUG_INIT, "Slot %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n",
SlotNumber, RIO_MCA, Paddr, Caddr, Mode);
/*
** Board has passed its scrub test. Fill in all the
** transient stuff.
*/
p->RIOHosts[RIONumHosts].Slot = SlotNumber;
p->RIOHosts[RIONumHosts].Ivec = Ivec;
p->RIOHosts[RIONumHosts].Type = RIO_MCA;
p->RIOHosts[RIONumHosts].Copy = bcopy;
p->RIOHosts[RIONumHosts].PaddrP = Paddr;
p->RIOHosts[RIONumHosts].Caddr = Caddr;
p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr;
p->RIOHosts[RIONumHosts].Mode = Mode;
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt , 0xff);
p->RIOHosts[RIONumHosts].UniqueNum =
((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24);
RIONumHosts++;
ret++;
}
else
{
/*
** It failed the test, so ignore it.
*/
rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n");
RIOMapout(Paddr, RIO_MCA_MEM_SIZE, Caddr );
}
}
else
{
rio_dprintk (RIO_DEBUG_INIT, "Slot %d - Paddr zero!\n", SlotNumber);
}
}
else
{
rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber);
}
}
/*
** Now we have checked all the slots, turn off the MCA slot selector
*/
outb(McaSlotSelect,0);
rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber);
return ret;
}
int RIOEISAinit( int Mode )
{
static int EISADone = 0;
uint Paddr;
int PollIntMixMsgDone = 0;
caddr_t Caddr;
ushort Ident;
uchar EisaSlot;
uchar Ivec;
int ret = 0;
/*
** The only valid mode information for EISA hosts is fast or slow
** links.
*/
Mode = (Mode & FAST_LINKS) ? EISA_TP_FAST_LINKS : EISA_TP_SLOW_LINKS;
if ( EISADone )
{
rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit() - already done, return.\n");
return(0);
}
EISADone++;
rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit()\n");
/*
** First check all cards to see if ANY are set for polled mode operation.
** If so, set ALL to polled.
*/
for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ )
{
Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) |
INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO);
if ( Ident == RIO_EISA_IDENT )
{
rio_dprintk (RIO_DEBUG_INIT, "Found Specialix product\n");
if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE )
{
rio_dprintk (RIO_DEBUG_INIT, "Not Specialix RIO - Product number %x\n",
INBZ(EisaSlot, EISA_PRODUCT_NUMBER));
continue; /* next slot */
}
/*
** Its a Specialix RIO!
*/
rio_dprintk (RIO_DEBUG_INIT, "RIO Revision %d\n",
INBZ(EisaSlot, EISA_REVISION_NUMBER));
RIOMachineType |= (1<<RIO_EISA);
/*
** Just check we haven't found too many wonderful objects
*/
if ( RIONumHosts >= RIO_HOSTS )
{
Rprintf(RIOMesgTooManyCards);
return 0;
}
/*
** Ensure that the enable bit is set!
*/
OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT );
/*
** EISA_INTERRUPT_VEC contains the interrupt vector.
*/
Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC);
#ifdef RIODEBUG
switch ( Ivec & EISA_INTERRUPT_MASK )
{
case EISA_IRQ_3:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 3\n");
break;
case EISA_IRQ_4:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 4\n");
break;
case EISA_IRQ_5:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 5\n");
break;
case EISA_IRQ_6:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 6\n");
break;
case EISA_IRQ_7:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 7\n");
break;
case EISA_IRQ_9:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 9\n");
break;
case EISA_IRQ_10:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 10\n");
break;
case EISA_IRQ_11:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 11\n");
break;
case EISA_IRQ_12:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 12\n");
break;
case EISA_IRQ_14:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 14\n");
break;
case EISA_IRQ_15:
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 15\n");
break;
case EISA_POLLED:
rio_dprintk (RIO_DEBUG_INIT, "EISA POLLED\n");
break;
default:
rio_dprintk (RIO_DEBUG_INIT, NULL,DBG_INIT|DBG_FAIL,"Shagged interrupt number!\n");
Ivec &= EISA_CONTROL_MASK;
}
#endif
if ( (Ivec & EISA_INTERRUPT_MASK) ==
EISA_POLLED )
{
RIOWillPoll = 1;
break; /* From EisaSlot loop */
}
}
}
/*
** Do it all again now we know whether to change all cards to polled
** mode or not
*/
for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ )
{
Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) |
INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO);
if ( Ident == RIO_EISA_IDENT )
{
if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE )
continue; /* next slot */
/*
** Its a Specialix RIO!
*/
/*
** Ensure that the enable bit is set!
*/
OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT );
/*
** EISA_INTERRUPT_VEC contains the interrupt vector.
*/
Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC);
if ( RIOWillPoll )
{
/*
** If we are going to operate in polled mode, but this
** board is configured to be interrupt driven, display
** the message explaining the situation to the punter,
** assuming we haven't already done so.
*/
if ( !PollIntMixMsgDone &&
(Ivec & EISA_INTERRUPT_MASK) != EISA_POLLED )
{
Rprintf(RIOMesgAllPolled);
PollIntMixMsgDone = 1;
}
/*
** Ungraciously ignore whatever the board reports as its
** interrupt vector...
*/
Ivec &= ~EISA_INTERRUPT_MASK;
/*
** ...and force it to dance to the poll tune.
*/
Ivec |= EISA_POLLED;
}
/*
** Convert the IRQ enable mask into something useful (0-15)
*/
Ivec = RIOEisaToIvec(Ivec);
rio_dprintk (RIO_DEBUG_INIT, "EISA host in slot %d has Ivec 0x%x\n",
EisaSlot, Ivec);
/*
** Find the physical address
*/
Paddr = (INBZ(EisaSlot,EISA_MEMORY_BASE_HI)<<24) |
(INBZ(EisaSlot,EISA_MEMORY_BASE_LO)<<16);
rio_dprintk (RIO_DEBUG_INIT, "EISA card has Ivec %d Addr %x\n", Ivec, Paddr);
if ( Paddr == 0 )
{
rio_dprintk (RIO_DEBUG_INIT,
"Board in slot %d configured for address zero!\n", EisaSlot);
continue;
}
/*
** Tell the memory mapper that we want to talk to it
*/
rio_dprintk (RIO_DEBUG_INIT, "About to map EISA card \n");
if (RIOMapin( Paddr, RIO_EISA_MEM_SIZE, &Caddr) == -1) {
rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n",
RIO_EISA_MEM_SIZE,Paddr);
continue;
}
rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr);
/*
** And check that it is actually there!
*/
if ( RIOBoardTest( Paddr,Caddr,RIO_EISA,EisaSlot) == RIO_SUCCESS )
{
rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n");
rio_dprintk (RIO_DEBUG_INIT,
"Slot %d. Ivec %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n",
EisaSlot,Ivec,RIO_EISA,Paddr,Caddr,Mode);
/*
** Board has passed its scrub test. Fill in all the
** transient stuff.
*/
p->RIOHosts[RIONumHosts].Slot = EisaSlot;
p->RIOHosts[RIONumHosts].Ivec = Ivec;
p->RIOHosts[RIONumHosts].Type = RIO_EISA;
p->RIOHosts[RIONumHosts].Copy = bcopy;
p->RIOHosts[RIONumHosts].PaddrP = Paddr;
p->RIOHosts[RIONumHosts].Caddr = Caddr;
p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr;
p->RIOHosts[RIONumHosts].Mode = Mode;
/*
** because the EISA prom is mapped into IO space, we
** need to copy the unqiue number into the memory area
** that it would have occupied, so that the download
** code can determine its ID and card type.
*/
WBYTE(p->RIOHosts[RIONumHosts].Unique[0],INBZ(EisaSlot,EISA_UNIQUE_NUM_0));
WBYTE(p->RIOHosts[RIONumHosts].Unique[1],INBZ(EisaSlot,EISA_UNIQUE_NUM_1));
WBYTE(p->RIOHosts[RIONumHosts].Unique[2],INBZ(EisaSlot,EISA_UNIQUE_NUM_2));
WBYTE(p->RIOHosts[RIONumHosts].Unique[3],INBZ(EisaSlot,EISA_UNIQUE_NUM_3));
p->RIOHosts[RIONumHosts].UniqueNum =
((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24);
INBZ(EisaSlot,EISA_INTERRUPT_RESET);
RIONumHosts++;
ret++;
}
else
{
/*
** It failed the test, so ignore it.
*/
rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n");
RIOMapout(Paddr, RIO_EISA_MEM_SIZE, Caddr );
}
}
}
if (RIOMachineType & RIO_EISA)
return ret+1;
return ret;
}
#endif
#ifndef linux
#define CONFIG_ADDRESS 0xcf8
#define CONFIG_DATA 0xcfc
#define FORWARD_REG 0xcfa
static int
read_config(int bus_number, int device_num, int r_number)
{
unsigned int cav;
unsigned int val;
/*
Build config_address_value:
31 24 23 16 15 11 10 8 7 0
------------------------------------------------------
|1| 0000000 | bus_number | device # | 000 | register |
------------------------------------------------------
*/
cav = r_number & 0xff;
cav |= ((device_num & 0x1f) << 11);
cav |= ((bus_number & 0xff) << 16);
cav |= 0x80000000; /* Enable bit */
outpd(CONFIG_ADDRESS,cav);
val = inpd(CONFIG_DATA);
outpd(CONFIG_ADDRESS,0);
return val;
}
static
write_config(bus_number,device_num,r_number,val)
{
unsigned int cav;
/*
Build config_address_value:
31 24 23 16 15 11 10 8 7 0
------------------------------------------------------
|1| 0000000 | bus_number | device # | 000 | register |
------------------------------------------------------
*/
cav = r_number & 0xff;
cav |= ((device_num & 0x1f) << 11);
cav |= ((bus_number & 0xff) << 16);
cav |= 0x80000000; /* Enable bit */
outpd(CONFIG_ADDRESS, cav);
outpd(CONFIG_DATA, val);
outpd(CONFIG_ADDRESS, 0);
return val;
}
#else
/* XXX Implement these... */
static int
read_config(int bus_number, int device_num, int r_number)
{
return 0;
}
static int
write_config(int bus_number, int device_num, int r_number)
{
return 0;
}
#endif
int
RIOPCIinit(p, Mode)
struct rio_info *p;
int Mode;
{
#define MAX_PCI_SLOT 32
#define RIO_PCI_JET_CARD 0x200011CB
static int slot; /* count of machine's PCI slots searched so far */
caddr_t Caddr; /* Virtual address of the current PCI host card. */
unsigned char Ivec; /* interrupt vector for the current PCI host */
unsigned long Paddr; /* Physical address for the current PCI host */
int Handle; /* Handle to Virtual memory allocated for current PCI host */
rio_dprintk (RIO_DEBUG_INIT, "Search for a RIO PCI card - start at slot %d\n", slot);
/*
** Initialise the search status
*/
p->RIOLastPCISearch = RIO_FAIL;
while ( (slot < MAX_PCI_SLOT) & (p->RIOLastPCISearch != RIO_SUCCESS) )
{
rio_dprintk (RIO_DEBUG_INIT, "Currently testing slot %d\n", slot);
if (read_config(0,slot,0) == RIO_PCI_JET_CARD) {
p->RIOHosts[p->RIONumHosts].Ivec = 0;
Paddr = read_config(0,slot,0x18);
Paddr = Paddr - (Paddr & 0x1); /* Mask off the io bit */
if ( (Paddr == 0) || ((Paddr & 0xffff0000) == 0xffff0000) ) {
rio_dprintk (RIO_DEBUG_INIT, "Goofed up slot\n"); /* what! */
slot++;
continue;
}
p->RIOHosts[p->RIONumHosts].PaddrP = Paddr;
Ivec = (read_config(0,slot,0x3c) & 0xff);
rio_dprintk (RIO_DEBUG_INIT, "PCI Host at 0x%x, Intr %d\n", (int)Paddr, Ivec);
Handle = RIOMapin( Paddr, RIO_PCI_MEM_SIZE, &Caddr );
if (Handle == -1) {
rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at 0x%x\n", RIO_PCI_MEM_SIZE, (int)Paddr);
slot++;
continue;
}
p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32;
p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec,
(int (*)())rio_intr, (char *)p->RIONumHosts);
if (RIOBoardTest( Paddr, Caddr, RIO_PCI, 0 ) == RIO_SUCCESS) {
rio_dprintk (RIO_DEBUG_INIT, ("Board has passed test\n");
rio_dprintk (RIO_DEBUG_INIT, ("Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", Paddr, Caddr, Mode);
/*
** Board has passed its scrub test. Fill in all the
** transient stuff.
*/
p->RIOHosts[p->RIONumHosts].Slot = 0;
p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32;
p->RIOHosts[p->RIONumHosts].Type = RIO_PCI;
p->RIOHosts[p->RIONumHosts].Copy = rio_pcicopy;
p->RIOHosts[p->RIONumHosts].PaddrP = Paddr;
p->RIOHosts[p->RIONumHosts].Caddr = Caddr;
p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)Caddr;
p->RIOHosts[p->RIONumHosts].Mode = Mode;
#if 0
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
p->RIOHosts[p->RIONumHosts].Mode |
INTERRUPT_DISABLE );
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
p->RIOHosts[p->RIONumHosts].Mode |
INTERRUPT_DISABLE );
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
#else
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt, 0xff);
#endif
p->RIOHosts[p->RIONumHosts].UniqueNum =
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24);
rio_dprintk (RIO_DEBUG_INIT, "Unique no 0x%x.\n",
p->RIOHosts[p->RIONumHosts].UniqueNum);
p->RIOLastPCISearch = RIO_SUCCESS;
p->RIONumHosts++;
}
}
slot++;
}
if ( slot >= MAX_PCI_SLOT ) {
rio_dprintk (RIO_DEBUG_INIT, "All %d PCI slots have tested for RIO cards !!!\n",
MAX_PCI_SLOT);
}
/*
** I don't think we want to do this anymore
**
if (!p->RIOLastPCISearch == RIO_FAIL ) {
p->RIOFailed++;
}
**
*/
}
#ifdef FUTURE_RELEASE
void riohalt( void )
{
int host;
for ( host=0; host<p->RIONumHosts; host++ )
{
rio_dprintk (RIO_DEBUG_INIT, "Stop host %d\n", host);
(void)RIOBoardTest( p->RIOHosts[host].PaddrP, p->RIOHosts[host].Caddr, p->RIOHosts[host].Type,p->RIOHosts[host].Slot );
}
}
#endif
#endif
static uchar val[] = {
#ifdef VERY_LONG_TEST
0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0xa5, 0xff, 0x5a, 0x00, 0xff, 0xc9, 0x36,
#endif
0xff, 0x00, 0x00 };
#define TEST_END sizeof(val)
/*
** RAM test a board.
** Nothing too complicated, just enough to check it out.
*/
int
RIOBoardTest(paddr, caddr, type, slot)
paddr_t paddr;
caddr_t caddr;
uchar type;
int slot;
{
struct DpRam *DpRam = (struct DpRam *)caddr;
char *ram[4];
int size[4];
int op, bank;
int nbanks;
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Reset host type=%d, DpRam=0x%x, slot=%d\n",
type,(int)DpRam, slot);
RIOHostReset(type, DpRam, slot);
/*
** Scrub the memory. This comes in several banks:
** DPsram1 - 7000h bytes
** DPsram2 - 200h bytes
** DPsram3 - 7000h bytes
** scratch - 1000h bytes
*/
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Setup ram/size arrays\n");
size[0] = DP_SRAM1_SIZE;
size[1] = DP_SRAM2_SIZE;
size[2] = DP_SRAM3_SIZE;
size[3] = DP_SCRATCH_SIZE;
ram[0] = (char *)&DpRam->DpSram1[0];
ram[1] = (char *)&DpRam->DpSram2[0];
ram[2] = (char *)&DpRam->DpSram3[0];
nbanks = (type == RIO_PCI) ? 3 : 4;
if (nbanks == 4)
ram[3] = (char *)&DpRam->DpScratch[0];
if (nbanks == 3) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Memory: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n",
(int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2]);
} else {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n",
(int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2], (int)ram[3],
size[3]);
}
/*
** This scrub operation will test for crosstalk between
** banks. TEST_END is a magic number, and relates to the offset
** within the 'val' array used by Scrub.
*/
for (op=0; op<TEST_END; op++) {
for (bank=0; bank<nbanks; bank++) {
if (RIOScrub(op, (BYTE *)ram[bank], size[bank]) == RIO_FAIL) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: RIOScrub band %d, op %d failed\n",
bank, op);
return RIO_FAIL;
}
}
}
rio_dprintk (RIO_DEBUG_INIT, "Test completed\n");
return RIO_SUCCESS;
}
/*
** Scrub an area of RAM.
** Define PRETEST and POSTTEST for a more thorough checking of the
** state of the memory.
** Call with op set to an index into the above 'val' array to determine
** which value will be written into memory.
** Call with op set to zero means that the RAM will not be read and checked
** before it is written.
** Call with op not zero, and the RAM will be read and compated with val[op-1]
** to check that the data from the previous phase was retained.
*/
static int
RIOScrub(op, ram, size)
int op;
BYTE * ram;
int size;
{
int off;
unsigned char oldbyte;
unsigned char newbyte;
unsigned char invbyte;
unsigned short oldword;
unsigned short newword;
unsigned short invword;
unsigned short swapword;
if (op) {
oldbyte = val[op-1];
oldword = oldbyte | (oldbyte<<8);
} else
oldbyte = oldword = 0; /* Tell the compiler we've initilalized them. */
newbyte = val[op];
newword = newbyte | (newbyte<<8);
invbyte = ~newbyte;
invword = invbyte | (invbyte<<8);
/*
** Check that the RAM contains the value that should have been left there
** by the previous test (not applicable for pass zero)
*/
if (op) {
for (off=0; off<size; off++) {
if (RBYTE(ram[off]) != oldbyte) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 1: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off]));
return RIO_FAIL;
}
}
for (off=0; off<size; off+=2) {
if (*(ushort *)&ram[off] != oldword) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: WORD at offset 0x%x should have been=%x, was=%x\n",off,oldword,*(ushort *)&ram[off]);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
return RIO_FAIL;
}
}
}
/*
** Now write the INVERSE of the test data into every location, using
** BYTE write operations, first checking before each byte is written
** that the location contains the old value still, and checking after
** the write that the location contains the data specified - this is
** the BYTE read/write test.
*/
for (off=0; off<size; off++) {
if (op && (RBYTE(ram[off]) != oldbyte)) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off]));
return RIO_FAIL;
}
WBYTE(ram[off],invbyte);
if (RBYTE(ram[off]) != invbyte) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Inv Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, invbyte, RBYTE(ram[off]));
return RIO_FAIL;
}
}
/*
** now, use WORD operations to write the test value into every location,
** check as before that the location contains the previous test value
** before overwriting, and that it contains the data value written
** afterwards.
** This is the WORD operation test.
*/
for (off=0; off<size; off+=2) {
if (*(ushort *)&ram[off] != invword) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: WORD at offset 0x%x should have been=%x, was=%x\n", off, invword, *(ushort *)&ram[off]);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
return RIO_FAIL;
}
*(ushort *)&ram[off] = newword;
if ( *(ushort *)&ram[off] != newword ) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
return RIO_FAIL;
}
}
/*
** now run through the block of memory again, first in byte mode
** then in word mode, and check that all the locations contain the
** required test data.
*/
for (off=0; off<size; off++) {
if (RBYTE(ram[off]) != newbyte) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Byte Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off]));
return RIO_FAIL;
}
}
for (off=0; off<size; off+=2) {
if ( *(ushort *)&ram[off] != newword ) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
return RIO_FAIL;
}
}
/*
** time to check out byte swapping errors
*/
swapword = invbyte | (newbyte << 8);
for (off=0; off<size; off+=2) {
WBYTE(ram[off],invbyte);
WBYTE(ram[off+1],newbyte);
}
for ( off=0; off<size; off+=2 ) {
if (*(ushort *)&ram[off] != swapword) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, swapword, *((ushort *)&ram[off]));
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
return RIO_FAIL;
}
*((ushort *)&ram[off]) = ~swapword;
}
for (off=0; off<size; off+=2) {
if (RBYTE(ram[off]) != newbyte) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off]));
return RIO_FAIL;
}
if (RBYTE(ram[off+1]) != invbyte) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off+1, invbyte, RBYTE(ram[off+1]));
return RIO_FAIL;
}
*((ushort *)&ram[off]) = newword;
}
return RIO_SUCCESS;
}
/*
** try to ensure that every host is either in polled mode
** or is in interrupt mode. Only allow interrupt mode if
** all hosts can interrupt (why?)
** and force into polled mode if told to. Patch up the
** interrupt vector & salute The Queen when you've done.
*/
#if 0
static void
RIOAllocateInterrupts(p)
struct rio_info * p;
{
int Host;
/*
** Easy case - if we have been told to poll, then we poll.
*/
if (p->mode & POLLED_MODE) {
RIOStopInterrupts(p, 0, 0);
return;
}
/*
** check - if any host has been set to polled mode, then all must be.
*/
for (Host=0; Host<p->RIONumHosts; Host++) {
if ( (p->RIOHosts[Host].Type != RIO_AT) &&
(p->RIOHosts[Host].Ivec == POLLED) ) {
RIOStopInterrupts(p, 1, Host );
return;
}
}
for (Host=0; Host<p->RIONumHosts; Host++) {
if (p->RIOHosts[Host].Type == RIO_AT) {
if ( (p->RIOHosts[Host].Ivec - 32) == 0) {
RIOStopInterrupts(p, 2, Host );
return;
}
}
}
}
/*
** something has decided that we can't be doing with these
** new-fangled interrupt thingies. Set everything up to just
** poll.
*/
static void
RIOStopInterrupts(p, Reason, Host)
struct rio_info * p;
int Reason;
int Host;
{
#ifdef FUTURE_RELEASE
switch (Reason) {
case 0: /* forced into polling by rio_polled */
break;
case 1: /* SCU has set 'Host' into polled mode */
break;
case 2: /* there aren't enough interrupt vectors for 'Host' */
break;
}
#endif
for (Host=0; Host<p->RIONumHosts; Host++ ) {
struct Host *HostP = &p->RIOHosts[Host];
switch (HostP->Type) {
case RIO_AT:
/*
** The AT host has it's interrupts disabled by clearing the
** int_enable bit.
*/
HostP->Mode &= ~INTERRUPT_ENABLE;
HostP->Ivec = POLLED;
break;
#ifdef FUTURE_RELEASE
case RIO_EISA:
/*
** The EISA host has it's interrupts disabled by setting the
** Ivec to zero
*/
HostP->Ivec = POLLED;
break;
#endif
case RIO_PCI:
/*
** The PCI host has it's interrupts disabled by clearing the
** int_enable bit, like a regular host card.
*/
HostP->Mode &= ~RIO_PCI_INT_ENABLE;
HostP->Ivec = POLLED;
break;
#ifdef FUTURE_RELEASE
case RIO_MCA:
/*
** There's always one, isn't there?
** The MCA host card cannot have it's interrupts disabled.
*/
RIOPatchVec(HostP);
break;
#endif
}
}
}
/*
** This function is called at init time to setup the data structures.
*/
void
RIOAllocDataStructs(p)
struct rio_info * p;
{
int port,
host,
tm;
p->RIOPortp = (struct Port *)sysbrk(RIO_PORTS * sizeof(struct Port));
if (!p->RIOPortp) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for port structures\n");
p->RIOFailed++;
return;
}
bzero( p->RIOPortp, sizeof(struct Port) * RIO_PORTS );
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for port structs\n");
rio_dprintk (RIO_DEBUG_INIT, "First RIO port struct @0x%x, size=0x%x bytes\n",
(int)p->RIOPortp, sizeof(struct Port));
for( port=0; port<RIO_PORTS; port++ ) {
p->RIOPortp[port].PortNum = port;
p->RIOPortp[port].TtyP = &p->channel[port];
sreset (p->RIOPortp[port].InUse); /* Let the first guy uses it */
p->RIOPortp[port].portSem = -1; /* Let the first guy takes it */
p->RIOPortp[port].ParamSem = -1; /* Let the first guy takes it */
p->RIOPortp[port].timeout_id = 0; /* Let the first guy takes it */
}
p->RIOHosts = (struct Host *)sysbrk(RIO_HOSTS * sizeof(struct Host));
if (!p->RIOHosts) {
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for host structures\n");
p->RIOFailed++;
return;
}
bzero(p->RIOHosts, sizeof(struct Host)*RIO_HOSTS);
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for host structs\n");
rio_dprintk (RIO_DEBUG_INIT, "First RIO host struct @0x%x, size=0x%x bytes\n",
(int)p->RIOHosts, sizeof(struct Host));
for( host=0; host<RIO_HOSTS; host++ ) {
spin_lock_init (&p->RIOHosts[host].HostLock);
p->RIOHosts[host].timeout_id = 0; /* Let the first guy takes it */
}
/*
** check that the buffer size is valid, round down to the next power of
** two if necessary; if the result is zero, then, hey, no double buffers.
*/
for ( tm = 1; tm && tm <= p->RIOConf.BufferSize; tm <<= 1 )
;
tm >>= 1;
p->RIOBufferSize = tm;
p->RIOBufferMask = tm ? tm - 1 : 0;
}
/*
** this function gets called whenever the data structures need to be
** re-setup, for example, after a riohalt (why did I ever invent it?)
*/
void
RIOSetupDataStructs(p)
struct rio_info * p;
{
int host, entry, rup;
for ( host=0; host<RIO_HOSTS; host++ ) {
struct Host *HostP = &p->RIOHosts[host];
for ( entry=0; entry<LINKS_PER_UNIT; entry++ ) {
HostP->Topology[entry].Unit = ROUTE_DISCONNECT;
HostP->Topology[entry].Link = NO_LINK;
}
bcopy("HOST X", HostP->Name, 7);
HostP->Name[5] = '1'+host;
for (rup=0; rup<(MAX_RUP + LINKS_PER_UNIT); rup++) {
if (rup < MAX_RUP) {
for (entry=0; entry<LINKS_PER_UNIT; entry++ ) {
HostP->Mapping[rup].Topology[entry].Unit = ROUTE_DISCONNECT;
HostP->Mapping[rup].Topology[entry].Link = NO_LINK;
}
RIODefaultName(p, HostP, rup);
}
spin_lock_init(&HostP->UnixRups[rup].RupLock);
}
}
}
#endif
int
RIODefaultName(p, HostP, UnitId)
struct rio_info * p;
struct Host * HostP;
uint UnitId;
{
#ifdef CHECK
CheckHost( Host );
CheckUnitId( UnitId );
#endif
bcopy("UNKNOWN RTA X-XX",HostP->Mapping[UnitId].Name,17);
HostP->Mapping[UnitId].Name[12]='1'+(HostP-p->RIOHosts);
if ((UnitId+1) > 9) {
HostP->Mapping[UnitId].Name[14]='0'+((UnitId+1)/10);
HostP->Mapping[UnitId].Name[15]='0'+((UnitId+1)%10);
}
else {
HostP->Mapping[UnitId].Name[14]='1'+UnitId;
HostP->Mapping[UnitId].Name[15]=0;
}
return 0;
}
#define RIO_RELEASE "Linux"
#define RELEASE_ID "1.0"
#if 0
static int
RIOReport(p)
struct rio_info * p;
{
char * RIORelease = RIO_RELEASE;
char * RIORelID = RELEASE_ID;
int host;
rio_dprintk (RIO_DEBUG_INIT, "RIO : Release: %s ID: %s\n", RIORelease, RIORelID);
if ( p->RIONumHosts==0 ) {
rio_dprintk (RIO_DEBUG_INIT, "\nNo Hosts configured\n");
return(0);
}
for ( host=0; host < p->RIONumHosts; host++ ) {
struct Host *HostP = &p->RIOHosts[host];
switch ( HostP->Type ) {
case RIO_AT:
rio_dprintk (RIO_DEBUG_INIT, "AT BUS : found the card at 0x%x\n", HostP->PaddrP);
}
}
return 0;
}
#endif
static struct rioVersion stVersion;
struct rioVersion *
RIOVersid(void)
{
strlcpy(stVersion.version, "RIO driver for linux V1.0",
sizeof(stVersion.version));
strlcpy(stVersion.buildDate, __DATE__,
sizeof(stVersion.buildDate));
return &stVersion;
}
#if 0
int
RIOMapin(paddr, size, vaddr)
paddr_t paddr;
int size;
caddr_t * vaddr;
{
*vaddr = (caddr_t)permap( (long)paddr, size);
return ((int)*vaddr);
}
void
RIOMapout(paddr, size, vaddr)
paddr_t paddr;
long size;
caddr_t vaddr;
{
}
#endif
void
RIOHostReset(Type, DpRamP, Slot)
uint Type;
volatile struct DpRam *DpRamP;
uint Slot;
{
/*
** Reset the Tpu
*/
rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: type 0x%x", Type);
switch ( Type ) {
case RIO_AT:
rio_dprintk (RIO_DEBUG_INIT, " (RIO_AT)\n");
WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
INTERRUPT_DISABLE | BYTE_OPERATION |
SLOW_LINKS | SLOW_AT_BUS);
WBYTE(DpRamP->DpResetTpu, 0xFF);
rio_udelay (3);
rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: Don't know if it worked. Try reset again\n");
WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
INTERRUPT_DISABLE | BYTE_OPERATION |
SLOW_LINKS | SLOW_AT_BUS);
WBYTE(DpRamP->DpResetTpu, 0xFF);
rio_udelay (3);
break;
#ifdef FUTURE_RELEASE
case RIO_EISA:
/*
** Bet this doesn't work!
*/
OUTBZ( Slot, EISA_CONTROL_PORT,
EISA_TP_RUN | EISA_TP_BUS_DISABLE |
EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM );
OUTBZ( Slot, EISA_CONTROL_PORT,
EISA_TP_RESET | EISA_TP_BUS_DISABLE |
EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM );
suspend( 3 );
OUTBZ( Slot, EISA_CONTROL_PORT,
EISA_TP_RUN | EISA_TP_BUS_DISABLE |
EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM );
break;
case RIO_MCA:
WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable );
WBYTE(DpRamP->DpResetTpu , 0xFF );
suspend( 3 );
WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable );
WBYTE(DpRamP->DpResetTpu , 0xFF );
suspend( 3 );
break;
#endif
case RIO_PCI:
rio_dprintk (RIO_DEBUG_INIT, " (RIO_PCI)\n");
DpRamP->DpControl = RIO_PCI_BOOT_FROM_RAM;
DpRamP->DpResetInt = 0xFF;
DpRamP->DpResetTpu = 0xFF;
rio_udelay (100);
/* for (i=0; i<6000; i++); */
/* suspend( 3 ); */
break;
#ifdef FUTURE_RELEASE
default:
Rprintf(RIOMesgNoSupport,Type,DpRamP,Slot);
return;
#endif
default:
rio_dprintk (RIO_DEBUG_INIT, " (UNKNOWN)\n");
break;
}
return;
}