aha/fs/minix/bitmap.c
Andries Brouwer 939b00df03 [PATCH] Minix V3 support
This morning I needed to read a Minix V3 filesystem, but unfortunately my
2.6.19 did not support that, and neither did the downloaded 2.6.20rc4.

Fortunately, google told me that Daniel Aragones had already done the work,
patch found at http://www.terra.es/personal2/danarag/

Unfortunaly, looking at the patch was painful to my eyes, so I polished it
a bit before applying.  The resulting kernel boots, and reads the
filesystem it needed to read.

Signed-off-by: Daniel Aragones <danarag@gmail.com>
Signed-off-by: Andries Brouwer <aeb@cwi.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:31 -08:00

280 lines
6.8 KiB
C

/*
* linux/fs/minix/bitmap.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* Modified for 680x0 by Hamish Macdonald
* Fixed for 680x0 by Andreas Schwab
*/
/* bitmap.c contains the code that handles the inode and block bitmaps */
#include "minix.h"
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/bitops.h>
static int nibblemap[] = { 4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0 };
static unsigned long count_free(struct buffer_head *map[], unsigned numblocks, __u32 numbits)
{
unsigned i, j, sum = 0;
struct buffer_head *bh;
for (i=0; i<numblocks-1; i++) {
if (!(bh=map[i]))
return(0);
for (j=0; j<bh->b_size; j++)
sum += nibblemap[bh->b_data[j] & 0xf]
+ nibblemap[(bh->b_data[j]>>4) & 0xf];
}
if (numblocks==0 || !(bh=map[numblocks-1]))
return(0);
i = ((numbits - (numblocks-1) * bh->b_size * 8) / 16) * 2;
for (j=0; j<i; j++) {
sum += nibblemap[bh->b_data[j] & 0xf]
+ nibblemap[(bh->b_data[j]>>4) & 0xf];
}
i = numbits%16;
if (i!=0) {
i = *(__u16 *)(&bh->b_data[j]) | ~((1<<i) - 1);
sum += nibblemap[i & 0xf] + nibblemap[(i>>4) & 0xf];
sum += nibblemap[(i>>8) & 0xf] + nibblemap[(i>>12) & 0xf];
}
return(sum);
}
void minix_free_block(struct inode *inode, unsigned long block)
{
struct super_block *sb = inode->i_sb;
struct minix_sb_info *sbi = minix_sb(sb);
struct buffer_head *bh;
int k = sb->s_blocksize_bits + 3;
unsigned long bit, zone;
if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
printk("Trying to free block not in datazone\n");
return;
}
zone = block - sbi->s_firstdatazone + 1;
bit = zone & ((1<<k) - 1);
zone >>= k;
if (zone >= sbi->s_zmap_blocks) {
printk("minix_free_block: nonexistent bitmap buffer\n");
return;
}
bh = sbi->s_zmap[zone];
lock_kernel();
if (!minix_test_and_clear_bit(bit, bh->b_data))
printk("minix_free_block (%s:%lu): bit already cleared\n",
sb->s_id, block);
unlock_kernel();
mark_buffer_dirty(bh);
return;
}
int minix_new_block(struct inode * inode)
{
struct minix_sb_info *sbi = minix_sb(inode->i_sb);
int bits_per_zone = 8 * inode->i_sb->s_blocksize;
int i;
for (i = 0; i < sbi->s_zmap_blocks; i++) {
struct buffer_head *bh = sbi->s_zmap[i];
int j;
lock_kernel();
j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
if (j < bits_per_zone) {
minix_set_bit(j, bh->b_data);
unlock_kernel();
mark_buffer_dirty(bh);
j += i * bits_per_zone + sbi->s_firstdatazone-1;
if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
break;
return j;
}
unlock_kernel();
}
return 0;
}
unsigned long minix_count_free_blocks(struct minix_sb_info *sbi)
{
return (count_free(sbi->s_zmap, sbi->s_zmap_blocks,
sbi->s_nzones - sbi->s_firstdatazone + 1)
<< sbi->s_log_zone_size);
}
struct minix_inode *
minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
{
int block;
struct minix_sb_info *sbi = minix_sb(sb);
struct minix_inode *p;
if (!ino || ino > sbi->s_ninodes) {
printk("Bad inode number on dev %s: %ld is out of range\n",
sb->s_id, (long)ino);
return NULL;
}
ino--;
block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
ino / MINIX_INODES_PER_BLOCK;
*bh = sb_bread(sb, block);
if (!*bh) {
printk("Unable to read inode block\n");
return NULL;
}
p = (void *)(*bh)->b_data;
return p + ino % MINIX_INODES_PER_BLOCK;
}
struct minix2_inode *
minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
{
int block;
struct minix_sb_info *sbi = minix_sb(sb);
struct minix2_inode *p;
int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
*bh = NULL;
if (!ino || ino > sbi->s_ninodes) {
printk("Bad inode number on dev %s: %ld is out of range\n",
sb->s_id, (long)ino);
return NULL;
}
ino--;
block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
ino / minix2_inodes_per_block;
*bh = sb_bread(sb, block);
if (!*bh) {
printk("Unable to read inode block\n");
return NULL;
}
p = (void *)(*bh)->b_data;
return p + ino % minix2_inodes_per_block;
}
/* Clear the link count and mode of a deleted inode on disk. */
static void minix_clear_inode(struct inode *inode)
{
struct buffer_head *bh = NULL;
if (INODE_VERSION(inode) == MINIX_V1) {
struct minix_inode *raw_inode;
raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
if (raw_inode) {
raw_inode->i_nlinks = 0;
raw_inode->i_mode = 0;
}
} else {
struct minix2_inode *raw_inode;
raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
if (raw_inode) {
raw_inode->i_nlinks = 0;
raw_inode->i_mode = 0;
}
}
if (bh) {
mark_buffer_dirty(bh);
brelse (bh);
}
}
void minix_free_inode(struct inode * inode)
{
struct super_block *sb = inode->i_sb;
struct minix_sb_info *sbi = minix_sb(inode->i_sb);
struct buffer_head *bh;
int k = sb->s_blocksize_bits + 3;
unsigned long ino, bit;
ino = inode->i_ino;
if (ino < 1 || ino > sbi->s_ninodes) {
printk("minix_free_inode: inode 0 or nonexistent inode\n");
goto out;
}
bit = ino & ((1<<k) - 1);
ino >>= k;
if (ino >= sbi->s_imap_blocks) {
printk("minix_free_inode: nonexistent imap in superblock\n");
goto out;
}
minix_clear_inode(inode); /* clear on-disk copy */
bh = sbi->s_imap[ino];
lock_kernel();
if (!minix_test_and_clear_bit(bit, bh->b_data))
printk("minix_free_inode: bit %lu already cleared\n", bit);
unlock_kernel();
mark_buffer_dirty(bh);
out:
clear_inode(inode); /* clear in-memory copy */
}
struct inode * minix_new_inode(const struct inode * dir, int * error)
{
struct super_block *sb = dir->i_sb;
struct minix_sb_info *sbi = minix_sb(sb);
struct inode *inode = new_inode(sb);
struct buffer_head * bh;
int bits_per_zone = 8 * sb->s_blocksize;
unsigned long j;
int i;
if (!inode) {
*error = -ENOMEM;
return NULL;
}
j = bits_per_zone;
bh = NULL;
*error = -ENOSPC;
lock_kernel();
for (i = 0; i < sbi->s_imap_blocks; i++) {
bh = sbi->s_imap[i];
j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
if (j < bits_per_zone)
break;
}
if (!bh || j >= bits_per_zone) {
unlock_kernel();
iput(inode);
return NULL;
}
if (minix_test_and_set_bit(j, bh->b_data)) { /* shouldn't happen */
unlock_kernel();
printk("minix_new_inode: bit already set\n");
iput(inode);
return NULL;
}
unlock_kernel();
mark_buffer_dirty(bh);
j += i * bits_per_zone;
if (!j || j > sbi->s_ninodes) {
iput(inode);
return NULL;
}
inode->i_uid = current->fsuid;
inode->i_gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
inode->i_ino = j;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
inode->i_blocks = 0;
memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
insert_inode_hash(inode);
mark_inode_dirty(inode);
*error = 0;
return inode;
}
unsigned long minix_count_free_inodes(struct minix_sb_info *sbi)
{
return count_free(sbi->s_imap, sbi->s_imap_blocks, sbi->s_ninodes + 1);
}