aha/kernel/trace/ring_buffer.c
Steven Rostedt 168b6b1d05 ring-buffer: move code around to remove some branches
This is a bit of micro-optimizations. But since the ring buffer is used
in tracing every function call, it is an extreme hot path. Every nanosecond
counts.

This change shows over 5% improvement in the ring-buffer-benchmark.

[ Impact: more efficient code ]

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-05-11 23:33:06 -04:00

3109 lines
76 KiB
C

/*
* Generic ring buffer
*
* Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
*/
#include <linux/ring_buffer.h>
#include <linux/trace_clock.h>
#include <linux/ftrace_irq.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/mutex.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/fs.h>
#include "trace.h"
/*
* The ring buffer header is special. We must manually up keep it.
*/
int ring_buffer_print_entry_header(struct trace_seq *s)
{
int ret;
ret = trace_seq_printf(s, "# compressed entry header\n");
ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
ret = trace_seq_printf(s, "\tarray : 32 bits\n");
ret = trace_seq_printf(s, "\n");
ret = trace_seq_printf(s, "\tpadding : type == %d\n",
RINGBUF_TYPE_PADDING);
ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
RINGBUF_TYPE_TIME_EXTEND);
ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
return ret;
}
/*
* The ring buffer is made up of a list of pages. A separate list of pages is
* allocated for each CPU. A writer may only write to a buffer that is
* associated with the CPU it is currently executing on. A reader may read
* from any per cpu buffer.
*
* The reader is special. For each per cpu buffer, the reader has its own
* reader page. When a reader has read the entire reader page, this reader
* page is swapped with another page in the ring buffer.
*
* Now, as long as the writer is off the reader page, the reader can do what
* ever it wants with that page. The writer will never write to that page
* again (as long as it is out of the ring buffer).
*
* Here's some silly ASCII art.
*
* +------+
* |reader| RING BUFFER
* |page |
* +------+ +---+ +---+ +---+
* | |-->| |-->| |
* +---+ +---+ +---+
* ^ |
* | |
* +---------------+
*
*
* +------+
* |reader| RING BUFFER
* |page |------------------v
* +------+ +---+ +---+ +---+
* | |-->| |-->| |
* +---+ +---+ +---+
* ^ |
* | |
* +---------------+
*
*
* +------+
* |reader| RING BUFFER
* |page |------------------v
* +------+ +---+ +---+ +---+
* ^ | |-->| |-->| |
* | +---+ +---+ +---+
* | |
* | |
* +------------------------------+
*
*
* +------+
* |buffer| RING BUFFER
* |page |------------------v
* +------+ +---+ +---+ +---+
* ^ | | | |-->| |
* | New +---+ +---+ +---+
* | Reader------^ |
* | page |
* +------------------------------+
*
*
* After we make this swap, the reader can hand this page off to the splice
* code and be done with it. It can even allocate a new page if it needs to
* and swap that into the ring buffer.
*
* We will be using cmpxchg soon to make all this lockless.
*
*/
/*
* A fast way to enable or disable all ring buffers is to
* call tracing_on or tracing_off. Turning off the ring buffers
* prevents all ring buffers from being recorded to.
* Turning this switch on, makes it OK to write to the
* ring buffer, if the ring buffer is enabled itself.
*
* There's three layers that must be on in order to write
* to the ring buffer.
*
* 1) This global flag must be set.
* 2) The ring buffer must be enabled for recording.
* 3) The per cpu buffer must be enabled for recording.
*
* In case of an anomaly, this global flag has a bit set that
* will permantly disable all ring buffers.
*/
/*
* Global flag to disable all recording to ring buffers
* This has two bits: ON, DISABLED
*
* ON DISABLED
* ---- ----------
* 0 0 : ring buffers are off
* 1 0 : ring buffers are on
* X 1 : ring buffers are permanently disabled
*/
enum {
RB_BUFFERS_ON_BIT = 0,
RB_BUFFERS_DISABLED_BIT = 1,
};
enum {
RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
};
static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
/**
* tracing_on - enable all tracing buffers
*
* This function enables all tracing buffers that may have been
* disabled with tracing_off.
*/
void tracing_on(void)
{
set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
}
EXPORT_SYMBOL_GPL(tracing_on);
/**
* tracing_off - turn off all tracing buffers
*
* This function stops all tracing buffers from recording data.
* It does not disable any overhead the tracers themselves may
* be causing. This function simply causes all recording to
* the ring buffers to fail.
*/
void tracing_off(void)
{
clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
}
EXPORT_SYMBOL_GPL(tracing_off);
/**
* tracing_off_permanent - permanently disable ring buffers
*
* This function, once called, will disable all ring buffers
* permanently.
*/
void tracing_off_permanent(void)
{
set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
}
/**
* tracing_is_on - show state of ring buffers enabled
*/
int tracing_is_on(void)
{
return ring_buffer_flags == RB_BUFFERS_ON;
}
EXPORT_SYMBOL_GPL(tracing_is_on);
#include "trace.h"
#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
#define RB_ALIGNMENT 4U
#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
enum {
RB_LEN_TIME_EXTEND = 8,
RB_LEN_TIME_STAMP = 16,
};
static inline int rb_null_event(struct ring_buffer_event *event)
{
return event->type_len == RINGBUF_TYPE_PADDING
&& event->time_delta == 0;
}
static inline int rb_discarded_event(struct ring_buffer_event *event)
{
return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
}
static void rb_event_set_padding(struct ring_buffer_event *event)
{
event->type_len = RINGBUF_TYPE_PADDING;
event->time_delta = 0;
}
static unsigned
rb_event_data_length(struct ring_buffer_event *event)
{
unsigned length;
if (event->type_len)
length = event->type_len * RB_ALIGNMENT;
else
length = event->array[0];
return length + RB_EVNT_HDR_SIZE;
}
/* inline for ring buffer fast paths */
static unsigned
rb_event_length(struct ring_buffer_event *event)
{
switch (event->type_len) {
case RINGBUF_TYPE_PADDING:
if (rb_null_event(event))
/* undefined */
return -1;
return event->array[0] + RB_EVNT_HDR_SIZE;
case RINGBUF_TYPE_TIME_EXTEND:
return RB_LEN_TIME_EXTEND;
case RINGBUF_TYPE_TIME_STAMP:
return RB_LEN_TIME_STAMP;
case RINGBUF_TYPE_DATA:
return rb_event_data_length(event);
default:
BUG();
}
/* not hit */
return 0;
}
/**
* ring_buffer_event_length - return the length of the event
* @event: the event to get the length of
*/
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
{
unsigned length = rb_event_length(event);
if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
return length;
length -= RB_EVNT_HDR_SIZE;
if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
length -= sizeof(event->array[0]);
return length;
}
EXPORT_SYMBOL_GPL(ring_buffer_event_length);
/* inline for ring buffer fast paths */
static void *
rb_event_data(struct ring_buffer_event *event)
{
BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
/* If length is in len field, then array[0] has the data */
if (event->type_len)
return (void *)&event->array[0];
/* Otherwise length is in array[0] and array[1] has the data */
return (void *)&event->array[1];
}
/**
* ring_buffer_event_data - return the data of the event
* @event: the event to get the data from
*/
void *ring_buffer_event_data(struct ring_buffer_event *event)
{
return rb_event_data(event);
}
EXPORT_SYMBOL_GPL(ring_buffer_event_data);
#define for_each_buffer_cpu(buffer, cpu) \
for_each_cpu(cpu, buffer->cpumask)
#define TS_SHIFT 27
#define TS_MASK ((1ULL << TS_SHIFT) - 1)
#define TS_DELTA_TEST (~TS_MASK)
struct buffer_data_page {
u64 time_stamp; /* page time stamp */
local_t commit; /* write committed index */
unsigned char data[]; /* data of buffer page */
};
struct buffer_page {
struct list_head list; /* list of buffer pages */
local_t write; /* index for next write */
unsigned read; /* index for next read */
local_t entries; /* entries on this page */
struct buffer_data_page *page; /* Actual data page */
};
static void rb_init_page(struct buffer_data_page *bpage)
{
local_set(&bpage->commit, 0);
}
/**
* ring_buffer_page_len - the size of data on the page.
* @page: The page to read
*
* Returns the amount of data on the page, including buffer page header.
*/
size_t ring_buffer_page_len(void *page)
{
return local_read(&((struct buffer_data_page *)page)->commit)
+ BUF_PAGE_HDR_SIZE;
}
/*
* Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
* this issue out.
*/
static void free_buffer_page(struct buffer_page *bpage)
{
free_page((unsigned long)bpage->page);
kfree(bpage);
}
/*
* We need to fit the time_stamp delta into 27 bits.
*/
static inline int test_time_stamp(u64 delta)
{
if (delta & TS_DELTA_TEST)
return 1;
return 0;
}
#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
int ring_buffer_print_page_header(struct trace_seq *s)
{
struct buffer_data_page field;
int ret;
ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
"offset:0;\tsize:%u;\n",
(unsigned int)sizeof(field.time_stamp));
ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
"offset:%u;\tsize:%u;\n",
(unsigned int)offsetof(typeof(field), commit),
(unsigned int)sizeof(field.commit));
ret = trace_seq_printf(s, "\tfield: char data;\t"
"offset:%u;\tsize:%u;\n",
(unsigned int)offsetof(typeof(field), data),
(unsigned int)BUF_PAGE_SIZE);
return ret;
}
/*
* head_page == tail_page && head == tail then buffer is empty.
*/
struct ring_buffer_per_cpu {
int cpu;
struct ring_buffer *buffer;
spinlock_t reader_lock; /* serialize readers */
raw_spinlock_t lock;
struct lock_class_key lock_key;
struct list_head pages;
struct buffer_page *head_page; /* read from head */
struct buffer_page *tail_page; /* write to tail */
struct buffer_page *commit_page; /* committed pages */
struct buffer_page *reader_page;
unsigned long nmi_dropped;
unsigned long commit_overrun;
unsigned long overrun;
unsigned long read;
local_t entries;
u64 write_stamp;
u64 read_stamp;
atomic_t record_disabled;
};
struct ring_buffer {
unsigned pages;
unsigned flags;
int cpus;
atomic_t record_disabled;
cpumask_var_t cpumask;
struct mutex mutex;
struct ring_buffer_per_cpu **buffers;
#ifdef CONFIG_HOTPLUG_CPU
struct notifier_block cpu_notify;
#endif
u64 (*clock)(void);
};
struct ring_buffer_iter {
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long head;
struct buffer_page *head_page;
u64 read_stamp;
};
/* buffer may be either ring_buffer or ring_buffer_per_cpu */
#define RB_WARN_ON(buffer, cond) \
({ \
int _____ret = unlikely(cond); \
if (_____ret) { \
atomic_inc(&buffer->record_disabled); \
WARN_ON(1); \
} \
_____ret; \
})
/* Up this if you want to test the TIME_EXTENTS and normalization */
#define DEBUG_SHIFT 0
static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
{
/* shift to debug/test normalization and TIME_EXTENTS */
return buffer->clock() << DEBUG_SHIFT;
}
u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
{
u64 time;
preempt_disable_notrace();
time = rb_time_stamp(buffer, cpu);
preempt_enable_no_resched_notrace();
return time;
}
EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
int cpu, u64 *ts)
{
/* Just stupid testing the normalize function and deltas */
*ts >>= DEBUG_SHIFT;
}
EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
/**
* check_pages - integrity check of buffer pages
* @cpu_buffer: CPU buffer with pages to test
*
* As a safety measure we check to make sure the data pages have not
* been corrupted.
*/
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
struct list_head *head = &cpu_buffer->pages;
struct buffer_page *bpage, *tmp;
if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
return -1;
if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
return -1;
list_for_each_entry_safe(bpage, tmp, head, list) {
if (RB_WARN_ON(cpu_buffer,
bpage->list.next->prev != &bpage->list))
return -1;
if (RB_WARN_ON(cpu_buffer,
bpage->list.prev->next != &bpage->list))
return -1;
}
return 0;
}
static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
unsigned nr_pages)
{
struct list_head *head = &cpu_buffer->pages;
struct buffer_page *bpage, *tmp;
unsigned long addr;
LIST_HEAD(pages);
unsigned i;
for (i = 0; i < nr_pages; i++) {
bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
if (!bpage)
goto free_pages;
list_add(&bpage->list, &pages);
addr = __get_free_page(GFP_KERNEL);
if (!addr)
goto free_pages;
bpage->page = (void *)addr;
rb_init_page(bpage->page);
}
list_splice(&pages, head);
rb_check_pages(cpu_buffer);
return 0;
free_pages:
list_for_each_entry_safe(bpage, tmp, &pages, list) {
list_del_init(&bpage->list);
free_buffer_page(bpage);
}
return -ENOMEM;
}
static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct buffer_page *bpage;
unsigned long addr;
int ret;
cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
GFP_KERNEL, cpu_to_node(cpu));
if (!cpu_buffer)
return NULL;
cpu_buffer->cpu = cpu;
cpu_buffer->buffer = buffer;
spin_lock_init(&cpu_buffer->reader_lock);
cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
INIT_LIST_HEAD(&cpu_buffer->pages);
bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
GFP_KERNEL, cpu_to_node(cpu));
if (!bpage)
goto fail_free_buffer;
cpu_buffer->reader_page = bpage;
addr = __get_free_page(GFP_KERNEL);
if (!addr)
goto fail_free_reader;
bpage->page = (void *)addr;
rb_init_page(bpage->page);
INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
ret = rb_allocate_pages(cpu_buffer, buffer->pages);
if (ret < 0)
goto fail_free_reader;
cpu_buffer->head_page
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
return cpu_buffer;
fail_free_reader:
free_buffer_page(cpu_buffer->reader_page);
fail_free_buffer:
kfree(cpu_buffer);
return NULL;
}
static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
{
struct list_head *head = &cpu_buffer->pages;
struct buffer_page *bpage, *tmp;
free_buffer_page(cpu_buffer->reader_page);
list_for_each_entry_safe(bpage, tmp, head, list) {
list_del_init(&bpage->list);
free_buffer_page(bpage);
}
kfree(cpu_buffer);
}
/*
* Causes compile errors if the struct buffer_page gets bigger
* than the struct page.
*/
extern int ring_buffer_page_too_big(void);
#ifdef CONFIG_HOTPLUG_CPU
static int rb_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu);
#endif
/**
* ring_buffer_alloc - allocate a new ring_buffer
* @size: the size in bytes per cpu that is needed.
* @flags: attributes to set for the ring buffer.
*
* Currently the only flag that is available is the RB_FL_OVERWRITE
* flag. This flag means that the buffer will overwrite old data
* when the buffer wraps. If this flag is not set, the buffer will
* drop data when the tail hits the head.
*/
struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
{
struct ring_buffer *buffer;
int bsize;
int cpu;
/* Paranoid! Optimizes out when all is well */
if (sizeof(struct buffer_page) > sizeof(struct page))
ring_buffer_page_too_big();
/* keep it in its own cache line */
buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
GFP_KERNEL);
if (!buffer)
return NULL;
if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
goto fail_free_buffer;
buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
buffer->flags = flags;
buffer->clock = trace_clock_local;
/* need at least two pages */
if (buffer->pages == 1)
buffer->pages++;
/*
* In case of non-hotplug cpu, if the ring-buffer is allocated
* in early initcall, it will not be notified of secondary cpus.
* In that off case, we need to allocate for all possible cpus.
*/
#ifdef CONFIG_HOTPLUG_CPU
get_online_cpus();
cpumask_copy(buffer->cpumask, cpu_online_mask);
#else
cpumask_copy(buffer->cpumask, cpu_possible_mask);
#endif
buffer->cpus = nr_cpu_ids;
bsize = sizeof(void *) * nr_cpu_ids;
buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
GFP_KERNEL);
if (!buffer->buffers)
goto fail_free_cpumask;
for_each_buffer_cpu(buffer, cpu) {
buffer->buffers[cpu] =
rb_allocate_cpu_buffer(buffer, cpu);
if (!buffer->buffers[cpu])
goto fail_free_buffers;
}
#ifdef CONFIG_HOTPLUG_CPU
buffer->cpu_notify.notifier_call = rb_cpu_notify;
buffer->cpu_notify.priority = 0;
register_cpu_notifier(&buffer->cpu_notify);
#endif
put_online_cpus();
mutex_init(&buffer->mutex);
return buffer;
fail_free_buffers:
for_each_buffer_cpu(buffer, cpu) {
if (buffer->buffers[cpu])
rb_free_cpu_buffer(buffer->buffers[cpu]);
}
kfree(buffer->buffers);
fail_free_cpumask:
free_cpumask_var(buffer->cpumask);
put_online_cpus();
fail_free_buffer:
kfree(buffer);
return NULL;
}
EXPORT_SYMBOL_GPL(ring_buffer_alloc);
/**
* ring_buffer_free - free a ring buffer.
* @buffer: the buffer to free.
*/
void
ring_buffer_free(struct ring_buffer *buffer)
{
int cpu;
get_online_cpus();
#ifdef CONFIG_HOTPLUG_CPU
unregister_cpu_notifier(&buffer->cpu_notify);
#endif
for_each_buffer_cpu(buffer, cpu)
rb_free_cpu_buffer(buffer->buffers[cpu]);
put_online_cpus();
free_cpumask_var(buffer->cpumask);
kfree(buffer);
}
EXPORT_SYMBOL_GPL(ring_buffer_free);
void ring_buffer_set_clock(struct ring_buffer *buffer,
u64 (*clock)(void))
{
buffer->clock = clock;
}
static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
static void
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
{
struct buffer_page *bpage;
struct list_head *p;
unsigned i;
atomic_inc(&cpu_buffer->record_disabled);
synchronize_sched();
for (i = 0; i < nr_pages; i++) {
if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
return;
p = cpu_buffer->pages.next;
bpage = list_entry(p, struct buffer_page, list);
list_del_init(&bpage->list);
free_buffer_page(bpage);
}
if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
return;
rb_reset_cpu(cpu_buffer);
rb_check_pages(cpu_buffer);
atomic_dec(&cpu_buffer->record_disabled);
}
static void
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
struct list_head *pages, unsigned nr_pages)
{
struct buffer_page *bpage;
struct list_head *p;
unsigned i;
atomic_inc(&cpu_buffer->record_disabled);
synchronize_sched();
for (i = 0; i < nr_pages; i++) {
if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
return;
p = pages->next;
bpage = list_entry(p, struct buffer_page, list);
list_del_init(&bpage->list);
list_add_tail(&bpage->list, &cpu_buffer->pages);
}
rb_reset_cpu(cpu_buffer);
rb_check_pages(cpu_buffer);
atomic_dec(&cpu_buffer->record_disabled);
}
/**
* ring_buffer_resize - resize the ring buffer
* @buffer: the buffer to resize.
* @size: the new size.
*
* The tracer is responsible for making sure that the buffer is
* not being used while changing the size.
* Note: We may be able to change the above requirement by using
* RCU synchronizations.
*
* Minimum size is 2 * BUF_PAGE_SIZE.
*
* Returns -1 on failure.
*/
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned nr_pages, rm_pages, new_pages;
struct buffer_page *bpage, *tmp;
unsigned long buffer_size;
unsigned long addr;
LIST_HEAD(pages);
int i, cpu;
/*
* Always succeed at resizing a non-existent buffer:
*/
if (!buffer)
return size;
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
size *= BUF_PAGE_SIZE;
buffer_size = buffer->pages * BUF_PAGE_SIZE;
/* we need a minimum of two pages */
if (size < BUF_PAGE_SIZE * 2)
size = BUF_PAGE_SIZE * 2;
if (size == buffer_size)
return size;
mutex_lock(&buffer->mutex);
get_online_cpus();
nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
if (size < buffer_size) {
/* easy case, just free pages */
if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
goto out_fail;
rm_pages = buffer->pages - nr_pages;
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
rb_remove_pages(cpu_buffer, rm_pages);
}
goto out;
}
/*
* This is a bit more difficult. We only want to add pages
* when we can allocate enough for all CPUs. We do this
* by allocating all the pages and storing them on a local
* link list. If we succeed in our allocation, then we
* add these pages to the cpu_buffers. Otherwise we just free
* them all and return -ENOMEM;
*/
if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
goto out_fail;
new_pages = nr_pages - buffer->pages;
for_each_buffer_cpu(buffer, cpu) {
for (i = 0; i < new_pages; i++) {
bpage = kzalloc_node(ALIGN(sizeof(*bpage),
cache_line_size()),
GFP_KERNEL, cpu_to_node(cpu));
if (!bpage)
goto free_pages;
list_add(&bpage->list, &pages);
addr = __get_free_page(GFP_KERNEL);
if (!addr)
goto free_pages;
bpage->page = (void *)addr;
rb_init_page(bpage->page);
}
}
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
rb_insert_pages(cpu_buffer, &pages, new_pages);
}
if (RB_WARN_ON(buffer, !list_empty(&pages)))
goto out_fail;
out:
buffer->pages = nr_pages;
put_online_cpus();
mutex_unlock(&buffer->mutex);
return size;
free_pages:
list_for_each_entry_safe(bpage, tmp, &pages, list) {
list_del_init(&bpage->list);
free_buffer_page(bpage);
}
put_online_cpus();
mutex_unlock(&buffer->mutex);
return -ENOMEM;
/*
* Something went totally wrong, and we are too paranoid
* to even clean up the mess.
*/
out_fail:
put_online_cpus();
mutex_unlock(&buffer->mutex);
return -1;
}
EXPORT_SYMBOL_GPL(ring_buffer_resize);
static inline void *
__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
{
return bpage->data + index;
}
static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
{
return bpage->page->data + index;
}
static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
{
return __rb_page_index(cpu_buffer->reader_page,
cpu_buffer->reader_page->read);
}
static inline struct ring_buffer_event *
rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
{
return __rb_page_index(cpu_buffer->head_page,
cpu_buffer->head_page->read);
}
static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter *iter)
{
return __rb_page_index(iter->head_page, iter->head);
}
static inline unsigned rb_page_write(struct buffer_page *bpage)
{
return local_read(&bpage->write);
}
static inline unsigned rb_page_commit(struct buffer_page *bpage)
{
return local_read(&bpage->page->commit);
}
/* Size is determined by what has been commited */
static inline unsigned rb_page_size(struct buffer_page *bpage)
{
return rb_page_commit(bpage);
}
static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
{
return rb_page_commit(cpu_buffer->commit_page);
}
static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
{
return rb_page_commit(cpu_buffer->head_page);
}
static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
struct buffer_page **bpage)
{
struct list_head *p = (*bpage)->list.next;
if (p == &cpu_buffer->pages)
p = p->next;
*bpage = list_entry(p, struct buffer_page, list);
}
static inline unsigned
rb_event_index(struct ring_buffer_event *event)
{
unsigned long addr = (unsigned long)event;
return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
}
static inline int
rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
unsigned long addr = (unsigned long)event;
unsigned long index;
index = rb_event_index(event);
addr &= PAGE_MASK;
return cpu_buffer->commit_page->page == (void *)addr &&
rb_commit_index(cpu_buffer) == index;
}
static void
rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
unsigned long addr = (unsigned long)event;
unsigned long index;
index = rb_event_index(event);
addr &= PAGE_MASK;
while (cpu_buffer->commit_page->page != (void *)addr) {
if (RB_WARN_ON(cpu_buffer,
cpu_buffer->commit_page == cpu_buffer->tail_page))
return;
cpu_buffer->commit_page->page->commit =
cpu_buffer->commit_page->write;
rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
cpu_buffer->write_stamp =
cpu_buffer->commit_page->page->time_stamp;
}
/* Now set the commit to the event's index */
local_set(&cpu_buffer->commit_page->page->commit, index);
}
static void
rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
{
/*
* We only race with interrupts and NMIs on this CPU.
* If we own the commit event, then we can commit
* all others that interrupted us, since the interruptions
* are in stack format (they finish before they come
* back to us). This allows us to do a simple loop to
* assign the commit to the tail.
*/
again:
while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
cpu_buffer->commit_page->page->commit =
cpu_buffer->commit_page->write;
rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
cpu_buffer->write_stamp =
cpu_buffer->commit_page->page->time_stamp;
/* add barrier to keep gcc from optimizing too much */
barrier();
}
while (rb_commit_index(cpu_buffer) !=
rb_page_write(cpu_buffer->commit_page)) {
cpu_buffer->commit_page->page->commit =
cpu_buffer->commit_page->write;
barrier();
}
/* again, keep gcc from optimizing */
barrier();
/*
* If an interrupt came in just after the first while loop
* and pushed the tail page forward, we will be left with
* a dangling commit that will never go forward.
*/
if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
goto again;
}
static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
{
cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
cpu_buffer->reader_page->read = 0;
}
static void rb_inc_iter(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
/*
* The iterator could be on the reader page (it starts there).
* But the head could have moved, since the reader was
* found. Check for this case and assign the iterator
* to the head page instead of next.
*/
if (iter->head_page == cpu_buffer->reader_page)
iter->head_page = cpu_buffer->head_page;
else
rb_inc_page(cpu_buffer, &iter->head_page);
iter->read_stamp = iter->head_page->page->time_stamp;
iter->head = 0;
}
/**
* ring_buffer_update_event - update event type and data
* @event: the even to update
* @type: the type of event
* @length: the size of the event field in the ring buffer
*
* Update the type and data fields of the event. The length
* is the actual size that is written to the ring buffer,
* and with this, we can determine what to place into the
* data field.
*/
static void
rb_update_event(struct ring_buffer_event *event,
unsigned type, unsigned length)
{
event->type_len = type;
switch (type) {
case RINGBUF_TYPE_PADDING:
case RINGBUF_TYPE_TIME_EXTEND:
case RINGBUF_TYPE_TIME_STAMP:
break;
case 0:
length -= RB_EVNT_HDR_SIZE;
if (length > RB_MAX_SMALL_DATA)
event->array[0] = length;
else
event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
break;
default:
BUG();
}
}
static unsigned rb_calculate_event_length(unsigned length)
{
struct ring_buffer_event event; /* Used only for sizeof array */
/* zero length can cause confusions */
if (!length)
length = 1;
if (length > RB_MAX_SMALL_DATA)
length += sizeof(event.array[0]);
length += RB_EVNT_HDR_SIZE;
length = ALIGN(length, RB_ALIGNMENT);
return length;
}
static struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
unsigned long length, unsigned long tail,
struct buffer_page *commit_page,
struct buffer_page *tail_page, u64 *ts)
{
struct buffer_page *next_page, *head_page, *reader_page;
struct ring_buffer *buffer = cpu_buffer->buffer;
struct ring_buffer_event *event;
bool lock_taken = false;
unsigned long flags;
next_page = tail_page;
local_irq_save(flags);
/*
* Since the write to the buffer is still not
* fully lockless, we must be careful with NMIs.
* The locks in the writers are taken when a write
* crosses to a new page. The locks protect against
* races with the readers (this will soon be fixed
* with a lockless solution).
*
* Because we can not protect against NMIs, and we
* want to keep traces reentrant, we need to manage
* what happens when we are in an NMI.
*
* NMIs can happen after we take the lock.
* If we are in an NMI, only take the lock
* if it is not already taken. Otherwise
* simply fail.
*/
if (unlikely(in_nmi())) {
if (!__raw_spin_trylock(&cpu_buffer->lock)) {
cpu_buffer->nmi_dropped++;
goto out_reset;
}
} else
__raw_spin_lock(&cpu_buffer->lock);
lock_taken = true;
rb_inc_page(cpu_buffer, &next_page);
head_page = cpu_buffer->head_page;
reader_page = cpu_buffer->reader_page;
/* we grabbed the lock before incrementing */
if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
goto out_reset;
/*
* If for some reason, we had an interrupt storm that made
* it all the way around the buffer, bail, and warn
* about it.
*/
if (unlikely(next_page == commit_page)) {
cpu_buffer->commit_overrun++;
goto out_reset;
}
if (next_page == head_page) {
if (!(buffer->flags & RB_FL_OVERWRITE))
goto out_reset;
/* tail_page has not moved yet? */
if (tail_page == cpu_buffer->tail_page) {
/* count overflows */
cpu_buffer->overrun +=
local_read(&head_page->entries);
rb_inc_page(cpu_buffer, &head_page);
cpu_buffer->head_page = head_page;
cpu_buffer->head_page->read = 0;
}
}
/*
* If the tail page is still the same as what we think
* it is, then it is up to us to update the tail
* pointer.
*/
if (tail_page == cpu_buffer->tail_page) {
local_set(&next_page->write, 0);
local_set(&next_page->entries, 0);
local_set(&next_page->page->commit, 0);
cpu_buffer->tail_page = next_page;
/* reread the time stamp */
*ts = rb_time_stamp(buffer, cpu_buffer->cpu);
cpu_buffer->tail_page->page->time_stamp = *ts;
}
/*
* The actual tail page has moved forward.
*/
if (tail < BUF_PAGE_SIZE) {
/* Mark the rest of the page with padding */
event = __rb_page_index(tail_page, tail);
rb_event_set_padding(event);
}
/* Set the write back to the previous setting */
local_sub(length, &tail_page->write);
/*
* If this was a commit entry that failed,
* increment that too
*/
if (tail_page == cpu_buffer->commit_page &&
tail == rb_commit_index(cpu_buffer)) {
rb_set_commit_to_write(cpu_buffer);
}
__raw_spin_unlock(&cpu_buffer->lock);
local_irq_restore(flags);
/* fail and let the caller try again */
return ERR_PTR(-EAGAIN);
out_reset:
/* reset write */
local_sub(length, &tail_page->write);
if (likely(lock_taken))
__raw_spin_unlock(&cpu_buffer->lock);
local_irq_restore(flags);
return NULL;
}
static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
unsigned type, unsigned long length, u64 *ts)
{
struct buffer_page *tail_page, *commit_page;
struct ring_buffer_event *event;
unsigned long tail, write;
commit_page = cpu_buffer->commit_page;
/* we just need to protect against interrupts */
barrier();
tail_page = cpu_buffer->tail_page;
write = local_add_return(length, &tail_page->write);
tail = write - length;
/* See if we shot pass the end of this buffer page */
if (write > BUF_PAGE_SIZE)
return rb_move_tail(cpu_buffer, length, tail,
commit_page, tail_page, ts);
/* We reserved something on the buffer */
if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
return NULL;
event = __rb_page_index(tail_page, tail);
rb_update_event(event, type, length);
/* The passed in type is zero for DATA */
if (likely(!type))
local_inc(&tail_page->entries);
/*
* If this is a commit and the tail is zero, then update
* this page's time stamp.
*/
if (!tail && rb_is_commit(cpu_buffer, event))
cpu_buffer->commit_page->page->time_stamp = *ts;
return event;
}
static int
rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
u64 *ts, u64 *delta)
{
struct ring_buffer_event *event;
static int once;
int ret;
if (unlikely(*delta > (1ULL << 59) && !once++)) {
printk(KERN_WARNING "Delta way too big! %llu"
" ts=%llu write stamp = %llu\n",
(unsigned long long)*delta,
(unsigned long long)*ts,
(unsigned long long)cpu_buffer->write_stamp);
WARN_ON(1);
}
/*
* The delta is too big, we to add a
* new timestamp.
*/
event = __rb_reserve_next(cpu_buffer,
RINGBUF_TYPE_TIME_EXTEND,
RB_LEN_TIME_EXTEND,
ts);
if (!event)
return -EBUSY;
if (PTR_ERR(event) == -EAGAIN)
return -EAGAIN;
/* Only a commited time event can update the write stamp */
if (rb_is_commit(cpu_buffer, event)) {
/*
* If this is the first on the page, then we need to
* update the page itself, and just put in a zero.
*/
if (rb_event_index(event)) {
event->time_delta = *delta & TS_MASK;
event->array[0] = *delta >> TS_SHIFT;
} else {
cpu_buffer->commit_page->page->time_stamp = *ts;
event->time_delta = 0;
event->array[0] = 0;
}
cpu_buffer->write_stamp = *ts;
/* let the caller know this was the commit */
ret = 1;
} else {
/* Darn, this is just wasted space */
event->time_delta = 0;
event->array[0] = 0;
ret = 0;
}
*delta = 0;
return ret;
}
static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
unsigned long length)
{
struct ring_buffer_event *event;
u64 ts, delta = 0;
int commit = 0;
int nr_loops = 0;
length = rb_calculate_event_length(length);
again:
/*
* We allow for interrupts to reenter here and do a trace.
* If one does, it will cause this original code to loop
* back here. Even with heavy interrupts happening, this
* should only happen a few times in a row. If this happens
* 1000 times in a row, there must be either an interrupt
* storm or we have something buggy.
* Bail!
*/
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
return NULL;
ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
/*
* Only the first commit can update the timestamp.
* Yes there is a race here. If an interrupt comes in
* just after the conditional and it traces too, then it
* will also check the deltas. More than one timestamp may
* also be made. But only the entry that did the actual
* commit will be something other than zero.
*/
if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
rb_page_write(cpu_buffer->tail_page) ==
rb_commit_index(cpu_buffer))) {
u64 diff;
diff = ts - cpu_buffer->write_stamp;
/* make sure this diff is calculated here */
barrier();
/* Did the write stamp get updated already? */
if (unlikely(ts < cpu_buffer->write_stamp))
goto get_event;
delta = diff;
if (unlikely(test_time_stamp(delta))) {
commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
if (commit == -EBUSY)
return NULL;
if (commit == -EAGAIN)
goto again;
RB_WARN_ON(cpu_buffer, commit < 0);
}
}
get_event:
event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
if (unlikely(PTR_ERR(event) == -EAGAIN))
goto again;
if (!event) {
if (unlikely(commit))
/*
* Ouch! We needed a timestamp and it was commited. But
* we didn't get our event reserved.
*/
rb_set_commit_to_write(cpu_buffer);
return NULL;
}
/*
* If the timestamp was commited, make the commit our entry
* now so that we will update it when needed.
*/
if (unlikely(commit))
rb_set_commit_event(cpu_buffer, event);
else if (!rb_is_commit(cpu_buffer, event))
delta = 0;
event->time_delta = delta;
return event;
}
#define TRACE_RECURSIVE_DEPTH 16
static int trace_recursive_lock(void)
{
current->trace_recursion++;
if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
return 0;
/* Disable all tracing before we do anything else */
tracing_off_permanent();
printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
"HC[%lu]:SC[%lu]:NMI[%lu]\n",
current->trace_recursion,
hardirq_count() >> HARDIRQ_SHIFT,
softirq_count() >> SOFTIRQ_SHIFT,
in_nmi());
WARN_ON_ONCE(1);
return -1;
}
static void trace_recursive_unlock(void)
{
WARN_ON_ONCE(!current->trace_recursion);
current->trace_recursion--;
}
static DEFINE_PER_CPU(int, rb_need_resched);
/**
* ring_buffer_lock_reserve - reserve a part of the buffer
* @buffer: the ring buffer to reserve from
* @length: the length of the data to reserve (excluding event header)
*
* Returns a reseverd event on the ring buffer to copy directly to.
* The user of this interface will need to get the body to write into
* and can use the ring_buffer_event_data() interface.
*
* The length is the length of the data needed, not the event length
* which also includes the event header.
*
* Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
* If NULL is returned, then nothing has been allocated or locked.
*/
struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
int cpu, resched;
if (ring_buffer_flags != RB_BUFFERS_ON)
return NULL;
if (atomic_read(&buffer->record_disabled))
return NULL;
/* If we are tracing schedule, we don't want to recurse */
resched = ftrace_preempt_disable();
if (trace_recursive_lock())
goto out_nocheck;
cpu = raw_smp_processor_id();
if (!cpumask_test_cpu(cpu, buffer->cpumask))
goto out;
cpu_buffer = buffer->buffers[cpu];
if (atomic_read(&cpu_buffer->record_disabled))
goto out;
if (length > BUF_MAX_DATA_SIZE)
goto out;
event = rb_reserve_next_event(cpu_buffer, length);
if (!event)
goto out;
/*
* Need to store resched state on this cpu.
* Only the first needs to.
*/
if (preempt_count() == 1)
per_cpu(rb_need_resched, cpu) = resched;
return event;
out:
trace_recursive_unlock();
out_nocheck:
ftrace_preempt_enable(resched);
return NULL;
}
EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
local_inc(&cpu_buffer->entries);
/* Only process further if we own the commit */
if (!rb_is_commit(cpu_buffer, event))
return;
cpu_buffer->write_stamp += event->time_delta;
rb_set_commit_to_write(cpu_buffer);
}
/**
* ring_buffer_unlock_commit - commit a reserved
* @buffer: The buffer to commit to
* @event: The event pointer to commit.
*
* This commits the data to the ring buffer, and releases any locks held.
*
* Must be paired with ring_buffer_lock_reserve.
*/
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
struct ring_buffer_event *event)
{
struct ring_buffer_per_cpu *cpu_buffer;
int cpu = raw_smp_processor_id();
cpu_buffer = buffer->buffers[cpu];
rb_commit(cpu_buffer, event);
trace_recursive_unlock();
/*
* Only the last preempt count needs to restore preemption.
*/
if (preempt_count() == 1)
ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
else
preempt_enable_no_resched_notrace();
return 0;
}
EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
static inline void rb_event_discard(struct ring_buffer_event *event)
{
/* array[0] holds the actual length for the discarded event */
event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
event->type_len = RINGBUF_TYPE_PADDING;
/* time delta must be non zero */
if (!event->time_delta)
event->time_delta = 1;
}
/**
* ring_buffer_event_discard - discard any event in the ring buffer
* @event: the event to discard
*
* Sometimes a event that is in the ring buffer needs to be ignored.
* This function lets the user discard an event in the ring buffer
* and then that event will not be read later.
*
* Note, it is up to the user to be careful with this, and protect
* against races. If the user discards an event that has been consumed
* it is possible that it could corrupt the ring buffer.
*/
void ring_buffer_event_discard(struct ring_buffer_event *event)
{
rb_event_discard(event);
}
EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
/**
* ring_buffer_commit_discard - discard an event that has not been committed
* @buffer: the ring buffer
* @event: non committed event to discard
*
* This is similar to ring_buffer_event_discard but must only be
* performed on an event that has not been committed yet. The difference
* is that this will also try to free the event from the ring buffer
* if another event has not been added behind it.
*
* If another event has been added behind it, it will set the event
* up as discarded, and perform the commit.
*
* If this function is called, do not call ring_buffer_unlock_commit on
* the event.
*/
void ring_buffer_discard_commit(struct ring_buffer *buffer,
struct ring_buffer_event *event)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long new_index, old_index;
struct buffer_page *bpage;
unsigned long index;
unsigned long addr;
int cpu;
/* The event is discarded regardless */
rb_event_discard(event);
/*
* This must only be called if the event has not been
* committed yet. Thus we can assume that preemption
* is still disabled.
*/
RB_WARN_ON(buffer, preemptible());
cpu = smp_processor_id();
cpu_buffer = buffer->buffers[cpu];
new_index = rb_event_index(event);
old_index = new_index + rb_event_length(event);
addr = (unsigned long)event;
addr &= PAGE_MASK;
bpage = cpu_buffer->tail_page;
if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
/*
* This is on the tail page. It is possible that
* a write could come in and move the tail page
* and write to the next page. That is fine
* because we just shorten what is on this page.
*/
index = local_cmpxchg(&bpage->write, old_index, new_index);
if (index == old_index)
goto out;
}
/*
* The commit is still visible by the reader, so we
* must increment entries.
*/
local_inc(&cpu_buffer->entries);
out:
/*
* If a write came in and pushed the tail page
* we still need to update the commit pointer
* if we were the commit.
*/
if (rb_is_commit(cpu_buffer, event))
rb_set_commit_to_write(cpu_buffer);
trace_recursive_unlock();
/*
* Only the last preempt count needs to restore preemption.
*/
if (preempt_count() == 1)
ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
else
preempt_enable_no_resched_notrace();
}
EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
/**
* ring_buffer_write - write data to the buffer without reserving
* @buffer: The ring buffer to write to.
* @length: The length of the data being written (excluding the event header)
* @data: The data to write to the buffer.
*
* This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
* one function. If you already have the data to write to the buffer, it
* may be easier to simply call this function.
*
* Note, like ring_buffer_lock_reserve, the length is the length of the data
* and not the length of the event which would hold the header.
*/
int ring_buffer_write(struct ring_buffer *buffer,
unsigned long length,
void *data)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
void *body;
int ret = -EBUSY;
int cpu, resched;
if (ring_buffer_flags != RB_BUFFERS_ON)
return -EBUSY;
if (atomic_read(&buffer->record_disabled))
return -EBUSY;
resched = ftrace_preempt_disable();
cpu = raw_smp_processor_id();
if (!cpumask_test_cpu(cpu, buffer->cpumask))
goto out;
cpu_buffer = buffer->buffers[cpu];
if (atomic_read(&cpu_buffer->record_disabled))
goto out;
if (length > BUF_MAX_DATA_SIZE)
goto out;
event = rb_reserve_next_event(cpu_buffer, length);
if (!event)
goto out;
body = rb_event_data(event);
memcpy(body, data, length);
rb_commit(cpu_buffer, event);
ret = 0;
out:
ftrace_preempt_enable(resched);
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_write);
static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
{
struct buffer_page *reader = cpu_buffer->reader_page;
struct buffer_page *head = cpu_buffer->head_page;
struct buffer_page *commit = cpu_buffer->commit_page;
return reader->read == rb_page_commit(reader) &&
(commit == reader ||
(commit == head &&
head->read == rb_page_commit(commit)));
}
/**
* ring_buffer_record_disable - stop all writes into the buffer
* @buffer: The ring buffer to stop writes to.
*
* This prevents all writes to the buffer. Any attempt to write
* to the buffer after this will fail and return NULL.
*
* The caller should call synchronize_sched() after this.
*/
void ring_buffer_record_disable(struct ring_buffer *buffer)
{
atomic_inc(&buffer->record_disabled);
}
EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
/**
* ring_buffer_record_enable - enable writes to the buffer
* @buffer: The ring buffer to enable writes
*
* Note, multiple disables will need the same number of enables
* to truely enable the writing (much like preempt_disable).
*/
void ring_buffer_record_enable(struct ring_buffer *buffer)
{
atomic_dec(&buffer->record_disabled);
}
EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
/**
* ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
* @buffer: The ring buffer to stop writes to.
* @cpu: The CPU buffer to stop
*
* This prevents all writes to the buffer. Any attempt to write
* to the buffer after this will fail and return NULL.
*
* The caller should call synchronize_sched() after this.
*/
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return;
cpu_buffer = buffer->buffers[cpu];
atomic_inc(&cpu_buffer->record_disabled);
}
EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
/**
* ring_buffer_record_enable_cpu - enable writes to the buffer
* @buffer: The ring buffer to enable writes
* @cpu: The CPU to enable.
*
* Note, multiple disables will need the same number of enables
* to truely enable the writing (much like preempt_disable).
*/
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return;
cpu_buffer = buffer->buffers[cpu];
atomic_dec(&cpu_buffer->record_disabled);
}
EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
/**
* ring_buffer_entries_cpu - get the number of entries in a cpu buffer
* @buffer: The ring buffer
* @cpu: The per CPU buffer to get the entries from.
*/
unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long ret;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return 0;
cpu_buffer = buffer->buffers[cpu];
ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
- cpu_buffer->read;
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
/**
* ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
* @buffer: The ring buffer
* @cpu: The per CPU buffer to get the number of overruns from
*/
unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long ret;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return 0;
cpu_buffer = buffer->buffers[cpu];
ret = cpu_buffer->overrun;
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
/**
* ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
* @buffer: The ring buffer
* @cpu: The per CPU buffer to get the number of overruns from
*/
unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long ret;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return 0;
cpu_buffer = buffer->buffers[cpu];
ret = cpu_buffer->nmi_dropped;
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
/**
* ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
* @buffer: The ring buffer
* @cpu: The per CPU buffer to get the number of overruns from
*/
unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long ret;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return 0;
cpu_buffer = buffer->buffers[cpu];
ret = cpu_buffer->commit_overrun;
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
/**
* ring_buffer_entries - get the number of entries in a buffer
* @buffer: The ring buffer
*
* Returns the total number of entries in the ring buffer
* (all CPU entries)
*/
unsigned long ring_buffer_entries(struct ring_buffer *buffer)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long entries = 0;
int cpu;
/* if you care about this being correct, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
entries += (local_read(&cpu_buffer->entries) -
cpu_buffer->overrun) - cpu_buffer->read;
}
return entries;
}
EXPORT_SYMBOL_GPL(ring_buffer_entries);
/**
* ring_buffer_overrun_cpu - get the number of overruns in buffer
* @buffer: The ring buffer
*
* Returns the total number of overruns in the ring buffer
* (all CPU entries)
*/
unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long overruns = 0;
int cpu;
/* if you care about this being correct, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
overruns += cpu_buffer->overrun;
}
return overruns;
}
EXPORT_SYMBOL_GPL(ring_buffer_overruns);
static void rb_iter_reset(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
/* Iterator usage is expected to have record disabled */
if (list_empty(&cpu_buffer->reader_page->list)) {
iter->head_page = cpu_buffer->head_page;
iter->head = cpu_buffer->head_page->read;
} else {
iter->head_page = cpu_buffer->reader_page;
iter->head = cpu_buffer->reader_page->read;
}
if (iter->head)
iter->read_stamp = cpu_buffer->read_stamp;
else
iter->read_stamp = iter->head_page->page->time_stamp;
}
/**
* ring_buffer_iter_reset - reset an iterator
* @iter: The iterator to reset
*
* Resets the iterator, so that it will start from the beginning
* again.
*/
void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long flags;
if (!iter)
return;
cpu_buffer = iter->cpu_buffer;
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
rb_iter_reset(iter);
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
}
EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
/**
* ring_buffer_iter_empty - check if an iterator has no more to read
* @iter: The iterator to check
*/
int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer;
cpu_buffer = iter->cpu_buffer;
return iter->head_page == cpu_buffer->commit_page &&
iter->head == rb_commit_index(cpu_buffer);
}
EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
static void
rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
u64 delta;
switch (event->type_len) {
case RINGBUF_TYPE_PADDING:
return;
case RINGBUF_TYPE_TIME_EXTEND:
delta = event->array[0];
delta <<= TS_SHIFT;
delta += event->time_delta;
cpu_buffer->read_stamp += delta;
return;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
return;
case RINGBUF_TYPE_DATA:
cpu_buffer->read_stamp += event->time_delta;
return;
default:
BUG();
}
return;
}
static void
rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
struct ring_buffer_event *event)
{
u64 delta;
switch (event->type_len) {
case RINGBUF_TYPE_PADDING:
return;
case RINGBUF_TYPE_TIME_EXTEND:
delta = event->array[0];
delta <<= TS_SHIFT;
delta += event->time_delta;
iter->read_stamp += delta;
return;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
return;
case RINGBUF_TYPE_DATA:
iter->read_stamp += event->time_delta;
return;
default:
BUG();
}
return;
}
static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
{
struct buffer_page *reader = NULL;
unsigned long flags;
int nr_loops = 0;
local_irq_save(flags);
__raw_spin_lock(&cpu_buffer->lock);
again:
/*
* This should normally only loop twice. But because the
* start of the reader inserts an empty page, it causes
* a case where we will loop three times. There should be no
* reason to loop four times (that I know of).
*/
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
reader = NULL;
goto out;
}
reader = cpu_buffer->reader_page;
/* If there's more to read, return this page */
if (cpu_buffer->reader_page->read < rb_page_size(reader))
goto out;
/* Never should we have an index greater than the size */
if (RB_WARN_ON(cpu_buffer,
cpu_buffer->reader_page->read > rb_page_size(reader)))
goto out;
/* check if we caught up to the tail */
reader = NULL;
if (cpu_buffer->commit_page == cpu_buffer->reader_page)
goto out;
/*
* Splice the empty reader page into the list around the head.
* Reset the reader page to size zero.
*/
reader = cpu_buffer->head_page;
cpu_buffer->reader_page->list.next = reader->list.next;
cpu_buffer->reader_page->list.prev = reader->list.prev;
local_set(&cpu_buffer->reader_page->write, 0);
local_set(&cpu_buffer->reader_page->entries, 0);
local_set(&cpu_buffer->reader_page->page->commit, 0);
/* Make the reader page now replace the head */
reader->list.prev->next = &cpu_buffer->reader_page->list;
reader->list.next->prev = &cpu_buffer->reader_page->list;
/*
* If the tail is on the reader, then we must set the head
* to the inserted page, otherwise we set it one before.
*/
cpu_buffer->head_page = cpu_buffer->reader_page;
if (cpu_buffer->commit_page != reader)
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
/* Finally update the reader page to the new head */
cpu_buffer->reader_page = reader;
rb_reset_reader_page(cpu_buffer);
goto again;
out:
__raw_spin_unlock(&cpu_buffer->lock);
local_irq_restore(flags);
return reader;
}
static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
{
struct ring_buffer_event *event;
struct buffer_page *reader;
unsigned length;
reader = rb_get_reader_page(cpu_buffer);
/* This function should not be called when buffer is empty */
if (RB_WARN_ON(cpu_buffer, !reader))
return;
event = rb_reader_event(cpu_buffer);
if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
|| rb_discarded_event(event))
cpu_buffer->read++;
rb_update_read_stamp(cpu_buffer, event);
length = rb_event_length(event);
cpu_buffer->reader_page->read += length;
}
static void rb_advance_iter(struct ring_buffer_iter *iter)
{
struct ring_buffer *buffer;
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
unsigned length;
cpu_buffer = iter->cpu_buffer;
buffer = cpu_buffer->buffer;
/*
* Check if we are at the end of the buffer.
*/
if (iter->head >= rb_page_size(iter->head_page)) {
if (RB_WARN_ON(buffer,
iter->head_page == cpu_buffer->commit_page))
return;
rb_inc_iter(iter);
return;
}
event = rb_iter_head_event(iter);
length = rb_event_length(event);
/*
* This should not be called to advance the header if we are
* at the tail of the buffer.
*/
if (RB_WARN_ON(cpu_buffer,
(iter->head_page == cpu_buffer->commit_page) &&
(iter->head + length > rb_commit_index(cpu_buffer))))
return;
rb_update_iter_read_stamp(iter, event);
iter->head += length;
/* check for end of page padding */
if ((iter->head >= rb_page_size(iter->head_page)) &&
(iter->head_page != cpu_buffer->commit_page))
rb_advance_iter(iter);
}
static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
struct buffer_page *reader;
int nr_loops = 0;
cpu_buffer = buffer->buffers[cpu];
again:
/*
* We repeat when a timestamp is encountered. It is possible
* to get multiple timestamps from an interrupt entering just
* as one timestamp is about to be written. The max times
* that this can happen is the number of nested interrupts we
* can have. Nesting 10 deep of interrupts is clearly
* an anomaly.
*/
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
return NULL;
reader = rb_get_reader_page(cpu_buffer);
if (!reader)
return NULL;
event = rb_reader_event(cpu_buffer);
switch (event->type_len) {
case RINGBUF_TYPE_PADDING:
if (rb_null_event(event))
RB_WARN_ON(cpu_buffer, 1);
/*
* Because the writer could be discarding every
* event it creates (which would probably be bad)
* if we were to go back to "again" then we may never
* catch up, and will trigger the warn on, or lock
* the box. Return the padding, and we will release
* the current locks, and try again.
*/
rb_advance_reader(cpu_buffer);
return event;
case RINGBUF_TYPE_TIME_EXTEND:
/* Internal data, OK to advance */
rb_advance_reader(cpu_buffer);
goto again;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
rb_advance_reader(cpu_buffer);
goto again;
case RINGBUF_TYPE_DATA:
if (ts) {
*ts = cpu_buffer->read_stamp + event->time_delta;
ring_buffer_normalize_time_stamp(buffer,
cpu_buffer->cpu, ts);
}
return event;
default:
BUG();
}
return NULL;
}
EXPORT_SYMBOL_GPL(ring_buffer_peek);
static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
{
struct ring_buffer *buffer;
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
int nr_loops = 0;
if (ring_buffer_iter_empty(iter))
return NULL;
cpu_buffer = iter->cpu_buffer;
buffer = cpu_buffer->buffer;
again:
/*
* We repeat when a timestamp is encountered. It is possible
* to get multiple timestamps from an interrupt entering just
* as one timestamp is about to be written. The max times
* that this can happen is the number of nested interrupts we
* can have. Nesting 10 deep of interrupts is clearly
* an anomaly.
*/
if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
return NULL;
if (rb_per_cpu_empty(cpu_buffer))
return NULL;
event = rb_iter_head_event(iter);
switch (event->type_len) {
case RINGBUF_TYPE_PADDING:
if (rb_null_event(event)) {
rb_inc_iter(iter);
goto again;
}
rb_advance_iter(iter);
return event;
case RINGBUF_TYPE_TIME_EXTEND:
/* Internal data, OK to advance */
rb_advance_iter(iter);
goto again;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
rb_advance_iter(iter);
goto again;
case RINGBUF_TYPE_DATA:
if (ts) {
*ts = iter->read_stamp + event->time_delta;
ring_buffer_normalize_time_stamp(buffer,
cpu_buffer->cpu, ts);
}
return event;
default:
BUG();
}
return NULL;
}
EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
/**
* ring_buffer_peek - peek at the next event to be read
* @buffer: The ring buffer to read
* @cpu: The cpu to peak at
* @ts: The timestamp counter of this event.
*
* This will return the event that will be read next, but does
* not consume the data.
*/
struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
{
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
struct ring_buffer_event *event;
unsigned long flags;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return NULL;
again:
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
event = rb_buffer_peek(buffer, cpu, ts);
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
if (event && event->type_len == RINGBUF_TYPE_PADDING) {
cpu_relax();
goto again;
}
return event;
}
/**
* ring_buffer_iter_peek - peek at the next event to be read
* @iter: The ring buffer iterator
* @ts: The timestamp counter of this event.
*
* This will return the event that will be read next, but does
* not increment the iterator.
*/
struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
struct ring_buffer_event *event;
unsigned long flags;
again:
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
event = rb_iter_peek(iter, ts);
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
if (event && event->type_len == RINGBUF_TYPE_PADDING) {
cpu_relax();
goto again;
}
return event;
}
/**
* ring_buffer_consume - return an event and consume it
* @buffer: The ring buffer to get the next event from
*
* Returns the next event in the ring buffer, and that event is consumed.
* Meaning, that sequential reads will keep returning a different event,
* and eventually empty the ring buffer if the producer is slower.
*/
struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event = NULL;
unsigned long flags;
again:
/* might be called in atomic */
preempt_disable();
if (!cpumask_test_cpu(cpu, buffer->cpumask))
goto out;
cpu_buffer = buffer->buffers[cpu];
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
event = rb_buffer_peek(buffer, cpu, ts);
if (!event)
goto out_unlock;
rb_advance_reader(cpu_buffer);
out_unlock:
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
out:
preempt_enable();
if (event && event->type_len == RINGBUF_TYPE_PADDING) {
cpu_relax();
goto again;
}
return event;
}
EXPORT_SYMBOL_GPL(ring_buffer_consume);
/**
* ring_buffer_read_start - start a non consuming read of the buffer
* @buffer: The ring buffer to read from
* @cpu: The cpu buffer to iterate over
*
* This starts up an iteration through the buffer. It also disables
* the recording to the buffer until the reading is finished.
* This prevents the reading from being corrupted. This is not
* a consuming read, so a producer is not expected.
*
* Must be paired with ring_buffer_finish.
*/
struct ring_buffer_iter *
ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_iter *iter;
unsigned long flags;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return NULL;
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return NULL;
cpu_buffer = buffer->buffers[cpu];
iter->cpu_buffer = cpu_buffer;
atomic_inc(&cpu_buffer->record_disabled);
synchronize_sched();
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
__raw_spin_lock(&cpu_buffer->lock);
rb_iter_reset(iter);
__raw_spin_unlock(&cpu_buffer->lock);
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
return iter;
}
EXPORT_SYMBOL_GPL(ring_buffer_read_start);
/**
* ring_buffer_finish - finish reading the iterator of the buffer
* @iter: The iterator retrieved by ring_buffer_start
*
* This re-enables the recording to the buffer, and frees the
* iterator.
*/
void
ring_buffer_read_finish(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
atomic_dec(&cpu_buffer->record_disabled);
kfree(iter);
}
EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
/**
* ring_buffer_read - read the next item in the ring buffer by the iterator
* @iter: The ring buffer iterator
* @ts: The time stamp of the event read.
*
* This reads the next event in the ring buffer and increments the iterator.
*/
struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
{
struct ring_buffer_event *event;
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
unsigned long flags;
again:
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
event = rb_iter_peek(iter, ts);
if (!event)
goto out;
rb_advance_iter(iter);
out:
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
if (event && event->type_len == RINGBUF_TYPE_PADDING) {
cpu_relax();
goto again;
}
return event;
}
EXPORT_SYMBOL_GPL(ring_buffer_read);
/**
* ring_buffer_size - return the size of the ring buffer (in bytes)
* @buffer: The ring buffer.
*/
unsigned long ring_buffer_size(struct ring_buffer *buffer)
{
return BUF_PAGE_SIZE * buffer->pages;
}
EXPORT_SYMBOL_GPL(ring_buffer_size);
static void
rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
{
cpu_buffer->head_page
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
local_set(&cpu_buffer->head_page->write, 0);
local_set(&cpu_buffer->head_page->entries, 0);
local_set(&cpu_buffer->head_page->page->commit, 0);
cpu_buffer->head_page->read = 0;
cpu_buffer->tail_page = cpu_buffer->head_page;
cpu_buffer->commit_page = cpu_buffer->head_page;
INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
local_set(&cpu_buffer->reader_page->write, 0);
local_set(&cpu_buffer->reader_page->entries, 0);
local_set(&cpu_buffer->reader_page->page->commit, 0);
cpu_buffer->reader_page->read = 0;
cpu_buffer->nmi_dropped = 0;
cpu_buffer->commit_overrun = 0;
cpu_buffer->overrun = 0;
cpu_buffer->read = 0;
local_set(&cpu_buffer->entries, 0);
cpu_buffer->write_stamp = 0;
cpu_buffer->read_stamp = 0;
}
/**
* ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
* @buffer: The ring buffer to reset a per cpu buffer of
* @cpu: The CPU buffer to be reset
*/
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
unsigned long flags;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return;
atomic_inc(&cpu_buffer->record_disabled);
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
__raw_spin_lock(&cpu_buffer->lock);
rb_reset_cpu(cpu_buffer);
__raw_spin_unlock(&cpu_buffer->lock);
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
atomic_dec(&cpu_buffer->record_disabled);
}
EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
/**
* ring_buffer_reset - reset a ring buffer
* @buffer: The ring buffer to reset all cpu buffers
*/
void ring_buffer_reset(struct ring_buffer *buffer)
{
int cpu;
for_each_buffer_cpu(buffer, cpu)
ring_buffer_reset_cpu(buffer, cpu);
}
EXPORT_SYMBOL_GPL(ring_buffer_reset);
/**
* rind_buffer_empty - is the ring buffer empty?
* @buffer: The ring buffer to test
*/
int ring_buffer_empty(struct ring_buffer *buffer)
{
struct ring_buffer_per_cpu *cpu_buffer;
int cpu;
/* yes this is racy, but if you don't like the race, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
if (!rb_per_cpu_empty(cpu_buffer))
return 0;
}
return 1;
}
EXPORT_SYMBOL_GPL(ring_buffer_empty);
/**
* ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
* @buffer: The ring buffer
* @cpu: The CPU buffer to test
*/
int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
int ret;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return 1;
cpu_buffer = buffer->buffers[cpu];
ret = rb_per_cpu_empty(cpu_buffer);
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
/**
* ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
* @buffer_a: One buffer to swap with
* @buffer_b: The other buffer to swap with
*
* This function is useful for tracers that want to take a "snapshot"
* of a CPU buffer and has another back up buffer lying around.
* it is expected that the tracer handles the cpu buffer not being
* used at the moment.
*/
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
struct ring_buffer *buffer_b, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer_a;
struct ring_buffer_per_cpu *cpu_buffer_b;
int ret = -EINVAL;
if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
!cpumask_test_cpu(cpu, buffer_b->cpumask))
goto out;
/* At least make sure the two buffers are somewhat the same */
if (buffer_a->pages != buffer_b->pages)
goto out;
ret = -EAGAIN;
if (ring_buffer_flags != RB_BUFFERS_ON)
goto out;
if (atomic_read(&buffer_a->record_disabled))
goto out;
if (atomic_read(&buffer_b->record_disabled))
goto out;
cpu_buffer_a = buffer_a->buffers[cpu];
cpu_buffer_b = buffer_b->buffers[cpu];
if (atomic_read(&cpu_buffer_a->record_disabled))
goto out;
if (atomic_read(&cpu_buffer_b->record_disabled))
goto out;
/*
* We can't do a synchronize_sched here because this
* function can be called in atomic context.
* Normally this will be called from the same CPU as cpu.
* If not it's up to the caller to protect this.
*/
atomic_inc(&cpu_buffer_a->record_disabled);
atomic_inc(&cpu_buffer_b->record_disabled);
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
atomic_dec(&cpu_buffer_a->record_disabled);
atomic_dec(&cpu_buffer_b->record_disabled);
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
/**
* ring_buffer_alloc_read_page - allocate a page to read from buffer
* @buffer: the buffer to allocate for.
*
* This function is used in conjunction with ring_buffer_read_page.
* When reading a full page from the ring buffer, these functions
* can be used to speed up the process. The calling function should
* allocate a few pages first with this function. Then when it
* needs to get pages from the ring buffer, it passes the result
* of this function into ring_buffer_read_page, which will swap
* the page that was allocated, with the read page of the buffer.
*
* Returns:
* The page allocated, or NULL on error.
*/
void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
{
struct buffer_data_page *bpage;
unsigned long addr;
addr = __get_free_page(GFP_KERNEL);
if (!addr)
return NULL;
bpage = (void *)addr;
rb_init_page(bpage);
return bpage;
}
EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
/**
* ring_buffer_free_read_page - free an allocated read page
* @buffer: the buffer the page was allocate for
* @data: the page to free
*
* Free a page allocated from ring_buffer_alloc_read_page.
*/
void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
{
free_page((unsigned long)data);
}
EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
/**
* ring_buffer_read_page - extract a page from the ring buffer
* @buffer: buffer to extract from
* @data_page: the page to use allocated from ring_buffer_alloc_read_page
* @len: amount to extract
* @cpu: the cpu of the buffer to extract
* @full: should the extraction only happen when the page is full.
*
* This function will pull out a page from the ring buffer and consume it.
* @data_page must be the address of the variable that was returned
* from ring_buffer_alloc_read_page. This is because the page might be used
* to swap with a page in the ring buffer.
*
* for example:
* rpage = ring_buffer_alloc_read_page(buffer);
* if (!rpage)
* return error;
* ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
* if (ret >= 0)
* process_page(rpage, ret);
*
* When @full is set, the function will not return true unless
* the writer is off the reader page.
*
* Note: it is up to the calling functions to handle sleeps and wakeups.
* The ring buffer can be used anywhere in the kernel and can not
* blindly call wake_up. The layer that uses the ring buffer must be
* responsible for that.
*
* Returns:
* >=0 if data has been transferred, returns the offset of consumed data.
* <0 if no data has been transferred.
*/
int ring_buffer_read_page(struct ring_buffer *buffer,
void **data_page, size_t len, int cpu, int full)
{
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
struct ring_buffer_event *event;
struct buffer_data_page *bpage;
struct buffer_page *reader;
unsigned long flags;
unsigned int commit;
unsigned int read;
u64 save_timestamp;
int ret = -1;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
goto out;
/*
* If len is not big enough to hold the page header, then
* we can not copy anything.
*/
if (len <= BUF_PAGE_HDR_SIZE)
goto out;
len -= BUF_PAGE_HDR_SIZE;
if (!data_page)
goto out;
bpage = *data_page;
if (!bpage)
goto out;
spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
reader = rb_get_reader_page(cpu_buffer);
if (!reader)
goto out_unlock;
event = rb_reader_event(cpu_buffer);
read = reader->read;
commit = rb_page_commit(reader);
/*
* If this page has been partially read or
* if len is not big enough to read the rest of the page or
* a writer is still on the page, then
* we must copy the data from the page to the buffer.
* Otherwise, we can simply swap the page with the one passed in.
*/
if (read || (len < (commit - read)) ||
cpu_buffer->reader_page == cpu_buffer->commit_page) {
struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
unsigned int rpos = read;
unsigned int pos = 0;
unsigned int size;
if (full)
goto out_unlock;
if (len > (commit - read))
len = (commit - read);
size = rb_event_length(event);
if (len < size)
goto out_unlock;
/* save the current timestamp, since the user will need it */
save_timestamp = cpu_buffer->read_stamp;
/* Need to copy one event at a time */
do {
memcpy(bpage->data + pos, rpage->data + rpos, size);
len -= size;
rb_advance_reader(cpu_buffer);
rpos = reader->read;
pos += size;
event = rb_reader_event(cpu_buffer);
size = rb_event_length(event);
} while (len > size);
/* update bpage */
local_set(&bpage->commit, pos);
bpage->time_stamp = save_timestamp;
/* we copied everything to the beginning */
read = 0;
} else {
/* update the entry counter */
cpu_buffer->read += local_read(&reader->entries);
/* swap the pages */
rb_init_page(bpage);
bpage = reader->page;
reader->page = *data_page;
local_set(&reader->write, 0);
local_set(&reader->entries, 0);
reader->read = 0;
*data_page = bpage;
}
ret = read;
out_unlock:
spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
out:
return ret;
}
EXPORT_SYMBOL_GPL(ring_buffer_read_page);
static ssize_t
rb_simple_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
unsigned long *p = filp->private_data;
char buf[64];
int r;
if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
r = sprintf(buf, "permanently disabled\n");
else
r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
}
static ssize_t
rb_simple_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
unsigned long *p = filp->private_data;
char buf[64];
unsigned long val;
int ret;
if (cnt >= sizeof(buf))
return -EINVAL;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
ret = strict_strtoul(buf, 10, &val);
if (ret < 0)
return ret;
if (val)
set_bit(RB_BUFFERS_ON_BIT, p);
else
clear_bit(RB_BUFFERS_ON_BIT, p);
(*ppos)++;
return cnt;
}
static const struct file_operations rb_simple_fops = {
.open = tracing_open_generic,
.read = rb_simple_read,
.write = rb_simple_write,
};
static __init int rb_init_debugfs(void)
{
struct dentry *d_tracer;
d_tracer = tracing_init_dentry();
trace_create_file("tracing_on", 0644, d_tracer,
&ring_buffer_flags, &rb_simple_fops);
return 0;
}
fs_initcall(rb_init_debugfs);
#ifdef CONFIG_HOTPLUG_CPU
static int rb_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
struct ring_buffer *buffer =
container_of(self, struct ring_buffer, cpu_notify);
long cpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
if (cpu_isset(cpu, *buffer->cpumask))
return NOTIFY_OK;
buffer->buffers[cpu] =
rb_allocate_cpu_buffer(buffer, cpu);
if (!buffer->buffers[cpu]) {
WARN(1, "failed to allocate ring buffer on CPU %ld\n",
cpu);
return NOTIFY_OK;
}
smp_wmb();
cpu_set(cpu, *buffer->cpumask);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
/*
* Do nothing.
* If we were to free the buffer, then the user would
* lose any trace that was in the buffer.
*/
break;
default:
break;
}
return NOTIFY_OK;
}
#endif