mirror of
https://github.com/adulau/aha.git
synced 2024-12-31 21:26:18 +00:00
65ec1cd1e2
Merge Eric Maio's patch to merge snd_soc_dai_ops out of line. Fixed merge issues and updated drivers, plus an issue with the ops for the two s3c2443 AC97 DAIs having been merged. Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
737 lines
21 KiB
C
737 lines
21 KiB
C
/*
|
|
* Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
|
|
*
|
|
* Author: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
|
|
* under the terms of the GNU General Public License version 2. This
|
|
* program is licensed "as is" without any warranty of any kind, whether
|
|
* express or implied.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <sound/core.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/initval.h>
|
|
#include <sound/soc.h>
|
|
|
|
#include <asm/immap_86xx.h>
|
|
|
|
#include "fsl_ssi.h"
|
|
|
|
/**
|
|
* FSLSSI_I2S_RATES: sample rates supported by the I2S
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode,
|
|
* which means the codec determines the sample rate. Therefore, we tell
|
|
* ALSA that we support all rates and let the codec driver decide what rates
|
|
* are really supported.
|
|
*/
|
|
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
|
|
SNDRV_PCM_RATE_CONTINUOUS)
|
|
|
|
/**
|
|
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode.
|
|
*
|
|
* The SSI has a limitation in that the samples must be in the same byte
|
|
* order as the host CPU. This is because when multiple bytes are written
|
|
* to the STX register, the bytes and bits must be written in the same
|
|
* order. The STX is a shift register, so all the bits need to be aligned
|
|
* (bit-endianness must match byte-endianness). Processors typically write
|
|
* the bits within a byte in the same order that the bytes of a word are
|
|
* written in. So if the host CPU is big-endian, then only big-endian
|
|
* samples will be written to STX properly.
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
|
|
SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
|
|
SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
|
|
#else
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
|
|
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
|
|
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
|
|
#endif
|
|
|
|
/**
|
|
* fsl_ssi_private: per-SSI private data
|
|
*
|
|
* @name: short name for this device ("SSI0", "SSI1", etc)
|
|
* @ssi: pointer to the SSI's registers
|
|
* @ssi_phys: physical address of the SSI registers
|
|
* @irq: IRQ of this SSI
|
|
* @first_stream: pointer to the stream that was opened first
|
|
* @second_stream: pointer to second stream
|
|
* @dev: struct device pointer
|
|
* @playback: the number of playback streams opened
|
|
* @capture: the number of capture streams opened
|
|
* @asynchronous: 0=synchronous mode, 1=asynchronous mode
|
|
* @cpu_dai: the CPU DAI for this device
|
|
* @dev_attr: the sysfs device attribute structure
|
|
* @stats: SSI statistics
|
|
*/
|
|
struct fsl_ssi_private {
|
|
char name[8];
|
|
struct ccsr_ssi __iomem *ssi;
|
|
dma_addr_t ssi_phys;
|
|
unsigned int irq;
|
|
struct snd_pcm_substream *first_stream;
|
|
struct snd_pcm_substream *second_stream;
|
|
struct device *dev;
|
|
unsigned int playback;
|
|
unsigned int capture;
|
|
int asynchronous;
|
|
struct snd_soc_dai cpu_dai;
|
|
struct device_attribute dev_attr;
|
|
|
|
struct {
|
|
unsigned int rfrc;
|
|
unsigned int tfrc;
|
|
unsigned int cmdau;
|
|
unsigned int cmddu;
|
|
unsigned int rxt;
|
|
unsigned int rdr1;
|
|
unsigned int rdr0;
|
|
unsigned int tde1;
|
|
unsigned int tde0;
|
|
unsigned int roe1;
|
|
unsigned int roe0;
|
|
unsigned int tue1;
|
|
unsigned int tue0;
|
|
unsigned int tfs;
|
|
unsigned int rfs;
|
|
unsigned int tls;
|
|
unsigned int rls;
|
|
unsigned int rff1;
|
|
unsigned int rff0;
|
|
unsigned int tfe1;
|
|
unsigned int tfe0;
|
|
} stats;
|
|
};
|
|
|
|
/**
|
|
* fsl_ssi_isr: SSI interrupt handler
|
|
*
|
|
* Although it's possible to use the interrupt handler to send and receive
|
|
* data to/from the SSI, we use the DMA instead. Programming is more
|
|
* complicated, but the performance is much better.
|
|
*
|
|
* This interrupt handler is used only to gather statistics.
|
|
*
|
|
* @irq: IRQ of the SSI device
|
|
* @dev_id: pointer to the ssi_private structure for this SSI device
|
|
*/
|
|
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_id;
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
__be32 sisr;
|
|
__be32 sisr2 = 0;
|
|
|
|
/* We got an interrupt, so read the status register to see what we
|
|
were interrupted for. We mask it with the Interrupt Enable register
|
|
so that we only check for events that we're interested in.
|
|
*/
|
|
sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFRC) {
|
|
ssi_private->stats.rfrc++;
|
|
sisr2 |= CCSR_SSI_SISR_RFRC;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFRC) {
|
|
ssi_private->stats.tfrc++;
|
|
sisr2 |= CCSR_SSI_SISR_TFRC;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_CMDAU) {
|
|
ssi_private->stats.cmdau++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_CMDDU) {
|
|
ssi_private->stats.cmddu++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RXT) {
|
|
ssi_private->stats.rxt++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RDR1) {
|
|
ssi_private->stats.rdr1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RDR0) {
|
|
ssi_private->stats.rdr0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TDE1) {
|
|
ssi_private->stats.tde1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TDE0) {
|
|
ssi_private->stats.tde0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_ROE1) {
|
|
ssi_private->stats.roe1++;
|
|
sisr2 |= CCSR_SSI_SISR_ROE1;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_ROE0) {
|
|
ssi_private->stats.roe0++;
|
|
sisr2 |= CCSR_SSI_SISR_ROE0;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TUE1) {
|
|
ssi_private->stats.tue1++;
|
|
sisr2 |= CCSR_SSI_SISR_TUE1;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TUE0) {
|
|
ssi_private->stats.tue0++;
|
|
sisr2 |= CCSR_SSI_SISR_TUE0;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFS) {
|
|
ssi_private->stats.tfs++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFS) {
|
|
ssi_private->stats.rfs++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TLS) {
|
|
ssi_private->stats.tls++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RLS) {
|
|
ssi_private->stats.rls++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFF1) {
|
|
ssi_private->stats.rff1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_RFF0) {
|
|
ssi_private->stats.rff0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFE1) {
|
|
ssi_private->stats.tfe1++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sisr & CCSR_SSI_SISR_TFE0) {
|
|
ssi_private->stats.tfe0++;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
/* Clear the bits that we set */
|
|
if (sisr2)
|
|
out_be32(&ssi->sisr, sisr2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_startup: create a new substream
|
|
*
|
|
* This is the first function called when a stream is opened.
|
|
*
|
|
* If this is the first stream open, then grab the IRQ and program most of
|
|
* the SSI registers.
|
|
*/
|
|
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
|
|
|
/*
|
|
* If this is the first stream opened, then request the IRQ
|
|
* and initialize the SSI registers.
|
|
*/
|
|
if (!ssi_private->playback && !ssi_private->capture) {
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
int ret;
|
|
|
|
ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
|
|
ssi_private->name, ssi_private);
|
|
if (ret < 0) {
|
|
dev_err(substream->pcm->card->dev,
|
|
"could not claim irq %u\n", ssi_private->irq);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Section 16.5 of the MPC8610 reference manual says that the
|
|
* SSI needs to be disabled before updating the registers we set
|
|
* here.
|
|
*/
|
|
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
|
|
|
/*
|
|
* Program the SSI into I2S Slave Non-Network Synchronous mode.
|
|
* Also enable the transmit and receive FIFO.
|
|
*
|
|
* FIXME: Little-endian samples require a different shift dir
|
|
*/
|
|
clrsetbits_be32(&ssi->scr,
|
|
CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
|
|
CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
|
|
| (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
|
|
|
|
out_be32(&ssi->stcr,
|
|
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
|
|
CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
|
|
CCSR_SSI_STCR_TSCKP);
|
|
|
|
out_be32(&ssi->srcr,
|
|
CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
|
|
CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
|
|
CCSR_SSI_SRCR_RSCKP);
|
|
|
|
/*
|
|
* The DC and PM bits are only used if the SSI is the clock
|
|
* master.
|
|
*/
|
|
|
|
/* 4. Enable the interrupts and DMA requests */
|
|
out_be32(&ssi->sier,
|
|
CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
|
|
CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
|
|
CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
|
|
CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
|
|
CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
|
|
|
|
/*
|
|
* Set the watermark for transmit FIFI 0 and receive FIFO 0. We
|
|
* don't use FIFO 1. Since the SSI only supports stereo, the
|
|
* watermark should never be an odd number.
|
|
*/
|
|
out_be32(&ssi->sfcsr,
|
|
CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
|
|
|
|
/*
|
|
* We keep the SSI disabled because if we enable it, then the
|
|
* DMA controller will start. It's not supposed to start until
|
|
* the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
|
|
* DMA controller will transfer one "BWC" of data (i.e. the
|
|
* amount of data that the MR.BWC bits are set to). The reason
|
|
* this is bad is because at this point, the PCM driver has not
|
|
* finished initializing the DMA controller.
|
|
*/
|
|
}
|
|
|
|
if (!ssi_private->first_stream)
|
|
ssi_private->first_stream = substream;
|
|
else {
|
|
/* This is the second stream open, so we need to impose sample
|
|
* rate and maybe sample size constraints. Note that this can
|
|
* cause a race condition if the second stream is opened before
|
|
* the first stream is fully initialized.
|
|
*
|
|
* We provide some protection by checking to make sure the first
|
|
* stream is initialized, but it's not perfect. ALSA sometimes
|
|
* re-initializes the driver with a different sample rate or
|
|
* size. If the second stream is opened before the first stream
|
|
* has received its final parameters, then the second stream may
|
|
* be constrained to the wrong sample rate or size.
|
|
*
|
|
* FIXME: This code does not handle opening and closing streams
|
|
* repeatedly. If you open two streams and then close the first
|
|
* one, you may not be able to open another stream until you
|
|
* close the second one as well.
|
|
*/
|
|
struct snd_pcm_runtime *first_runtime =
|
|
ssi_private->first_stream->runtime;
|
|
|
|
if (!first_runtime->rate || !first_runtime->sample_bits) {
|
|
dev_err(substream->pcm->card->dev,
|
|
"set sample rate and size in %s stream first\n",
|
|
substream->stream == SNDRV_PCM_STREAM_PLAYBACK
|
|
? "capture" : "playback");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
snd_pcm_hw_constraint_minmax(substream->runtime,
|
|
SNDRV_PCM_HW_PARAM_RATE,
|
|
first_runtime->rate, first_runtime->rate);
|
|
|
|
/* If we're in synchronous mode, then we need to constrain
|
|
* the sample size as well. We don't support independent sample
|
|
* rates in asynchronous mode.
|
|
*/
|
|
if (!ssi_private->asynchronous)
|
|
snd_pcm_hw_constraint_minmax(substream->runtime,
|
|
SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
|
|
first_runtime->sample_bits,
|
|
first_runtime->sample_bits);
|
|
|
|
ssi_private->second_stream = substream;
|
|
}
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
ssi_private->playback++;
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
|
|
ssi_private->capture++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_hw_params - program the sample size
|
|
*
|
|
* Most of the SSI registers have been programmed in the startup function,
|
|
* but the word length must be programmed here. Unfortunately, programming
|
|
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
|
|
* cause a problem with supporting simultaneous playback and capture. If
|
|
* the SSI is already playing a stream, then that stream may be temporarily
|
|
* stopped when you start capture.
|
|
*
|
|
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
|
|
* clock master.
|
|
*/
|
|
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
|
|
|
|
if (substream == ssi_private->first_stream) {
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
unsigned int sample_size =
|
|
snd_pcm_format_width(params_format(hw_params));
|
|
u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
|
|
|
|
/* The SSI should always be disabled at this points (SSIEN=0) */
|
|
|
|
/* In synchronous mode, the SSI uses STCCR for capture */
|
|
if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
|
|
!ssi_private->asynchronous)
|
|
clrsetbits_be32(&ssi->stccr,
|
|
CCSR_SSI_SxCCR_WL_MASK, wl);
|
|
else
|
|
clrsetbits_be32(&ssi->srccr,
|
|
CCSR_SSI_SxCCR_WL_MASK, wl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_trigger: start and stop the DMA transfer.
|
|
*
|
|
* This function is called by ALSA to start, stop, pause, and resume the DMA
|
|
* transfer of data.
|
|
*
|
|
* The DMA channel is in external master start and pause mode, which
|
|
* means the SSI completely controls the flow of data.
|
|
*/
|
|
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
|
|
setbits32(&ssi->scr,
|
|
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
|
|
} else {
|
|
long timeout = jiffies + 10;
|
|
|
|
setbits32(&ssi->scr,
|
|
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
|
|
|
|
/* Wait until the SSI has filled its FIFO. Without this
|
|
* delay, ALSA complains about overruns. When the FIFO
|
|
* is full, the DMA controller initiates its first
|
|
* transfer. Until then, however, the DMA's DAR
|
|
* register is zero, which translates to an
|
|
* out-of-bounds pointer. This makes ALSA think an
|
|
* overrun has occurred.
|
|
*/
|
|
while (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0) &&
|
|
(jiffies < timeout));
|
|
if (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0))
|
|
return -EIO;
|
|
}
|
|
break;
|
|
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
|
|
else
|
|
clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_shutdown: shutdown the SSI
|
|
*
|
|
* Shutdown the SSI if there are no other substreams open.
|
|
*/
|
|
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
ssi_private->playback--;
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
|
|
ssi_private->capture--;
|
|
|
|
if (ssi_private->first_stream == substream)
|
|
ssi_private->first_stream = ssi_private->second_stream;
|
|
|
|
ssi_private->second_stream = NULL;
|
|
|
|
/*
|
|
* If this is the last active substream, disable the SSI and release
|
|
* the IRQ.
|
|
*/
|
|
if (!ssi_private->playback && !ssi_private->capture) {
|
|
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
|
|
|
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
|
|
|
free_irq(ssi_private->irq, ssi_private);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_sysclk: set the clock frequency and direction
|
|
*
|
|
* This function is called by the machine driver to tell us what the clock
|
|
* frequency and direction are.
|
|
*
|
|
* Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
|
|
* and we don't care about the frequency. Return an error if the direction
|
|
* is not SND_SOC_CLOCK_IN.
|
|
*
|
|
* @clk_id: reserved, should be zero
|
|
* @freq: the frequency of the given clock ID, currently ignored
|
|
* @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
|
|
*/
|
|
static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
|
|
int clk_id, unsigned int freq, int dir)
|
|
{
|
|
|
|
return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_fmt: set the serial format.
|
|
*
|
|
* This function is called by the machine driver to tell us what serial
|
|
* format to use.
|
|
*
|
|
* Currently, we only support I2S mode. Return an error if the format is
|
|
* not SND_SOC_DAIFMT_I2S.
|
|
*
|
|
* @format: one of SND_SOC_DAIFMT_xxx
|
|
*/
|
|
static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
|
|
{
|
|
return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_dai_template: template CPU DAI for the SSI
|
|
*/
|
|
static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
|
|
.startup = fsl_ssi_startup,
|
|
.hw_params = fsl_ssi_hw_params,
|
|
.shutdown = fsl_ssi_shutdown,
|
|
.trigger = fsl_ssi_trigger,
|
|
.set_sysclk = fsl_ssi_set_sysclk,
|
|
.set_fmt = fsl_ssi_set_fmt,
|
|
};
|
|
|
|
static struct snd_soc_dai fsl_ssi_dai_template = {
|
|
.playback = {
|
|
/* The SSI does not support monaural audio. */
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.capture = {
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.ops = &fsl_ssi_dai_ops,
|
|
};
|
|
|
|
/**
|
|
* fsl_sysfs_ssi_show: display SSI statistics
|
|
*
|
|
* Display the statistics for the current SSI device.
|
|
*/
|
|
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fsl_ssi_private *ssi_private =
|
|
container_of(attr, struct fsl_ssi_private, dev_attr);
|
|
ssize_t length;
|
|
|
|
length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
|
|
length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
|
|
length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
|
|
length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
|
|
length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
|
|
length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
|
|
length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
|
|
length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
|
|
length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
|
|
length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
|
|
length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
|
|
length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
|
|
length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
|
|
length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
|
|
length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
|
|
length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
|
|
length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
|
|
length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
|
|
length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
|
|
length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
|
|
length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
|
|
|
|
return length;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_create_dai: create a snd_soc_dai structure
|
|
*
|
|
* This function is called by the machine driver to create a snd_soc_dai
|
|
* structure. The function creates an ssi_private object, which contains
|
|
* the snd_soc_dai. It also creates the sysfs statistics device.
|
|
*/
|
|
struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
|
|
{
|
|
struct snd_soc_dai *fsl_ssi_dai;
|
|
struct fsl_ssi_private *ssi_private;
|
|
int ret = 0;
|
|
struct device_attribute *dev_attr;
|
|
|
|
ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
|
|
if (!ssi_private) {
|
|
dev_err(ssi_info->dev, "could not allocate DAI object\n");
|
|
return NULL;
|
|
}
|
|
memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
|
|
sizeof(struct snd_soc_dai));
|
|
|
|
fsl_ssi_dai = &ssi_private->cpu_dai;
|
|
dev_attr = &ssi_private->dev_attr;
|
|
|
|
sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
|
|
ssi_private->ssi = ssi_info->ssi;
|
|
ssi_private->ssi_phys = ssi_info->ssi_phys;
|
|
ssi_private->irq = ssi_info->irq;
|
|
ssi_private->dev = ssi_info->dev;
|
|
ssi_private->asynchronous = ssi_info->asynchronous;
|
|
|
|
ssi_private->dev->driver_data = fsl_ssi_dai;
|
|
|
|
/* Initialize the the device_attribute structure */
|
|
dev_attr->attr.name = "ssi-stats";
|
|
dev_attr->attr.mode = S_IRUGO;
|
|
dev_attr->show = fsl_sysfs_ssi_show;
|
|
|
|
ret = device_create_file(ssi_private->dev, dev_attr);
|
|
if (ret) {
|
|
dev_err(ssi_info->dev, "could not create sysfs %s file\n",
|
|
ssi_private->dev_attr.attr.name);
|
|
kfree(fsl_ssi_dai);
|
|
return NULL;
|
|
}
|
|
|
|
fsl_ssi_dai->private_data = ssi_private;
|
|
fsl_ssi_dai->name = ssi_private->name;
|
|
fsl_ssi_dai->id = ssi_info->id;
|
|
fsl_ssi_dai->dev = ssi_info->dev;
|
|
|
|
ret = snd_soc_register_dai(fsl_ssi_dai);
|
|
if (ret != 0) {
|
|
dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret);
|
|
kfree(fsl_ssi_dai);
|
|
return NULL;
|
|
}
|
|
|
|
return fsl_ssi_dai;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
|
|
|
|
/**
|
|
* fsl_ssi_destroy_dai: destroy the snd_soc_dai object
|
|
*
|
|
* This function undoes the operations of fsl_ssi_create_dai()
|
|
*/
|
|
void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private =
|
|
container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
|
|
|
|
device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
|
|
|
|
snd_soc_unregister_dai(&ssi_private->cpu_dai);
|
|
|
|
kfree(ssi_private);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
|
|
|
|
static int __init fsl_ssi_init(void)
|
|
{
|
|
printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
|
|
|
|
return 0;
|
|
}
|
|
module_init(fsl_ssi_init);
|
|
|
|
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
|
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
|
|
MODULE_LICENSE("GPL");
|