mirror of
https://github.com/adulau/aha.git
synced 2025-01-01 05:36:24 +00:00
fb01439c5b
Arch-independent zone-sizing determines the size of a node (pgdat->node_spanned_pages) based on the physical memory that was registered by the architecture. However, when CONFIG_MEMORY_HOTPLUG_RESERVE is set, the architecture expects that the spanned_pages will be much larger and that mem_map will be allocated that is used lated on memory hot-add. This patch allows an architecture that sets CONFIG_MEMORY_HOTPLUG_RESERVE to call push_node_boundaries() which will set the node beginning and end to at *least* the requested boundary. Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Andi Kleen <ak@muc.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Keith Mannthey" <kmannth@gmail.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
3137 lines
84 KiB
C
3137 lines
84 KiB
C
/*
|
|
* linux/mm/page_alloc.c
|
|
*
|
|
* Manages the free list, the system allocates free pages here.
|
|
* Note that kmalloc() lives in slab.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
|
|
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
|
|
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
|
|
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
|
|
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
|
|
*/
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/pfn.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/div64.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* MCD - HACK: Find somewhere to initialize this EARLY, or make this
|
|
* initializer cleaner
|
|
*/
|
|
nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
|
|
EXPORT_SYMBOL(node_online_map);
|
|
nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
|
|
EXPORT_SYMBOL(node_possible_map);
|
|
unsigned long totalram_pages __read_mostly;
|
|
unsigned long totalreserve_pages __read_mostly;
|
|
long nr_swap_pages;
|
|
int percpu_pagelist_fraction;
|
|
|
|
static void __free_pages_ok(struct page *page, unsigned int order);
|
|
|
|
/*
|
|
* results with 256, 32 in the lowmem_reserve sysctl:
|
|
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
|
|
* 1G machine -> (16M dma, 784M normal, 224M high)
|
|
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
|
|
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
|
|
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
|
|
*
|
|
* TBD: should special case ZONE_DMA32 machines here - in those we normally
|
|
* don't need any ZONE_NORMAL reservation
|
|
*/
|
|
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
|
|
256,
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
256,
|
|
#endif
|
|
#ifdef CONFIG_HIGHMEM
|
|
32
|
|
#endif
|
|
};
|
|
|
|
EXPORT_SYMBOL(totalram_pages);
|
|
|
|
/*
|
|
* Used by page_zone() to look up the address of the struct zone whose
|
|
* id is encoded in the upper bits of page->flags
|
|
*/
|
|
struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
|
|
EXPORT_SYMBOL(zone_table);
|
|
|
|
static char *zone_names[MAX_NR_ZONES] = {
|
|
"DMA",
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
"DMA32",
|
|
#endif
|
|
"Normal",
|
|
#ifdef CONFIG_HIGHMEM
|
|
"HighMem"
|
|
#endif
|
|
};
|
|
|
|
int min_free_kbytes = 1024;
|
|
|
|
unsigned long __meminitdata nr_kernel_pages;
|
|
unsigned long __meminitdata nr_all_pages;
|
|
static unsigned long __initdata dma_reserve;
|
|
|
|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
|
|
/*
|
|
* MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
|
|
* ranges of memory (RAM) that may be registered with add_active_range().
|
|
* Ranges passed to add_active_range() will be merged if possible
|
|
* so the number of times add_active_range() can be called is
|
|
* related to the number of nodes and the number of holes
|
|
*/
|
|
#ifdef CONFIG_MAX_ACTIVE_REGIONS
|
|
/* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
|
|
#define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
|
|
#else
|
|
#if MAX_NUMNODES >= 32
|
|
/* If there can be many nodes, allow up to 50 holes per node */
|
|
#define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
|
|
#else
|
|
/* By default, allow up to 256 distinct regions */
|
|
#define MAX_ACTIVE_REGIONS 256
|
|
#endif
|
|
#endif
|
|
|
|
struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
|
|
int __initdata nr_nodemap_entries;
|
|
unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
|
|
unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
|
|
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
|
|
unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
|
|
unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
|
|
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
|
|
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
|
|
{
|
|
int ret = 0;
|
|
unsigned seq;
|
|
unsigned long pfn = page_to_pfn(page);
|
|
|
|
do {
|
|
seq = zone_span_seqbegin(zone);
|
|
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
|
|
ret = 1;
|
|
else if (pfn < zone->zone_start_pfn)
|
|
ret = 1;
|
|
} while (zone_span_seqretry(zone, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int page_is_consistent(struct zone *zone, struct page *page)
|
|
{
|
|
#ifdef CONFIG_HOLES_IN_ZONE
|
|
if (!pfn_valid(page_to_pfn(page)))
|
|
return 0;
|
|
#endif
|
|
if (zone != page_zone(page))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
/*
|
|
* Temporary debugging check for pages not lying within a given zone.
|
|
*/
|
|
static int bad_range(struct zone *zone, struct page *page)
|
|
{
|
|
if (page_outside_zone_boundaries(zone, page))
|
|
return 1;
|
|
if (!page_is_consistent(zone, page))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int bad_range(struct zone *zone, struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void bad_page(struct page *page)
|
|
{
|
|
printk(KERN_EMERG "Bad page state in process '%s'\n"
|
|
KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
|
|
KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
|
|
KERN_EMERG "Backtrace:\n",
|
|
current->comm, page, (int)(2*sizeof(unsigned long)),
|
|
(unsigned long)page->flags, page->mapping,
|
|
page_mapcount(page), page_count(page));
|
|
dump_stack();
|
|
page->flags &= ~(1 << PG_lru |
|
|
1 << PG_private |
|
|
1 << PG_locked |
|
|
1 << PG_active |
|
|
1 << PG_dirty |
|
|
1 << PG_reclaim |
|
|
1 << PG_slab |
|
|
1 << PG_swapcache |
|
|
1 << PG_writeback |
|
|
1 << PG_buddy );
|
|
set_page_count(page, 0);
|
|
reset_page_mapcount(page);
|
|
page->mapping = NULL;
|
|
add_taint(TAINT_BAD_PAGE);
|
|
}
|
|
|
|
/*
|
|
* Higher-order pages are called "compound pages". They are structured thusly:
|
|
*
|
|
* The first PAGE_SIZE page is called the "head page".
|
|
*
|
|
* The remaining PAGE_SIZE pages are called "tail pages".
|
|
*
|
|
* All pages have PG_compound set. All pages have their ->private pointing at
|
|
* the head page (even the head page has this).
|
|
*
|
|
* The first tail page's ->lru.next holds the address of the compound page's
|
|
* put_page() function. Its ->lru.prev holds the order of allocation.
|
|
* This usage means that zero-order pages may not be compound.
|
|
*/
|
|
|
|
static void free_compound_page(struct page *page)
|
|
{
|
|
__free_pages_ok(page, (unsigned long)page[1].lru.prev);
|
|
}
|
|
|
|
static void prep_compound_page(struct page *page, unsigned long order)
|
|
{
|
|
int i;
|
|
int nr_pages = 1 << order;
|
|
|
|
page[1].lru.next = (void *)free_compound_page; /* set dtor */
|
|
page[1].lru.prev = (void *)order;
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *p = page + i;
|
|
|
|
__SetPageCompound(p);
|
|
set_page_private(p, (unsigned long)page);
|
|
}
|
|
}
|
|
|
|
static void destroy_compound_page(struct page *page, unsigned long order)
|
|
{
|
|
int i;
|
|
int nr_pages = 1 << order;
|
|
|
|
if (unlikely((unsigned long)page[1].lru.prev != order))
|
|
bad_page(page);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *p = page + i;
|
|
|
|
if (unlikely(!PageCompound(p) |
|
|
(page_private(p) != (unsigned long)page)))
|
|
bad_page(page);
|
|
__ClearPageCompound(p);
|
|
}
|
|
}
|
|
|
|
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
|
|
{
|
|
int i;
|
|
|
|
VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
|
|
/*
|
|
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
|
|
* and __GFP_HIGHMEM from hard or soft interrupt context.
|
|
*/
|
|
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
|
|
for (i = 0; i < (1 << order); i++)
|
|
clear_highpage(page + i);
|
|
}
|
|
|
|
/*
|
|
* function for dealing with page's order in buddy system.
|
|
* zone->lock is already acquired when we use these.
|
|
* So, we don't need atomic page->flags operations here.
|
|
*/
|
|
static inline unsigned long page_order(struct page *page)
|
|
{
|
|
return page_private(page);
|
|
}
|
|
|
|
static inline void set_page_order(struct page *page, int order)
|
|
{
|
|
set_page_private(page, order);
|
|
__SetPageBuddy(page);
|
|
}
|
|
|
|
static inline void rmv_page_order(struct page *page)
|
|
{
|
|
__ClearPageBuddy(page);
|
|
set_page_private(page, 0);
|
|
}
|
|
|
|
/*
|
|
* Locate the struct page for both the matching buddy in our
|
|
* pair (buddy1) and the combined O(n+1) page they form (page).
|
|
*
|
|
* 1) Any buddy B1 will have an order O twin B2 which satisfies
|
|
* the following equation:
|
|
* B2 = B1 ^ (1 << O)
|
|
* For example, if the starting buddy (buddy2) is #8 its order
|
|
* 1 buddy is #10:
|
|
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
|
|
*
|
|
* 2) Any buddy B will have an order O+1 parent P which
|
|
* satisfies the following equation:
|
|
* P = B & ~(1 << O)
|
|
*
|
|
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
|
|
*/
|
|
static inline struct page *
|
|
__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
|
|
{
|
|
unsigned long buddy_idx = page_idx ^ (1 << order);
|
|
|
|
return page + (buddy_idx - page_idx);
|
|
}
|
|
|
|
static inline unsigned long
|
|
__find_combined_index(unsigned long page_idx, unsigned int order)
|
|
{
|
|
return (page_idx & ~(1 << order));
|
|
}
|
|
|
|
/*
|
|
* This function checks whether a page is free && is the buddy
|
|
* we can do coalesce a page and its buddy if
|
|
* (a) the buddy is not in a hole &&
|
|
* (b) the buddy is in the buddy system &&
|
|
* (c) a page and its buddy have the same order &&
|
|
* (d) a page and its buddy are in the same zone.
|
|
*
|
|
* For recording whether a page is in the buddy system, we use PG_buddy.
|
|
* Setting, clearing, and testing PG_buddy is serialized by zone->lock.
|
|
*
|
|
* For recording page's order, we use page_private(page).
|
|
*/
|
|
static inline int page_is_buddy(struct page *page, struct page *buddy,
|
|
int order)
|
|
{
|
|
#ifdef CONFIG_HOLES_IN_ZONE
|
|
if (!pfn_valid(page_to_pfn(buddy)))
|
|
return 0;
|
|
#endif
|
|
|
|
if (page_zone_id(page) != page_zone_id(buddy))
|
|
return 0;
|
|
|
|
if (PageBuddy(buddy) && page_order(buddy) == order) {
|
|
BUG_ON(page_count(buddy) != 0);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Freeing function for a buddy system allocator.
|
|
*
|
|
* The concept of a buddy system is to maintain direct-mapped table
|
|
* (containing bit values) for memory blocks of various "orders".
|
|
* The bottom level table contains the map for the smallest allocatable
|
|
* units of memory (here, pages), and each level above it describes
|
|
* pairs of units from the levels below, hence, "buddies".
|
|
* At a high level, all that happens here is marking the table entry
|
|
* at the bottom level available, and propagating the changes upward
|
|
* as necessary, plus some accounting needed to play nicely with other
|
|
* parts of the VM system.
|
|
* At each level, we keep a list of pages, which are heads of continuous
|
|
* free pages of length of (1 << order) and marked with PG_buddy. Page's
|
|
* order is recorded in page_private(page) field.
|
|
* So when we are allocating or freeing one, we can derive the state of the
|
|
* other. That is, if we allocate a small block, and both were
|
|
* free, the remainder of the region must be split into blocks.
|
|
* If a block is freed, and its buddy is also free, then this
|
|
* triggers coalescing into a block of larger size.
|
|
*
|
|
* -- wli
|
|
*/
|
|
|
|
static inline void __free_one_page(struct page *page,
|
|
struct zone *zone, unsigned int order)
|
|
{
|
|
unsigned long page_idx;
|
|
int order_size = 1 << order;
|
|
|
|
if (unlikely(PageCompound(page)))
|
|
destroy_compound_page(page, order);
|
|
|
|
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
|
|
|
|
VM_BUG_ON(page_idx & (order_size - 1));
|
|
VM_BUG_ON(bad_range(zone, page));
|
|
|
|
zone->free_pages += order_size;
|
|
while (order < MAX_ORDER-1) {
|
|
unsigned long combined_idx;
|
|
struct free_area *area;
|
|
struct page *buddy;
|
|
|
|
buddy = __page_find_buddy(page, page_idx, order);
|
|
if (!page_is_buddy(page, buddy, order))
|
|
break; /* Move the buddy up one level. */
|
|
|
|
list_del(&buddy->lru);
|
|
area = zone->free_area + order;
|
|
area->nr_free--;
|
|
rmv_page_order(buddy);
|
|
combined_idx = __find_combined_index(page_idx, order);
|
|
page = page + (combined_idx - page_idx);
|
|
page_idx = combined_idx;
|
|
order++;
|
|
}
|
|
set_page_order(page, order);
|
|
list_add(&page->lru, &zone->free_area[order].free_list);
|
|
zone->free_area[order].nr_free++;
|
|
}
|
|
|
|
static inline int free_pages_check(struct page *page)
|
|
{
|
|
if (unlikely(page_mapcount(page) |
|
|
(page->mapping != NULL) |
|
|
(page_count(page) != 0) |
|
|
(page->flags & (
|
|
1 << PG_lru |
|
|
1 << PG_private |
|
|
1 << PG_locked |
|
|
1 << PG_active |
|
|
1 << PG_reclaim |
|
|
1 << PG_slab |
|
|
1 << PG_swapcache |
|
|
1 << PG_writeback |
|
|
1 << PG_reserved |
|
|
1 << PG_buddy ))))
|
|
bad_page(page);
|
|
if (PageDirty(page))
|
|
__ClearPageDirty(page);
|
|
/*
|
|
* For now, we report if PG_reserved was found set, but do not
|
|
* clear it, and do not free the page. But we shall soon need
|
|
* to do more, for when the ZERO_PAGE count wraps negative.
|
|
*/
|
|
return PageReserved(page);
|
|
}
|
|
|
|
/*
|
|
* Frees a list of pages.
|
|
* Assumes all pages on list are in same zone, and of same order.
|
|
* count is the number of pages to free.
|
|
*
|
|
* If the zone was previously in an "all pages pinned" state then look to
|
|
* see if this freeing clears that state.
|
|
*
|
|
* And clear the zone's pages_scanned counter, to hold off the "all pages are
|
|
* pinned" detection logic.
|
|
*/
|
|
static void free_pages_bulk(struct zone *zone, int count,
|
|
struct list_head *list, int order)
|
|
{
|
|
spin_lock(&zone->lock);
|
|
zone->all_unreclaimable = 0;
|
|
zone->pages_scanned = 0;
|
|
while (count--) {
|
|
struct page *page;
|
|
|
|
VM_BUG_ON(list_empty(list));
|
|
page = list_entry(list->prev, struct page, lru);
|
|
/* have to delete it as __free_one_page list manipulates */
|
|
list_del(&page->lru);
|
|
__free_one_page(page, zone, order);
|
|
}
|
|
spin_unlock(&zone->lock);
|
|
}
|
|
|
|
static void free_one_page(struct zone *zone, struct page *page, int order)
|
|
{
|
|
spin_lock(&zone->lock);
|
|
zone->all_unreclaimable = 0;
|
|
zone->pages_scanned = 0;
|
|
__free_one_page(page, zone ,order);
|
|
spin_unlock(&zone->lock);
|
|
}
|
|
|
|
static void __free_pages_ok(struct page *page, unsigned int order)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
int reserved = 0;
|
|
|
|
arch_free_page(page, order);
|
|
if (!PageHighMem(page))
|
|
debug_check_no_locks_freed(page_address(page),
|
|
PAGE_SIZE<<order);
|
|
|
|
for (i = 0 ; i < (1 << order) ; ++i)
|
|
reserved += free_pages_check(page + i);
|
|
if (reserved)
|
|
return;
|
|
|
|
kernel_map_pages(page, 1 << order, 0);
|
|
local_irq_save(flags);
|
|
__count_vm_events(PGFREE, 1 << order);
|
|
free_one_page(page_zone(page), page, order);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* permit the bootmem allocator to evade page validation on high-order frees
|
|
*/
|
|
void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
|
|
{
|
|
if (order == 0) {
|
|
__ClearPageReserved(page);
|
|
set_page_count(page, 0);
|
|
set_page_refcounted(page);
|
|
__free_page(page);
|
|
} else {
|
|
int loop;
|
|
|
|
prefetchw(page);
|
|
for (loop = 0; loop < BITS_PER_LONG; loop++) {
|
|
struct page *p = &page[loop];
|
|
|
|
if (loop + 1 < BITS_PER_LONG)
|
|
prefetchw(p + 1);
|
|
__ClearPageReserved(p);
|
|
set_page_count(p, 0);
|
|
}
|
|
|
|
set_page_refcounted(page);
|
|
__free_pages(page, order);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* The order of subdivision here is critical for the IO subsystem.
|
|
* Please do not alter this order without good reasons and regression
|
|
* testing. Specifically, as large blocks of memory are subdivided,
|
|
* the order in which smaller blocks are delivered depends on the order
|
|
* they're subdivided in this function. This is the primary factor
|
|
* influencing the order in which pages are delivered to the IO
|
|
* subsystem according to empirical testing, and this is also justified
|
|
* by considering the behavior of a buddy system containing a single
|
|
* large block of memory acted on by a series of small allocations.
|
|
* This behavior is a critical factor in sglist merging's success.
|
|
*
|
|
* -- wli
|
|
*/
|
|
static inline void expand(struct zone *zone, struct page *page,
|
|
int low, int high, struct free_area *area)
|
|
{
|
|
unsigned long size = 1 << high;
|
|
|
|
while (high > low) {
|
|
area--;
|
|
high--;
|
|
size >>= 1;
|
|
VM_BUG_ON(bad_range(zone, &page[size]));
|
|
list_add(&page[size].lru, &area->free_list);
|
|
area->nr_free++;
|
|
set_page_order(&page[size], high);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This page is about to be returned from the page allocator
|
|
*/
|
|
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
|
|
{
|
|
if (unlikely(page_mapcount(page) |
|
|
(page->mapping != NULL) |
|
|
(page_count(page) != 0) |
|
|
(page->flags & (
|
|
1 << PG_lru |
|
|
1 << PG_private |
|
|
1 << PG_locked |
|
|
1 << PG_active |
|
|
1 << PG_dirty |
|
|
1 << PG_reclaim |
|
|
1 << PG_slab |
|
|
1 << PG_swapcache |
|
|
1 << PG_writeback |
|
|
1 << PG_reserved |
|
|
1 << PG_buddy ))))
|
|
bad_page(page);
|
|
|
|
/*
|
|
* For now, we report if PG_reserved was found set, but do not
|
|
* clear it, and do not allocate the page: as a safety net.
|
|
*/
|
|
if (PageReserved(page))
|
|
return 1;
|
|
|
|
page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
|
|
1 << PG_referenced | 1 << PG_arch_1 |
|
|
1 << PG_checked | 1 << PG_mappedtodisk);
|
|
set_page_private(page, 0);
|
|
set_page_refcounted(page);
|
|
kernel_map_pages(page, 1 << order, 1);
|
|
|
|
if (gfp_flags & __GFP_ZERO)
|
|
prep_zero_page(page, order, gfp_flags);
|
|
|
|
if (order && (gfp_flags & __GFP_COMP))
|
|
prep_compound_page(page, order);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do the hard work of removing an element from the buddy allocator.
|
|
* Call me with the zone->lock already held.
|
|
*/
|
|
static struct page *__rmqueue(struct zone *zone, unsigned int order)
|
|
{
|
|
struct free_area * area;
|
|
unsigned int current_order;
|
|
struct page *page;
|
|
|
|
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
|
|
area = zone->free_area + current_order;
|
|
if (list_empty(&area->free_list))
|
|
continue;
|
|
|
|
page = list_entry(area->free_list.next, struct page, lru);
|
|
list_del(&page->lru);
|
|
rmv_page_order(page);
|
|
area->nr_free--;
|
|
zone->free_pages -= 1UL << order;
|
|
expand(zone, page, order, current_order, area);
|
|
return page;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Obtain a specified number of elements from the buddy allocator, all under
|
|
* a single hold of the lock, for efficiency. Add them to the supplied list.
|
|
* Returns the number of new pages which were placed at *list.
|
|
*/
|
|
static int rmqueue_bulk(struct zone *zone, unsigned int order,
|
|
unsigned long count, struct list_head *list)
|
|
{
|
|
int i;
|
|
|
|
spin_lock(&zone->lock);
|
|
for (i = 0; i < count; ++i) {
|
|
struct page *page = __rmqueue(zone, order);
|
|
if (unlikely(page == NULL))
|
|
break;
|
|
list_add_tail(&page->lru, list);
|
|
}
|
|
spin_unlock(&zone->lock);
|
|
return i;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Called from the slab reaper to drain pagesets on a particular node that
|
|
* belongs to the currently executing processor.
|
|
* Note that this function must be called with the thread pinned to
|
|
* a single processor.
|
|
*/
|
|
void drain_node_pages(int nodeid)
|
|
{
|
|
int i;
|
|
enum zone_type z;
|
|
unsigned long flags;
|
|
|
|
for (z = 0; z < MAX_NR_ZONES; z++) {
|
|
struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
|
|
struct per_cpu_pageset *pset;
|
|
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
pset = zone_pcp(zone, smp_processor_id());
|
|
for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
|
|
struct per_cpu_pages *pcp;
|
|
|
|
pcp = &pset->pcp[i];
|
|
if (pcp->count) {
|
|
local_irq_save(flags);
|
|
free_pages_bulk(zone, pcp->count, &pcp->list, 0);
|
|
pcp->count = 0;
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
|
|
static void __drain_pages(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
struct zone *zone;
|
|
int i;
|
|
|
|
for_each_zone(zone) {
|
|
struct per_cpu_pageset *pset;
|
|
|
|
pset = zone_pcp(zone, cpu);
|
|
for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
|
|
struct per_cpu_pages *pcp;
|
|
|
|
pcp = &pset->pcp[i];
|
|
local_irq_save(flags);
|
|
free_pages_bulk(zone, pcp->count, &pcp->list, 0);
|
|
pcp->count = 0;
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
void mark_free_pages(struct zone *zone)
|
|
{
|
|
unsigned long pfn, max_zone_pfn;
|
|
unsigned long flags;
|
|
int order;
|
|
struct list_head *curr;
|
|
|
|
if (!zone->spanned_pages)
|
|
return;
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
|
|
if (pfn_valid(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (!PageNosave(page))
|
|
ClearPageNosaveFree(page);
|
|
}
|
|
|
|
for (order = MAX_ORDER - 1; order >= 0; --order)
|
|
list_for_each(curr, &zone->free_area[order].free_list) {
|
|
unsigned long i;
|
|
|
|
pfn = page_to_pfn(list_entry(curr, struct page, lru));
|
|
for (i = 0; i < (1UL << order); i++)
|
|
SetPageNosaveFree(pfn_to_page(pfn + i));
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
|
|
*/
|
|
void drain_local_pages(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__drain_pages(smp_processor_id());
|
|
local_irq_restore(flags);
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* Free a 0-order page
|
|
*/
|
|
static void fastcall free_hot_cold_page(struct page *page, int cold)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
struct per_cpu_pages *pcp;
|
|
unsigned long flags;
|
|
|
|
arch_free_page(page, 0);
|
|
|
|
if (PageAnon(page))
|
|
page->mapping = NULL;
|
|
if (free_pages_check(page))
|
|
return;
|
|
|
|
kernel_map_pages(page, 1, 0);
|
|
|
|
pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
|
|
local_irq_save(flags);
|
|
__count_vm_event(PGFREE);
|
|
list_add(&page->lru, &pcp->list);
|
|
pcp->count++;
|
|
if (pcp->count >= pcp->high) {
|
|
free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
|
|
pcp->count -= pcp->batch;
|
|
}
|
|
local_irq_restore(flags);
|
|
put_cpu();
|
|
}
|
|
|
|
void fastcall free_hot_page(struct page *page)
|
|
{
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
|
|
void fastcall free_cold_page(struct page *page)
|
|
{
|
|
free_hot_cold_page(page, 1);
|
|
}
|
|
|
|
/*
|
|
* split_page takes a non-compound higher-order page, and splits it into
|
|
* n (1<<order) sub-pages: page[0..n]
|
|
* Each sub-page must be freed individually.
|
|
*
|
|
* Note: this is probably too low level an operation for use in drivers.
|
|
* Please consult with lkml before using this in your driver.
|
|
*/
|
|
void split_page(struct page *page, unsigned int order)
|
|
{
|
|
int i;
|
|
|
|
VM_BUG_ON(PageCompound(page));
|
|
VM_BUG_ON(!page_count(page));
|
|
for (i = 1; i < (1 << order); i++)
|
|
set_page_refcounted(page + i);
|
|
}
|
|
|
|
/*
|
|
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
|
|
* we cheat by calling it from here, in the order > 0 path. Saves a branch
|
|
* or two.
|
|
*/
|
|
static struct page *buffered_rmqueue(struct zonelist *zonelist,
|
|
struct zone *zone, int order, gfp_t gfp_flags)
|
|
{
|
|
unsigned long flags;
|
|
struct page *page;
|
|
int cold = !!(gfp_flags & __GFP_COLD);
|
|
int cpu;
|
|
|
|
again:
|
|
cpu = get_cpu();
|
|
if (likely(order == 0)) {
|
|
struct per_cpu_pages *pcp;
|
|
|
|
pcp = &zone_pcp(zone, cpu)->pcp[cold];
|
|
local_irq_save(flags);
|
|
if (!pcp->count) {
|
|
pcp->count += rmqueue_bulk(zone, 0,
|
|
pcp->batch, &pcp->list);
|
|
if (unlikely(!pcp->count))
|
|
goto failed;
|
|
}
|
|
page = list_entry(pcp->list.next, struct page, lru);
|
|
list_del(&page->lru);
|
|
pcp->count--;
|
|
} else {
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
page = __rmqueue(zone, order);
|
|
spin_unlock(&zone->lock);
|
|
if (!page)
|
|
goto failed;
|
|
}
|
|
|
|
__count_zone_vm_events(PGALLOC, zone, 1 << order);
|
|
zone_statistics(zonelist, zone);
|
|
local_irq_restore(flags);
|
|
put_cpu();
|
|
|
|
VM_BUG_ON(bad_range(zone, page));
|
|
if (prep_new_page(page, order, gfp_flags))
|
|
goto again;
|
|
return page;
|
|
|
|
failed:
|
|
local_irq_restore(flags);
|
|
put_cpu();
|
|
return NULL;
|
|
}
|
|
|
|
#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
|
|
#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
|
|
#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
|
|
#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
|
|
#define ALLOC_HARDER 0x10 /* try to alloc harder */
|
|
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
|
|
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
|
|
|
|
/*
|
|
* Return 1 if free pages are above 'mark'. This takes into account the order
|
|
* of the allocation.
|
|
*/
|
|
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
|
|
int classzone_idx, int alloc_flags)
|
|
{
|
|
/* free_pages my go negative - that's OK */
|
|
long min = mark, free_pages = z->free_pages - (1 << order) + 1;
|
|
int o;
|
|
|
|
if (alloc_flags & ALLOC_HIGH)
|
|
min -= min / 2;
|
|
if (alloc_flags & ALLOC_HARDER)
|
|
min -= min / 4;
|
|
|
|
if (free_pages <= min + z->lowmem_reserve[classzone_idx])
|
|
return 0;
|
|
for (o = 0; o < order; o++) {
|
|
/* At the next order, this order's pages become unavailable */
|
|
free_pages -= z->free_area[o].nr_free << o;
|
|
|
|
/* Require fewer higher order pages to be free */
|
|
min >>= 1;
|
|
|
|
if (free_pages <= min)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* get_page_from_freeliest goes through the zonelist trying to allocate
|
|
* a page.
|
|
*/
|
|
static struct page *
|
|
get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, int alloc_flags)
|
|
{
|
|
struct zone **z = zonelist->zones;
|
|
struct page *page = NULL;
|
|
int classzone_idx = zone_idx(*z);
|
|
struct zone *zone;
|
|
|
|
/*
|
|
* Go through the zonelist once, looking for a zone with enough free.
|
|
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
|
|
*/
|
|
do {
|
|
zone = *z;
|
|
if (unlikely((gfp_mask & __GFP_THISNODE) &&
|
|
zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
|
|
break;
|
|
if ((alloc_flags & ALLOC_CPUSET) &&
|
|
!cpuset_zone_allowed(zone, gfp_mask))
|
|
continue;
|
|
|
|
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
|
|
unsigned long mark;
|
|
if (alloc_flags & ALLOC_WMARK_MIN)
|
|
mark = zone->pages_min;
|
|
else if (alloc_flags & ALLOC_WMARK_LOW)
|
|
mark = zone->pages_low;
|
|
else
|
|
mark = zone->pages_high;
|
|
if (!zone_watermark_ok(zone , order, mark,
|
|
classzone_idx, alloc_flags))
|
|
if (!zone_reclaim_mode ||
|
|
!zone_reclaim(zone, gfp_mask, order))
|
|
continue;
|
|
}
|
|
|
|
page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
|
|
if (page) {
|
|
break;
|
|
}
|
|
} while (*(++z) != NULL);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* This is the 'heart' of the zoned buddy allocator.
|
|
*/
|
|
struct page * fastcall
|
|
__alloc_pages(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist)
|
|
{
|
|
const gfp_t wait = gfp_mask & __GFP_WAIT;
|
|
struct zone **z;
|
|
struct page *page;
|
|
struct reclaim_state reclaim_state;
|
|
struct task_struct *p = current;
|
|
int do_retry;
|
|
int alloc_flags;
|
|
int did_some_progress;
|
|
|
|
might_sleep_if(wait);
|
|
|
|
restart:
|
|
z = zonelist->zones; /* the list of zones suitable for gfp_mask */
|
|
|
|
if (unlikely(*z == NULL)) {
|
|
/* Should this ever happen?? */
|
|
return NULL;
|
|
}
|
|
|
|
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
|
|
zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
|
|
if (page)
|
|
goto got_pg;
|
|
|
|
do {
|
|
wakeup_kswapd(*z, order);
|
|
} while (*(++z));
|
|
|
|
/*
|
|
* OK, we're below the kswapd watermark and have kicked background
|
|
* reclaim. Now things get more complex, so set up alloc_flags according
|
|
* to how we want to proceed.
|
|
*
|
|
* The caller may dip into page reserves a bit more if the caller
|
|
* cannot run direct reclaim, or if the caller has realtime scheduling
|
|
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
|
|
* set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
|
|
*/
|
|
alloc_flags = ALLOC_WMARK_MIN;
|
|
if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
|
|
alloc_flags |= ALLOC_HARDER;
|
|
if (gfp_mask & __GFP_HIGH)
|
|
alloc_flags |= ALLOC_HIGH;
|
|
if (wait)
|
|
alloc_flags |= ALLOC_CPUSET;
|
|
|
|
/*
|
|
* Go through the zonelist again. Let __GFP_HIGH and allocations
|
|
* coming from realtime tasks go deeper into reserves.
|
|
*
|
|
* This is the last chance, in general, before the goto nopage.
|
|
* Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
|
|
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
|
|
*/
|
|
page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
|
|
if (page)
|
|
goto got_pg;
|
|
|
|
/* This allocation should allow future memory freeing. */
|
|
|
|
if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
|
|
&& !in_interrupt()) {
|
|
if (!(gfp_mask & __GFP_NOMEMALLOC)) {
|
|
nofail_alloc:
|
|
/* go through the zonelist yet again, ignoring mins */
|
|
page = get_page_from_freelist(gfp_mask, order,
|
|
zonelist, ALLOC_NO_WATERMARKS);
|
|
if (page)
|
|
goto got_pg;
|
|
if (gfp_mask & __GFP_NOFAIL) {
|
|
blk_congestion_wait(WRITE, HZ/50);
|
|
goto nofail_alloc;
|
|
}
|
|
}
|
|
goto nopage;
|
|
}
|
|
|
|
/* Atomic allocations - we can't balance anything */
|
|
if (!wait)
|
|
goto nopage;
|
|
|
|
rebalance:
|
|
cond_resched();
|
|
|
|
/* We now go into synchronous reclaim */
|
|
cpuset_memory_pressure_bump();
|
|
p->flags |= PF_MEMALLOC;
|
|
reclaim_state.reclaimed_slab = 0;
|
|
p->reclaim_state = &reclaim_state;
|
|
|
|
did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
|
|
|
|
p->reclaim_state = NULL;
|
|
p->flags &= ~PF_MEMALLOC;
|
|
|
|
cond_resched();
|
|
|
|
if (likely(did_some_progress)) {
|
|
page = get_page_from_freelist(gfp_mask, order,
|
|
zonelist, alloc_flags);
|
|
if (page)
|
|
goto got_pg;
|
|
} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
|
|
/*
|
|
* Go through the zonelist yet one more time, keep
|
|
* very high watermark here, this is only to catch
|
|
* a parallel oom killing, we must fail if we're still
|
|
* under heavy pressure.
|
|
*/
|
|
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
|
|
zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
|
|
if (page)
|
|
goto got_pg;
|
|
|
|
out_of_memory(zonelist, gfp_mask, order);
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* Don't let big-order allocations loop unless the caller explicitly
|
|
* requests that. Wait for some write requests to complete then retry.
|
|
*
|
|
* In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
|
|
* <= 3, but that may not be true in other implementations.
|
|
*/
|
|
do_retry = 0;
|
|
if (!(gfp_mask & __GFP_NORETRY)) {
|
|
if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
|
|
do_retry = 1;
|
|
if (gfp_mask & __GFP_NOFAIL)
|
|
do_retry = 1;
|
|
}
|
|
if (do_retry) {
|
|
blk_congestion_wait(WRITE, HZ/50);
|
|
goto rebalance;
|
|
}
|
|
|
|
nopage:
|
|
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
|
|
printk(KERN_WARNING "%s: page allocation failure."
|
|
" order:%d, mode:0x%x\n",
|
|
p->comm, order, gfp_mask);
|
|
dump_stack();
|
|
show_mem();
|
|
}
|
|
got_pg:
|
|
return page;
|
|
}
|
|
|
|
EXPORT_SYMBOL(__alloc_pages);
|
|
|
|
/*
|
|
* Common helper functions.
|
|
*/
|
|
fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
struct page * page;
|
|
page = alloc_pages(gfp_mask, order);
|
|
if (!page)
|
|
return 0;
|
|
return (unsigned long) page_address(page);
|
|
}
|
|
|
|
EXPORT_SYMBOL(__get_free_pages);
|
|
|
|
fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
|
|
{
|
|
struct page * page;
|
|
|
|
/*
|
|
* get_zeroed_page() returns a 32-bit address, which cannot represent
|
|
* a highmem page
|
|
*/
|
|
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
|
|
|
|
page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
|
|
if (page)
|
|
return (unsigned long) page_address(page);
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(get_zeroed_page);
|
|
|
|
void __pagevec_free(struct pagevec *pvec)
|
|
{
|
|
int i = pagevec_count(pvec);
|
|
|
|
while (--i >= 0)
|
|
free_hot_cold_page(pvec->pages[i], pvec->cold);
|
|
}
|
|
|
|
fastcall void __free_pages(struct page *page, unsigned int order)
|
|
{
|
|
if (put_page_testzero(page)) {
|
|
if (order == 0)
|
|
free_hot_page(page);
|
|
else
|
|
__free_pages_ok(page, order);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(__free_pages);
|
|
|
|
fastcall void free_pages(unsigned long addr, unsigned int order)
|
|
{
|
|
if (addr != 0) {
|
|
VM_BUG_ON(!virt_addr_valid((void *)addr));
|
|
__free_pages(virt_to_page((void *)addr), order);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(free_pages);
|
|
|
|
/*
|
|
* Total amount of free (allocatable) RAM:
|
|
*/
|
|
unsigned int nr_free_pages(void)
|
|
{
|
|
unsigned int sum = 0;
|
|
struct zone *zone;
|
|
|
|
for_each_zone(zone)
|
|
sum += zone->free_pages;
|
|
|
|
return sum;
|
|
}
|
|
|
|
EXPORT_SYMBOL(nr_free_pages);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
|
|
{
|
|
unsigned int sum = 0;
|
|
enum zone_type i;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
sum += pgdat->node_zones[i].free_pages;
|
|
|
|
return sum;
|
|
}
|
|
#endif
|
|
|
|
static unsigned int nr_free_zone_pages(int offset)
|
|
{
|
|
/* Just pick one node, since fallback list is circular */
|
|
pg_data_t *pgdat = NODE_DATA(numa_node_id());
|
|
unsigned int sum = 0;
|
|
|
|
struct zonelist *zonelist = pgdat->node_zonelists + offset;
|
|
struct zone **zonep = zonelist->zones;
|
|
struct zone *zone;
|
|
|
|
for (zone = *zonep++; zone; zone = *zonep++) {
|
|
unsigned long size = zone->present_pages;
|
|
unsigned long high = zone->pages_high;
|
|
if (size > high)
|
|
sum += size - high;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
|
|
*/
|
|
unsigned int nr_free_buffer_pages(void)
|
|
{
|
|
return nr_free_zone_pages(gfp_zone(GFP_USER));
|
|
}
|
|
|
|
/*
|
|
* Amount of free RAM allocatable within all zones
|
|
*/
|
|
unsigned int nr_free_pagecache_pages(void)
|
|
{
|
|
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
|
|
}
|
|
#ifdef CONFIG_NUMA
|
|
static void show_node(struct zone *zone)
|
|
{
|
|
printk("Node %ld ", zone_to_nid(zone));
|
|
}
|
|
#else
|
|
#define show_node(zone) do { } while (0)
|
|
#endif
|
|
|
|
void si_meminfo(struct sysinfo *val)
|
|
{
|
|
val->totalram = totalram_pages;
|
|
val->sharedram = 0;
|
|
val->freeram = nr_free_pages();
|
|
val->bufferram = nr_blockdev_pages();
|
|
val->totalhigh = totalhigh_pages;
|
|
val->freehigh = nr_free_highpages();
|
|
val->mem_unit = PAGE_SIZE;
|
|
}
|
|
|
|
EXPORT_SYMBOL(si_meminfo);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
void si_meminfo_node(struct sysinfo *val, int nid)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
|
|
val->totalram = pgdat->node_present_pages;
|
|
val->freeram = nr_free_pages_pgdat(pgdat);
|
|
#ifdef CONFIG_HIGHMEM
|
|
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
|
|
val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
|
|
#else
|
|
val->totalhigh = 0;
|
|
val->freehigh = 0;
|
|
#endif
|
|
val->mem_unit = PAGE_SIZE;
|
|
}
|
|
#endif
|
|
|
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
|
|
|
/*
|
|
* Show free area list (used inside shift_scroll-lock stuff)
|
|
* We also calculate the percentage fragmentation. We do this by counting the
|
|
* memory on each free list with the exception of the first item on the list.
|
|
*/
|
|
void show_free_areas(void)
|
|
{
|
|
int cpu, temperature;
|
|
unsigned long active;
|
|
unsigned long inactive;
|
|
unsigned long free;
|
|
struct zone *zone;
|
|
|
|
for_each_zone(zone) {
|
|
show_node(zone);
|
|
printk("%s per-cpu:", zone->name);
|
|
|
|
if (!populated_zone(zone)) {
|
|
printk(" empty\n");
|
|
continue;
|
|
} else
|
|
printk("\n");
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct per_cpu_pageset *pageset;
|
|
|
|
pageset = zone_pcp(zone, cpu);
|
|
|
|
for (temperature = 0; temperature < 2; temperature++)
|
|
printk("cpu %d %s: high %d, batch %d used:%d\n",
|
|
cpu,
|
|
temperature ? "cold" : "hot",
|
|
pageset->pcp[temperature].high,
|
|
pageset->pcp[temperature].batch,
|
|
pageset->pcp[temperature].count);
|
|
}
|
|
}
|
|
|
|
get_zone_counts(&active, &inactive, &free);
|
|
|
|
printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
|
|
"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
|
|
active,
|
|
inactive,
|
|
global_page_state(NR_FILE_DIRTY),
|
|
global_page_state(NR_WRITEBACK),
|
|
global_page_state(NR_UNSTABLE_NFS),
|
|
nr_free_pages(),
|
|
global_page_state(NR_SLAB_RECLAIMABLE) +
|
|
global_page_state(NR_SLAB_UNRECLAIMABLE),
|
|
global_page_state(NR_FILE_MAPPED),
|
|
global_page_state(NR_PAGETABLE));
|
|
|
|
for_each_zone(zone) {
|
|
int i;
|
|
|
|
show_node(zone);
|
|
printk("%s"
|
|
" free:%lukB"
|
|
" min:%lukB"
|
|
" low:%lukB"
|
|
" high:%lukB"
|
|
" active:%lukB"
|
|
" inactive:%lukB"
|
|
" present:%lukB"
|
|
" pages_scanned:%lu"
|
|
" all_unreclaimable? %s"
|
|
"\n",
|
|
zone->name,
|
|
K(zone->free_pages),
|
|
K(zone->pages_min),
|
|
K(zone->pages_low),
|
|
K(zone->pages_high),
|
|
K(zone->nr_active),
|
|
K(zone->nr_inactive),
|
|
K(zone->present_pages),
|
|
zone->pages_scanned,
|
|
(zone->all_unreclaimable ? "yes" : "no")
|
|
);
|
|
printk("lowmem_reserve[]:");
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
printk(" %lu", zone->lowmem_reserve[i]);
|
|
printk("\n");
|
|
}
|
|
|
|
for_each_zone(zone) {
|
|
unsigned long nr[MAX_ORDER], flags, order, total = 0;
|
|
|
|
show_node(zone);
|
|
printk("%s: ", zone->name);
|
|
if (!populated_zone(zone)) {
|
|
printk("empty\n");
|
|
continue;
|
|
}
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
for (order = 0; order < MAX_ORDER; order++) {
|
|
nr[order] = zone->free_area[order].nr_free;
|
|
total += nr[order] << order;
|
|
}
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
for (order = 0; order < MAX_ORDER; order++)
|
|
printk("%lu*%lukB ", nr[order], K(1UL) << order);
|
|
printk("= %lukB\n", K(total));
|
|
}
|
|
|
|
show_swap_cache_info();
|
|
}
|
|
|
|
/*
|
|
* Builds allocation fallback zone lists.
|
|
*
|
|
* Add all populated zones of a node to the zonelist.
|
|
*/
|
|
static int __meminit build_zonelists_node(pg_data_t *pgdat,
|
|
struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
|
|
{
|
|
struct zone *zone;
|
|
|
|
BUG_ON(zone_type >= MAX_NR_ZONES);
|
|
zone_type++;
|
|
|
|
do {
|
|
zone_type--;
|
|
zone = pgdat->node_zones + zone_type;
|
|
if (populated_zone(zone)) {
|
|
zonelist->zones[nr_zones++] = zone;
|
|
check_highest_zone(zone_type);
|
|
}
|
|
|
|
} while (zone_type);
|
|
return nr_zones;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
#define MAX_NODE_LOAD (num_online_nodes())
|
|
static int __meminitdata node_load[MAX_NUMNODES];
|
|
/**
|
|
* find_next_best_node - find the next node that should appear in a given node's fallback list
|
|
* @node: node whose fallback list we're appending
|
|
* @used_node_mask: nodemask_t of already used nodes
|
|
*
|
|
* We use a number of factors to determine which is the next node that should
|
|
* appear on a given node's fallback list. The node should not have appeared
|
|
* already in @node's fallback list, and it should be the next closest node
|
|
* according to the distance array (which contains arbitrary distance values
|
|
* from each node to each node in the system), and should also prefer nodes
|
|
* with no CPUs, since presumably they'll have very little allocation pressure
|
|
* on them otherwise.
|
|
* It returns -1 if no node is found.
|
|
*/
|
|
static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
|
|
{
|
|
int n, val;
|
|
int min_val = INT_MAX;
|
|
int best_node = -1;
|
|
|
|
/* Use the local node if we haven't already */
|
|
if (!node_isset(node, *used_node_mask)) {
|
|
node_set(node, *used_node_mask);
|
|
return node;
|
|
}
|
|
|
|
for_each_online_node(n) {
|
|
cpumask_t tmp;
|
|
|
|
/* Don't want a node to appear more than once */
|
|
if (node_isset(n, *used_node_mask))
|
|
continue;
|
|
|
|
/* Use the distance array to find the distance */
|
|
val = node_distance(node, n);
|
|
|
|
/* Penalize nodes under us ("prefer the next node") */
|
|
val += (n < node);
|
|
|
|
/* Give preference to headless and unused nodes */
|
|
tmp = node_to_cpumask(n);
|
|
if (!cpus_empty(tmp))
|
|
val += PENALTY_FOR_NODE_WITH_CPUS;
|
|
|
|
/* Slight preference for less loaded node */
|
|
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
|
|
val += node_load[n];
|
|
|
|
if (val < min_val) {
|
|
min_val = val;
|
|
best_node = n;
|
|
}
|
|
}
|
|
|
|
if (best_node >= 0)
|
|
node_set(best_node, *used_node_mask);
|
|
|
|
return best_node;
|
|
}
|
|
|
|
static void __meminit build_zonelists(pg_data_t *pgdat)
|
|
{
|
|
int j, node, local_node;
|
|
enum zone_type i;
|
|
int prev_node, load;
|
|
struct zonelist *zonelist;
|
|
nodemask_t used_mask;
|
|
|
|
/* initialize zonelists */
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
zonelist = pgdat->node_zonelists + i;
|
|
zonelist->zones[0] = NULL;
|
|
}
|
|
|
|
/* NUMA-aware ordering of nodes */
|
|
local_node = pgdat->node_id;
|
|
load = num_online_nodes();
|
|
prev_node = local_node;
|
|
nodes_clear(used_mask);
|
|
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
|
|
int distance = node_distance(local_node, node);
|
|
|
|
/*
|
|
* If another node is sufficiently far away then it is better
|
|
* to reclaim pages in a zone before going off node.
|
|
*/
|
|
if (distance > RECLAIM_DISTANCE)
|
|
zone_reclaim_mode = 1;
|
|
|
|
/*
|
|
* We don't want to pressure a particular node.
|
|
* So adding penalty to the first node in same
|
|
* distance group to make it round-robin.
|
|
*/
|
|
|
|
if (distance != node_distance(local_node, prev_node))
|
|
node_load[node] += load;
|
|
prev_node = node;
|
|
load--;
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
zonelist = pgdat->node_zonelists + i;
|
|
for (j = 0; zonelist->zones[j] != NULL; j++);
|
|
|
|
j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
|
|
zonelist->zones[j] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
static void __meminit build_zonelists(pg_data_t *pgdat)
|
|
{
|
|
int node, local_node;
|
|
enum zone_type i,j;
|
|
|
|
local_node = pgdat->node_id;
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
struct zonelist *zonelist;
|
|
|
|
zonelist = pgdat->node_zonelists + i;
|
|
|
|
j = build_zonelists_node(pgdat, zonelist, 0, i);
|
|
/*
|
|
* Now we build the zonelist so that it contains the zones
|
|
* of all the other nodes.
|
|
* We don't want to pressure a particular node, so when
|
|
* building the zones for node N, we make sure that the
|
|
* zones coming right after the local ones are those from
|
|
* node N+1 (modulo N)
|
|
*/
|
|
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
|
|
if (!node_online(node))
|
|
continue;
|
|
j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
|
|
}
|
|
for (node = 0; node < local_node; node++) {
|
|
if (!node_online(node))
|
|
continue;
|
|
j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
|
|
}
|
|
|
|
zonelist->zones[j] = NULL;
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/* return values int ....just for stop_machine_run() */
|
|
static int __meminit __build_all_zonelists(void *dummy)
|
|
{
|
|
int nid;
|
|
for_each_online_node(nid)
|
|
build_zonelists(NODE_DATA(nid));
|
|
return 0;
|
|
}
|
|
|
|
void __meminit build_all_zonelists(void)
|
|
{
|
|
if (system_state == SYSTEM_BOOTING) {
|
|
__build_all_zonelists(0);
|
|
cpuset_init_current_mems_allowed();
|
|
} else {
|
|
/* we have to stop all cpus to guaranntee there is no user
|
|
of zonelist */
|
|
stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
|
|
/* cpuset refresh routine should be here */
|
|
}
|
|
vm_total_pages = nr_free_pagecache_pages();
|
|
printk("Built %i zonelists. Total pages: %ld\n",
|
|
num_online_nodes(), vm_total_pages);
|
|
}
|
|
|
|
/*
|
|
* Helper functions to size the waitqueue hash table.
|
|
* Essentially these want to choose hash table sizes sufficiently
|
|
* large so that collisions trying to wait on pages are rare.
|
|
* But in fact, the number of active page waitqueues on typical
|
|
* systems is ridiculously low, less than 200. So this is even
|
|
* conservative, even though it seems large.
|
|
*
|
|
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
|
|
* waitqueues, i.e. the size of the waitq table given the number of pages.
|
|
*/
|
|
#define PAGES_PER_WAITQUEUE 256
|
|
|
|
#ifndef CONFIG_MEMORY_HOTPLUG
|
|
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
|
|
{
|
|
unsigned long size = 1;
|
|
|
|
pages /= PAGES_PER_WAITQUEUE;
|
|
|
|
while (size < pages)
|
|
size <<= 1;
|
|
|
|
/*
|
|
* Once we have dozens or even hundreds of threads sleeping
|
|
* on IO we've got bigger problems than wait queue collision.
|
|
* Limit the size of the wait table to a reasonable size.
|
|
*/
|
|
size = min(size, 4096UL);
|
|
|
|
return max(size, 4UL);
|
|
}
|
|
#else
|
|
/*
|
|
* A zone's size might be changed by hot-add, so it is not possible to determine
|
|
* a suitable size for its wait_table. So we use the maximum size now.
|
|
*
|
|
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
|
|
*
|
|
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
|
|
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
|
|
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
|
|
*
|
|
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
|
|
* or more by the traditional way. (See above). It equals:
|
|
*
|
|
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
|
|
* ia64(16K page size) : = ( 8G + 4M)byte.
|
|
* powerpc (64K page size) : = (32G +16M)byte.
|
|
*/
|
|
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
|
|
{
|
|
return 4096UL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is an integer logarithm so that shifts can be used later
|
|
* to extract the more random high bits from the multiplicative
|
|
* hash function before the remainder is taken.
|
|
*/
|
|
static inline unsigned long wait_table_bits(unsigned long size)
|
|
{
|
|
return ffz(~size);
|
|
}
|
|
|
|
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
|
|
|
|
/*
|
|
* Initially all pages are reserved - free ones are freed
|
|
* up by free_all_bootmem() once the early boot process is
|
|
* done. Non-atomic initialization, single-pass.
|
|
*/
|
|
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn)
|
|
{
|
|
struct page *page;
|
|
unsigned long end_pfn = start_pfn + size;
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
|
if (!early_pfn_valid(pfn))
|
|
continue;
|
|
page = pfn_to_page(pfn);
|
|
set_page_links(page, zone, nid, pfn);
|
|
init_page_count(page);
|
|
reset_page_mapcount(page);
|
|
SetPageReserved(page);
|
|
INIT_LIST_HEAD(&page->lru);
|
|
#ifdef WANT_PAGE_VIRTUAL
|
|
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
|
|
if (!is_highmem_idx(zone))
|
|
set_page_address(page, __va(pfn << PAGE_SHIFT));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
|
|
unsigned long size)
|
|
{
|
|
int order;
|
|
for (order = 0; order < MAX_ORDER ; order++) {
|
|
INIT_LIST_HEAD(&zone->free_area[order].free_list);
|
|
zone->free_area[order].nr_free = 0;
|
|
}
|
|
}
|
|
|
|
#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
|
|
void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
|
|
unsigned long pfn, unsigned long size)
|
|
{
|
|
unsigned long snum = pfn_to_section_nr(pfn);
|
|
unsigned long end = pfn_to_section_nr(pfn + size);
|
|
|
|
if (FLAGS_HAS_NODE)
|
|
zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
|
|
else
|
|
for (; snum <= end; snum++)
|
|
zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_MEMMAP_INIT
|
|
#define memmap_init(size, nid, zone, start_pfn) \
|
|
memmap_init_zone((size), (nid), (zone), (start_pfn))
|
|
#endif
|
|
|
|
static int __cpuinit zone_batchsize(struct zone *zone)
|
|
{
|
|
int batch;
|
|
|
|
/*
|
|
* The per-cpu-pages pools are set to around 1000th of the
|
|
* size of the zone. But no more than 1/2 of a meg.
|
|
*
|
|
* OK, so we don't know how big the cache is. So guess.
|
|
*/
|
|
batch = zone->present_pages / 1024;
|
|
if (batch * PAGE_SIZE > 512 * 1024)
|
|
batch = (512 * 1024) / PAGE_SIZE;
|
|
batch /= 4; /* We effectively *= 4 below */
|
|
if (batch < 1)
|
|
batch = 1;
|
|
|
|
/*
|
|
* Clamp the batch to a 2^n - 1 value. Having a power
|
|
* of 2 value was found to be more likely to have
|
|
* suboptimal cache aliasing properties in some cases.
|
|
*
|
|
* For example if 2 tasks are alternately allocating
|
|
* batches of pages, one task can end up with a lot
|
|
* of pages of one half of the possible page colors
|
|
* and the other with pages of the other colors.
|
|
*/
|
|
batch = (1 << (fls(batch + batch/2)-1)) - 1;
|
|
|
|
return batch;
|
|
}
|
|
|
|
inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
|
|
{
|
|
struct per_cpu_pages *pcp;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
pcp = &p->pcp[0]; /* hot */
|
|
pcp->count = 0;
|
|
pcp->high = 6 * batch;
|
|
pcp->batch = max(1UL, 1 * batch);
|
|
INIT_LIST_HEAD(&pcp->list);
|
|
|
|
pcp = &p->pcp[1]; /* cold*/
|
|
pcp->count = 0;
|
|
pcp->high = 2 * batch;
|
|
pcp->batch = max(1UL, batch/2);
|
|
INIT_LIST_HEAD(&pcp->list);
|
|
}
|
|
|
|
/*
|
|
* setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
|
|
* to the value high for the pageset p.
|
|
*/
|
|
|
|
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
|
|
unsigned long high)
|
|
{
|
|
struct per_cpu_pages *pcp;
|
|
|
|
pcp = &p->pcp[0]; /* hot list */
|
|
pcp->high = high;
|
|
pcp->batch = max(1UL, high/4);
|
|
if ((high/4) > (PAGE_SHIFT * 8))
|
|
pcp->batch = PAGE_SHIFT * 8;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Boot pageset table. One per cpu which is going to be used for all
|
|
* zones and all nodes. The parameters will be set in such a way
|
|
* that an item put on a list will immediately be handed over to
|
|
* the buddy list. This is safe since pageset manipulation is done
|
|
* with interrupts disabled.
|
|
*
|
|
* Some NUMA counter updates may also be caught by the boot pagesets.
|
|
*
|
|
* The boot_pagesets must be kept even after bootup is complete for
|
|
* unused processors and/or zones. They do play a role for bootstrapping
|
|
* hotplugged processors.
|
|
*
|
|
* zoneinfo_show() and maybe other functions do
|
|
* not check if the processor is online before following the pageset pointer.
|
|
* Other parts of the kernel may not check if the zone is available.
|
|
*/
|
|
static struct per_cpu_pageset boot_pageset[NR_CPUS];
|
|
|
|
/*
|
|
* Dynamically allocate memory for the
|
|
* per cpu pageset array in struct zone.
|
|
*/
|
|
static int __cpuinit process_zones(int cpu)
|
|
{
|
|
struct zone *zone, *dzone;
|
|
|
|
for_each_zone(zone) {
|
|
|
|
zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!zone_pcp(zone, cpu))
|
|
goto bad;
|
|
|
|
setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
|
|
|
|
if (percpu_pagelist_fraction)
|
|
setup_pagelist_highmark(zone_pcp(zone, cpu),
|
|
(zone->present_pages / percpu_pagelist_fraction));
|
|
}
|
|
|
|
return 0;
|
|
bad:
|
|
for_each_zone(dzone) {
|
|
if (dzone == zone)
|
|
break;
|
|
kfree(zone_pcp(dzone, cpu));
|
|
zone_pcp(dzone, cpu) = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static inline void free_zone_pagesets(int cpu)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_zone(zone) {
|
|
struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
|
|
|
|
/* Free per_cpu_pageset if it is slab allocated */
|
|
if (pset != &boot_pageset[cpu])
|
|
kfree(pset);
|
|
zone_pcp(zone, cpu) = NULL;
|
|
}
|
|
}
|
|
|
|
static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
int cpu = (long)hcpu;
|
|
int ret = NOTIFY_OK;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
if (process_zones(cpu))
|
|
ret = NOTIFY_BAD;
|
|
break;
|
|
case CPU_UP_CANCELED:
|
|
case CPU_DEAD:
|
|
free_zone_pagesets(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata pageset_notifier =
|
|
{ &pageset_cpuup_callback, NULL, 0 };
|
|
|
|
void __init setup_per_cpu_pageset(void)
|
|
{
|
|
int err;
|
|
|
|
/* Initialize per_cpu_pageset for cpu 0.
|
|
* A cpuup callback will do this for every cpu
|
|
* as it comes online
|
|
*/
|
|
err = process_zones(smp_processor_id());
|
|
BUG_ON(err);
|
|
register_cpu_notifier(&pageset_notifier);
|
|
}
|
|
|
|
#endif
|
|
|
|
static __meminit
|
|
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
|
|
{
|
|
int i;
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
size_t alloc_size;
|
|
|
|
/*
|
|
* The per-page waitqueue mechanism uses hashed waitqueues
|
|
* per zone.
|
|
*/
|
|
zone->wait_table_hash_nr_entries =
|
|
wait_table_hash_nr_entries(zone_size_pages);
|
|
zone->wait_table_bits =
|
|
wait_table_bits(zone->wait_table_hash_nr_entries);
|
|
alloc_size = zone->wait_table_hash_nr_entries
|
|
* sizeof(wait_queue_head_t);
|
|
|
|
if (system_state == SYSTEM_BOOTING) {
|
|
zone->wait_table = (wait_queue_head_t *)
|
|
alloc_bootmem_node(pgdat, alloc_size);
|
|
} else {
|
|
/*
|
|
* This case means that a zone whose size was 0 gets new memory
|
|
* via memory hot-add.
|
|
* But it may be the case that a new node was hot-added. In
|
|
* this case vmalloc() will not be able to use this new node's
|
|
* memory - this wait_table must be initialized to use this new
|
|
* node itself as well.
|
|
* To use this new node's memory, further consideration will be
|
|
* necessary.
|
|
*/
|
|
zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
|
|
}
|
|
if (!zone->wait_table)
|
|
return -ENOMEM;
|
|
|
|
for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
|
|
init_waitqueue_head(zone->wait_table + i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __meminit void zone_pcp_init(struct zone *zone)
|
|
{
|
|
int cpu;
|
|
unsigned long batch = zone_batchsize(zone);
|
|
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
#ifdef CONFIG_NUMA
|
|
/* Early boot. Slab allocator not functional yet */
|
|
zone_pcp(zone, cpu) = &boot_pageset[cpu];
|
|
setup_pageset(&boot_pageset[cpu],0);
|
|
#else
|
|
setup_pageset(zone_pcp(zone,cpu), batch);
|
|
#endif
|
|
}
|
|
if (zone->present_pages)
|
|
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
|
|
zone->name, zone->present_pages, batch);
|
|
}
|
|
|
|
__meminit int init_currently_empty_zone(struct zone *zone,
|
|
unsigned long zone_start_pfn,
|
|
unsigned long size)
|
|
{
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
int ret;
|
|
ret = zone_wait_table_init(zone, size);
|
|
if (ret)
|
|
return ret;
|
|
pgdat->nr_zones = zone_idx(zone) + 1;
|
|
|
|
zone->zone_start_pfn = zone_start_pfn;
|
|
|
|
memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
|
|
|
|
zone_init_free_lists(pgdat, zone, zone->spanned_pages);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
|
|
/*
|
|
* Basic iterator support. Return the first range of PFNs for a node
|
|
* Note: nid == MAX_NUMNODES returns first region regardless of node
|
|
*/
|
|
static int __init first_active_region_index_in_nid(int nid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_nodemap_entries; i++)
|
|
if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Basic iterator support. Return the next active range of PFNs for a node
|
|
* Note: nid == MAX_NUMNODES returns next region regardles of node
|
|
*/
|
|
static int __init next_active_region_index_in_nid(int index, int nid)
|
|
{
|
|
for (index = index + 1; index < nr_nodemap_entries; index++)
|
|
if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
|
|
return index;
|
|
|
|
return -1;
|
|
}
|
|
|
|
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
|
|
/*
|
|
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
|
|
* Architectures may implement their own version but if add_active_range()
|
|
* was used and there are no special requirements, this is a convenient
|
|
* alternative
|
|
*/
|
|
int __init early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_nodemap_entries; i++) {
|
|
unsigned long start_pfn = early_node_map[i].start_pfn;
|
|
unsigned long end_pfn = early_node_map[i].end_pfn;
|
|
|
|
if (start_pfn <= pfn && pfn < end_pfn)
|
|
return early_node_map[i].nid;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
|
|
|
|
/* Basic iterator support to walk early_node_map[] */
|
|
#define for_each_active_range_index_in_nid(i, nid) \
|
|
for (i = first_active_region_index_in_nid(nid); i != -1; \
|
|
i = next_active_region_index_in_nid(i, nid))
|
|
|
|
/**
|
|
* free_bootmem_with_active_regions - Call free_bootmem_node for each active range
|
|
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed
|
|
* @max_low_pfn: The highest PFN that till be passed to free_bootmem_node
|
|
*
|
|
* If an architecture guarantees that all ranges registered with
|
|
* add_active_ranges() contain no holes and may be freed, this
|
|
* this function may be used instead of calling free_bootmem() manually.
|
|
*/
|
|
void __init free_bootmem_with_active_regions(int nid,
|
|
unsigned long max_low_pfn)
|
|
{
|
|
int i;
|
|
|
|
for_each_active_range_index_in_nid(i, nid) {
|
|
unsigned long size_pages = 0;
|
|
unsigned long end_pfn = early_node_map[i].end_pfn;
|
|
|
|
if (early_node_map[i].start_pfn >= max_low_pfn)
|
|
continue;
|
|
|
|
if (end_pfn > max_low_pfn)
|
|
end_pfn = max_low_pfn;
|
|
|
|
size_pages = end_pfn - early_node_map[i].start_pfn;
|
|
free_bootmem_node(NODE_DATA(early_node_map[i].nid),
|
|
PFN_PHYS(early_node_map[i].start_pfn),
|
|
size_pages << PAGE_SHIFT);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sparse_memory_present_with_active_regions - Call memory_present for each active range
|
|
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used
|
|
*
|
|
* If an architecture guarantees that all ranges registered with
|
|
* add_active_ranges() contain no holes and may be freed, this
|
|
* this function may be used instead of calling memory_present() manually.
|
|
*/
|
|
void __init sparse_memory_present_with_active_regions(int nid)
|
|
{
|
|
int i;
|
|
|
|
for_each_active_range_index_in_nid(i, nid)
|
|
memory_present(early_node_map[i].nid,
|
|
early_node_map[i].start_pfn,
|
|
early_node_map[i].end_pfn);
|
|
}
|
|
|
|
/**
|
|
* push_node_boundaries - Push node boundaries to at least the requested boundary
|
|
* @nid: The nid of the node to push the boundary for
|
|
* @start_pfn: The start pfn of the node
|
|
* @end_pfn: The end pfn of the node
|
|
*
|
|
* In reserve-based hot-add, mem_map is allocated that is unused until hotadd
|
|
* time. Specifically, on x86_64, SRAT will report ranges that can potentially
|
|
* be hotplugged even though no physical memory exists. This function allows
|
|
* an arch to push out the node boundaries so mem_map is allocated that can
|
|
* be used later.
|
|
*/
|
|
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
|
|
void __init push_node_boundaries(unsigned int nid,
|
|
unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
|
|
nid, start_pfn, end_pfn);
|
|
|
|
/* Initialise the boundary for this node if necessary */
|
|
if (node_boundary_end_pfn[nid] == 0)
|
|
node_boundary_start_pfn[nid] = -1UL;
|
|
|
|
/* Update the boundaries */
|
|
if (node_boundary_start_pfn[nid] > start_pfn)
|
|
node_boundary_start_pfn[nid] = start_pfn;
|
|
if (node_boundary_end_pfn[nid] < end_pfn)
|
|
node_boundary_end_pfn[nid] = end_pfn;
|
|
}
|
|
|
|
/* If necessary, push the node boundary out for reserve hotadd */
|
|
static void __init account_node_boundary(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
|
|
nid, *start_pfn, *end_pfn);
|
|
|
|
/* Return if boundary information has not been provided */
|
|
if (node_boundary_end_pfn[nid] == 0)
|
|
return;
|
|
|
|
/* Check the boundaries and update if necessary */
|
|
if (node_boundary_start_pfn[nid] < *start_pfn)
|
|
*start_pfn = node_boundary_start_pfn[nid];
|
|
if (node_boundary_end_pfn[nid] > *end_pfn)
|
|
*end_pfn = node_boundary_end_pfn[nid];
|
|
}
|
|
#else
|
|
void __init push_node_boundaries(unsigned int nid,
|
|
unsigned long start_pfn, unsigned long end_pfn) {}
|
|
|
|
static void __init account_node_boundary(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn) {}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* get_pfn_range_for_nid - Return the start and end page frames for a node
|
|
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned
|
|
* @start_pfn: Passed by reference. On return, it will have the node start_pfn
|
|
* @end_pfn: Passed by reference. On return, it will have the node end_pfn
|
|
*
|
|
* It returns the start and end page frame of a node based on information
|
|
* provided by an arch calling add_active_range(). If called for a node
|
|
* with no available memory, a warning is printed and the start and end
|
|
* PFNs will be 0
|
|
*/
|
|
void __init get_pfn_range_for_nid(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
int i;
|
|
*start_pfn = -1UL;
|
|
*end_pfn = 0;
|
|
|
|
for_each_active_range_index_in_nid(i, nid) {
|
|
*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
|
|
*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
|
|
}
|
|
|
|
if (*start_pfn == -1UL) {
|
|
printk(KERN_WARNING "Node %u active with no memory\n", nid);
|
|
*start_pfn = 0;
|
|
}
|
|
|
|
/* Push the node boundaries out if requested */
|
|
account_node_boundary(nid, start_pfn, end_pfn);
|
|
}
|
|
|
|
/*
|
|
* Return the number of pages a zone spans in a node, including holes
|
|
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
|
|
*/
|
|
unsigned long __init zone_spanned_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long *ignored)
|
|
{
|
|
unsigned long node_start_pfn, node_end_pfn;
|
|
unsigned long zone_start_pfn, zone_end_pfn;
|
|
|
|
/* Get the start and end of the node and zone */
|
|
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
|
|
zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
|
|
zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
|
|
|
|
/* Check that this node has pages within the zone's required range */
|
|
if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
|
|
return 0;
|
|
|
|
/* Move the zone boundaries inside the node if necessary */
|
|
zone_end_pfn = min(zone_end_pfn, node_end_pfn);
|
|
zone_start_pfn = max(zone_start_pfn, node_start_pfn);
|
|
|
|
/* Return the spanned pages */
|
|
return zone_end_pfn - zone_start_pfn;
|
|
}
|
|
|
|
/*
|
|
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
|
|
* then all holes in the requested range will be accounted for
|
|
*/
|
|
unsigned long __init __absent_pages_in_range(int nid,
|
|
unsigned long range_start_pfn,
|
|
unsigned long range_end_pfn)
|
|
{
|
|
int i = 0;
|
|
unsigned long prev_end_pfn = 0, hole_pages = 0;
|
|
unsigned long start_pfn;
|
|
|
|
/* Find the end_pfn of the first active range of pfns in the node */
|
|
i = first_active_region_index_in_nid(nid);
|
|
if (i == -1)
|
|
return 0;
|
|
|
|
/* Account for ranges before physical memory on this node */
|
|
if (early_node_map[i].start_pfn > range_start_pfn)
|
|
hole_pages = early_node_map[i].start_pfn - range_start_pfn;
|
|
|
|
prev_end_pfn = early_node_map[i].start_pfn;
|
|
|
|
/* Find all holes for the zone within the node */
|
|
for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
|
|
|
|
/* No need to continue if prev_end_pfn is outside the zone */
|
|
if (prev_end_pfn >= range_end_pfn)
|
|
break;
|
|
|
|
/* Make sure the end of the zone is not within the hole */
|
|
start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
|
|
prev_end_pfn = max(prev_end_pfn, range_start_pfn);
|
|
|
|
/* Update the hole size cound and move on */
|
|
if (start_pfn > range_start_pfn) {
|
|
BUG_ON(prev_end_pfn > start_pfn);
|
|
hole_pages += start_pfn - prev_end_pfn;
|
|
}
|
|
prev_end_pfn = early_node_map[i].end_pfn;
|
|
}
|
|
|
|
/* Account for ranges past physical memory on this node */
|
|
if (range_end_pfn > prev_end_pfn)
|
|
hole_pages = range_end_pfn -
|
|
max(range_start_pfn, prev_end_pfn);
|
|
|
|
return hole_pages;
|
|
}
|
|
|
|
/**
|
|
* absent_pages_in_range - Return number of page frames in holes within a range
|
|
* @start_pfn: The start PFN to start searching for holes
|
|
* @end_pfn: The end PFN to stop searching for holes
|
|
*
|
|
* It returns the number of pages frames in memory holes within a range
|
|
*/
|
|
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
|
|
}
|
|
|
|
/* Return the number of page frames in holes in a zone on a node */
|
|
unsigned long __init zone_absent_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long *ignored)
|
|
{
|
|
unsigned long node_start_pfn, node_end_pfn;
|
|
unsigned long zone_start_pfn, zone_end_pfn;
|
|
|
|
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
|
|
zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
|
|
node_start_pfn);
|
|
zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
|
|
node_end_pfn);
|
|
|
|
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
|
|
}
|
|
|
|
/* Return the zone index a PFN is in */
|
|
int memmap_zone_idx(struct page *lmem_map)
|
|
{
|
|
int i;
|
|
unsigned long phys_addr = virt_to_phys(lmem_map);
|
|
unsigned long pfn = phys_addr >> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
if (pfn < arch_zone_highest_possible_pfn[i])
|
|
break;
|
|
|
|
return i;
|
|
}
|
|
#else
|
|
static inline unsigned long zone_spanned_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long *zones_size)
|
|
{
|
|
return zones_size[zone_type];
|
|
}
|
|
|
|
static inline unsigned long zone_absent_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long *zholes_size)
|
|
{
|
|
if (!zholes_size)
|
|
return 0;
|
|
|
|
return zholes_size[zone_type];
|
|
}
|
|
|
|
static inline int memmap_zone_idx(struct page *lmem_map)
|
|
{
|
|
return MAX_NR_ZONES;
|
|
}
|
|
#endif
|
|
|
|
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
|
|
unsigned long *zones_size, unsigned long *zholes_size)
|
|
{
|
|
unsigned long realtotalpages, totalpages = 0;
|
|
enum zone_type i;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
|
|
zones_size);
|
|
pgdat->node_spanned_pages = totalpages;
|
|
|
|
realtotalpages = totalpages;
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
realtotalpages -=
|
|
zone_absent_pages_in_node(pgdat->node_id, i,
|
|
zholes_size);
|
|
pgdat->node_present_pages = realtotalpages;
|
|
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
|
|
realtotalpages);
|
|
}
|
|
|
|
/*
|
|
* Set up the zone data structures:
|
|
* - mark all pages reserved
|
|
* - mark all memory queues empty
|
|
* - clear the memory bitmaps
|
|
*/
|
|
static void __meminit free_area_init_core(struct pglist_data *pgdat,
|
|
unsigned long *zones_size, unsigned long *zholes_size)
|
|
{
|
|
enum zone_type j;
|
|
int nid = pgdat->node_id;
|
|
unsigned long zone_start_pfn = pgdat->node_start_pfn;
|
|
int ret;
|
|
|
|
pgdat_resize_init(pgdat);
|
|
pgdat->nr_zones = 0;
|
|
init_waitqueue_head(&pgdat->kswapd_wait);
|
|
pgdat->kswapd_max_order = 0;
|
|
|
|
for (j = 0; j < MAX_NR_ZONES; j++) {
|
|
struct zone *zone = pgdat->node_zones + j;
|
|
unsigned long size, realsize, memmap_pages;
|
|
|
|
size = zone_spanned_pages_in_node(nid, j, zones_size);
|
|
realsize = size - zone_absent_pages_in_node(nid, j,
|
|
zholes_size);
|
|
|
|
/*
|
|
* Adjust realsize so that it accounts for how much memory
|
|
* is used by this zone for memmap. This affects the watermark
|
|
* and per-cpu initialisations
|
|
*/
|
|
memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
|
|
if (realsize >= memmap_pages) {
|
|
realsize -= memmap_pages;
|
|
printk(KERN_DEBUG
|
|
" %s zone: %lu pages used for memmap\n",
|
|
zone_names[j], memmap_pages);
|
|
} else
|
|
printk(KERN_WARNING
|
|
" %s zone: %lu pages exceeds realsize %lu\n",
|
|
zone_names[j], memmap_pages, realsize);
|
|
|
|
/* Account for reserved DMA pages */
|
|
if (j == ZONE_DMA && realsize > dma_reserve) {
|
|
realsize -= dma_reserve;
|
|
printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
|
|
dma_reserve);
|
|
}
|
|
|
|
if (!is_highmem_idx(j))
|
|
nr_kernel_pages += realsize;
|
|
nr_all_pages += realsize;
|
|
|
|
zone->spanned_pages = size;
|
|
zone->present_pages = realsize;
|
|
#ifdef CONFIG_NUMA
|
|
zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
|
|
/ 100;
|
|
zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
|
|
#endif
|
|
zone->name = zone_names[j];
|
|
spin_lock_init(&zone->lock);
|
|
spin_lock_init(&zone->lru_lock);
|
|
zone_seqlock_init(zone);
|
|
zone->zone_pgdat = pgdat;
|
|
zone->free_pages = 0;
|
|
|
|
zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
|
|
|
|
zone_pcp_init(zone);
|
|
INIT_LIST_HEAD(&zone->active_list);
|
|
INIT_LIST_HEAD(&zone->inactive_list);
|
|
zone->nr_scan_active = 0;
|
|
zone->nr_scan_inactive = 0;
|
|
zone->nr_active = 0;
|
|
zone->nr_inactive = 0;
|
|
zap_zone_vm_stats(zone);
|
|
atomic_set(&zone->reclaim_in_progress, 0);
|
|
if (!size)
|
|
continue;
|
|
|
|
zonetable_add(zone, nid, j, zone_start_pfn, size);
|
|
ret = init_currently_empty_zone(zone, zone_start_pfn, size);
|
|
BUG_ON(ret);
|
|
zone_start_pfn += size;
|
|
}
|
|
}
|
|
|
|
static void __init alloc_node_mem_map(struct pglist_data *pgdat)
|
|
{
|
|
/* Skip empty nodes */
|
|
if (!pgdat->node_spanned_pages)
|
|
return;
|
|
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
/* ia64 gets its own node_mem_map, before this, without bootmem */
|
|
if (!pgdat->node_mem_map) {
|
|
unsigned long size, start, end;
|
|
struct page *map;
|
|
|
|
/*
|
|
* The zone's endpoints aren't required to be MAX_ORDER
|
|
* aligned but the node_mem_map endpoints must be in order
|
|
* for the buddy allocator to function correctly.
|
|
*/
|
|
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
|
|
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
|
|
end = ALIGN(end, MAX_ORDER_NR_PAGES);
|
|
size = (end - start) * sizeof(struct page);
|
|
map = alloc_remap(pgdat->node_id, size);
|
|
if (!map)
|
|
map = alloc_bootmem_node(pgdat, size);
|
|
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
|
|
}
|
|
#ifdef CONFIG_FLATMEM
|
|
/*
|
|
* With no DISCONTIG, the global mem_map is just set as node 0's
|
|
*/
|
|
if (pgdat == NODE_DATA(0)) {
|
|
mem_map = NODE_DATA(0)->node_mem_map;
|
|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
|
|
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
|
|
mem_map -= pgdat->node_start_pfn;
|
|
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
|
|
}
|
|
|
|
void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
|
|
unsigned long *zones_size, unsigned long node_start_pfn,
|
|
unsigned long *zholes_size)
|
|
{
|
|
pgdat->node_id = nid;
|
|
pgdat->node_start_pfn = node_start_pfn;
|
|
calculate_node_totalpages(pgdat, zones_size, zholes_size);
|
|
|
|
alloc_node_mem_map(pgdat);
|
|
|
|
free_area_init_core(pgdat, zones_size, zholes_size);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
|
|
/**
|
|
* add_active_range - Register a range of PFNs backed by physical memory
|
|
* @nid: The node ID the range resides on
|
|
* @start_pfn: The start PFN of the available physical memory
|
|
* @end_pfn: The end PFN of the available physical memory
|
|
*
|
|
* These ranges are stored in an early_node_map[] and later used by
|
|
* free_area_init_nodes() to calculate zone sizes and holes. If the
|
|
* range spans a memory hole, it is up to the architecture to ensure
|
|
* the memory is not freed by the bootmem allocator. If possible
|
|
* the range being registered will be merged with existing ranges.
|
|
*/
|
|
void __init add_active_range(unsigned int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
|
|
"%d entries of %d used\n",
|
|
nid, start_pfn, end_pfn,
|
|
nr_nodemap_entries, MAX_ACTIVE_REGIONS);
|
|
|
|
/* Merge with existing active regions if possible */
|
|
for (i = 0; i < nr_nodemap_entries; i++) {
|
|
if (early_node_map[i].nid != nid)
|
|
continue;
|
|
|
|
/* Skip if an existing region covers this new one */
|
|
if (start_pfn >= early_node_map[i].start_pfn &&
|
|
end_pfn <= early_node_map[i].end_pfn)
|
|
return;
|
|
|
|
/* Merge forward if suitable */
|
|
if (start_pfn <= early_node_map[i].end_pfn &&
|
|
end_pfn > early_node_map[i].end_pfn) {
|
|
early_node_map[i].end_pfn = end_pfn;
|
|
return;
|
|
}
|
|
|
|
/* Merge backward if suitable */
|
|
if (start_pfn < early_node_map[i].end_pfn &&
|
|
end_pfn >= early_node_map[i].start_pfn) {
|
|
early_node_map[i].start_pfn = start_pfn;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Check that early_node_map is large enough */
|
|
if (i >= MAX_ACTIVE_REGIONS) {
|
|
printk(KERN_CRIT "More than %d memory regions, truncating\n",
|
|
MAX_ACTIVE_REGIONS);
|
|
return;
|
|
}
|
|
|
|
early_node_map[i].nid = nid;
|
|
early_node_map[i].start_pfn = start_pfn;
|
|
early_node_map[i].end_pfn = end_pfn;
|
|
nr_nodemap_entries = i + 1;
|
|
}
|
|
|
|
/**
|
|
* shrink_active_range - Shrink an existing registered range of PFNs
|
|
* @nid: The node id the range is on that should be shrunk
|
|
* @old_end_pfn: The old end PFN of the range
|
|
* @new_end_pfn: The new PFN of the range
|
|
*
|
|
* i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
|
|
* The map is kept at the end physical page range that has already been
|
|
* registered with add_active_range(). This function allows an arch to shrink
|
|
* an existing registered range.
|
|
*/
|
|
void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
|
|
unsigned long new_end_pfn)
|
|
{
|
|
int i;
|
|
|
|
/* Find the old active region end and shrink */
|
|
for_each_active_range_index_in_nid(i, nid)
|
|
if (early_node_map[i].end_pfn == old_end_pfn) {
|
|
early_node_map[i].end_pfn = new_end_pfn;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* remove_all_active_ranges - Remove all currently registered regions
|
|
* During discovery, it may be found that a table like SRAT is invalid
|
|
* and an alternative discovery method must be used. This function removes
|
|
* all currently registered regions.
|
|
*/
|
|
void __init remove_all_active_ranges()
|
|
{
|
|
memset(early_node_map, 0, sizeof(early_node_map));
|
|
nr_nodemap_entries = 0;
|
|
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
|
|
memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
|
|
memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
|
|
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
|
|
}
|
|
|
|
/* Compare two active node_active_regions */
|
|
static int __init cmp_node_active_region(const void *a, const void *b)
|
|
{
|
|
struct node_active_region *arange = (struct node_active_region *)a;
|
|
struct node_active_region *brange = (struct node_active_region *)b;
|
|
|
|
/* Done this way to avoid overflows */
|
|
if (arange->start_pfn > brange->start_pfn)
|
|
return 1;
|
|
if (arange->start_pfn < brange->start_pfn)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* sort the node_map by start_pfn */
|
|
static void __init sort_node_map(void)
|
|
{
|
|
sort(early_node_map, (size_t)nr_nodemap_entries,
|
|
sizeof(struct node_active_region),
|
|
cmp_node_active_region, NULL);
|
|
}
|
|
|
|
/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
|
|
unsigned long __init find_min_pfn_for_node(unsigned long nid)
|
|
{
|
|
int i;
|
|
|
|
/* Assuming a sorted map, the first range found has the starting pfn */
|
|
for_each_active_range_index_in_nid(i, nid)
|
|
return early_node_map[i].start_pfn;
|
|
|
|
printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* find_min_pfn_with_active_regions - Find the minimum PFN registered
|
|
*
|
|
* It returns the minimum PFN based on information provided via
|
|
* add_active_range()
|
|
*/
|
|
unsigned long __init find_min_pfn_with_active_regions(void)
|
|
{
|
|
return find_min_pfn_for_node(MAX_NUMNODES);
|
|
}
|
|
|
|
/**
|
|
* find_max_pfn_with_active_regions - Find the maximum PFN registered
|
|
*
|
|
* It returns the maximum PFN based on information provided via
|
|
* add_active_range()
|
|
*/
|
|
unsigned long __init find_max_pfn_with_active_regions(void)
|
|
{
|
|
int i;
|
|
unsigned long max_pfn = 0;
|
|
|
|
for (i = 0; i < nr_nodemap_entries; i++)
|
|
max_pfn = max(max_pfn, early_node_map[i].end_pfn);
|
|
|
|
return max_pfn;
|
|
}
|
|
|
|
/**
|
|
* free_area_init_nodes - Initialise all pg_data_t and zone data
|
|
* @arch_max_dma_pfn: The maximum PFN usable for ZONE_DMA
|
|
* @arch_max_dma32_pfn: The maximum PFN usable for ZONE_DMA32
|
|
* @arch_max_low_pfn: The maximum PFN usable for ZONE_NORMAL
|
|
* @arch_max_high_pfn: The maximum PFN usable for ZONE_HIGHMEM
|
|
*
|
|
* This will call free_area_init_node() for each active node in the system.
|
|
* Using the page ranges provided by add_active_range(), the size of each
|
|
* zone in each node and their holes is calculated. If the maximum PFN
|
|
* between two adjacent zones match, it is assumed that the zone is empty.
|
|
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
|
|
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
|
|
* starts where the previous one ended. For example, ZONE_DMA32 starts
|
|
* at arch_max_dma_pfn.
|
|
*/
|
|
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
|
|
{
|
|
unsigned long nid;
|
|
enum zone_type i;
|
|
|
|
/* Record where the zone boundaries are */
|
|
memset(arch_zone_lowest_possible_pfn, 0,
|
|
sizeof(arch_zone_lowest_possible_pfn));
|
|
memset(arch_zone_highest_possible_pfn, 0,
|
|
sizeof(arch_zone_highest_possible_pfn));
|
|
arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
|
|
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
|
|
for (i = 1; i < MAX_NR_ZONES; i++) {
|
|
arch_zone_lowest_possible_pfn[i] =
|
|
arch_zone_highest_possible_pfn[i-1];
|
|
arch_zone_highest_possible_pfn[i] =
|
|
max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
|
|
}
|
|
|
|
/* Regions in the early_node_map can be in any order */
|
|
sort_node_map();
|
|
|
|
/* Print out the zone ranges */
|
|
printk("Zone PFN ranges:\n");
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
printk(" %-8s %8lu -> %8lu\n",
|
|
zone_names[i],
|
|
arch_zone_lowest_possible_pfn[i],
|
|
arch_zone_highest_possible_pfn[i]);
|
|
|
|
/* Print out the early_node_map[] */
|
|
printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
|
|
for (i = 0; i < nr_nodemap_entries; i++)
|
|
printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
|
|
early_node_map[i].start_pfn,
|
|
early_node_map[i].end_pfn);
|
|
|
|
/* Initialise every node */
|
|
for_each_online_node(nid) {
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
free_area_init_node(nid, pgdat, NULL,
|
|
find_min_pfn_for_node(nid), NULL);
|
|
}
|
|
}
|
|
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
|
|
|
|
/**
|
|
* set_dma_reserve - Account the specified number of pages reserved in ZONE_DMA
|
|
* @new_dma_reserve - The number of pages to mark reserved
|
|
*
|
|
* The per-cpu batchsize and zone watermarks are determined by present_pages.
|
|
* In the DMA zone, a significant percentage may be consumed by kernel image
|
|
* and other unfreeable allocations which can skew the watermarks badly. This
|
|
* function may optionally be used to account for unfreeable pages in
|
|
* ZONE_DMA. The effect will be lower watermarks and smaller per-cpu batchsize
|
|
*/
|
|
void __init set_dma_reserve(unsigned long new_dma_reserve)
|
|
{
|
|
dma_reserve = new_dma_reserve;
|
|
}
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
static bootmem_data_t contig_bootmem_data;
|
|
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
|
|
|
|
EXPORT_SYMBOL(contig_page_data);
|
|
#endif
|
|
|
|
void __init free_area_init(unsigned long *zones_size)
|
|
{
|
|
free_area_init_node(0, NODE_DATA(0), zones_size,
|
|
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static int page_alloc_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
int cpu = (unsigned long)hcpu;
|
|
|
|
if (action == CPU_DEAD) {
|
|
local_irq_disable();
|
|
__drain_pages(cpu);
|
|
vm_events_fold_cpu(cpu);
|
|
local_irq_enable();
|
|
refresh_cpu_vm_stats(cpu);
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
void __init page_alloc_init(void)
|
|
{
|
|
hotcpu_notifier(page_alloc_cpu_notify, 0);
|
|
}
|
|
|
|
/*
|
|
* calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
|
|
* or min_free_kbytes changes.
|
|
*/
|
|
static void calculate_totalreserve_pages(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
unsigned long reserve_pages = 0;
|
|
enum zone_type i, j;
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
struct zone *zone = pgdat->node_zones + i;
|
|
unsigned long max = 0;
|
|
|
|
/* Find valid and maximum lowmem_reserve in the zone */
|
|
for (j = i; j < MAX_NR_ZONES; j++) {
|
|
if (zone->lowmem_reserve[j] > max)
|
|
max = zone->lowmem_reserve[j];
|
|
}
|
|
|
|
/* we treat pages_high as reserved pages. */
|
|
max += zone->pages_high;
|
|
|
|
if (max > zone->present_pages)
|
|
max = zone->present_pages;
|
|
reserve_pages += max;
|
|
}
|
|
}
|
|
totalreserve_pages = reserve_pages;
|
|
}
|
|
|
|
/*
|
|
* setup_per_zone_lowmem_reserve - called whenever
|
|
* sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
|
|
* has a correct pages reserved value, so an adequate number of
|
|
* pages are left in the zone after a successful __alloc_pages().
|
|
*/
|
|
static void setup_per_zone_lowmem_reserve(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
enum zone_type j, idx;
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
for (j = 0; j < MAX_NR_ZONES; j++) {
|
|
struct zone *zone = pgdat->node_zones + j;
|
|
unsigned long present_pages = zone->present_pages;
|
|
|
|
zone->lowmem_reserve[j] = 0;
|
|
|
|
idx = j;
|
|
while (idx) {
|
|
struct zone *lower_zone;
|
|
|
|
idx--;
|
|
|
|
if (sysctl_lowmem_reserve_ratio[idx] < 1)
|
|
sysctl_lowmem_reserve_ratio[idx] = 1;
|
|
|
|
lower_zone = pgdat->node_zones + idx;
|
|
lower_zone->lowmem_reserve[j] = present_pages /
|
|
sysctl_lowmem_reserve_ratio[idx];
|
|
present_pages += lower_zone->present_pages;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update totalreserve_pages */
|
|
calculate_totalreserve_pages();
|
|
}
|
|
|
|
/*
|
|
* setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
|
|
* that the pages_{min,low,high} values for each zone are set correctly
|
|
* with respect to min_free_kbytes.
|
|
*/
|
|
void setup_per_zone_pages_min(void)
|
|
{
|
|
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
|
|
unsigned long lowmem_pages = 0;
|
|
struct zone *zone;
|
|
unsigned long flags;
|
|
|
|
/* Calculate total number of !ZONE_HIGHMEM pages */
|
|
for_each_zone(zone) {
|
|
if (!is_highmem(zone))
|
|
lowmem_pages += zone->present_pages;
|
|
}
|
|
|
|
for_each_zone(zone) {
|
|
u64 tmp;
|
|
|
|
spin_lock_irqsave(&zone->lru_lock, flags);
|
|
tmp = (u64)pages_min * zone->present_pages;
|
|
do_div(tmp, lowmem_pages);
|
|
if (is_highmem(zone)) {
|
|
/*
|
|
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
|
|
* need highmem pages, so cap pages_min to a small
|
|
* value here.
|
|
*
|
|
* The (pages_high-pages_low) and (pages_low-pages_min)
|
|
* deltas controls asynch page reclaim, and so should
|
|
* not be capped for highmem.
|
|
*/
|
|
int min_pages;
|
|
|
|
min_pages = zone->present_pages / 1024;
|
|
if (min_pages < SWAP_CLUSTER_MAX)
|
|
min_pages = SWAP_CLUSTER_MAX;
|
|
if (min_pages > 128)
|
|
min_pages = 128;
|
|
zone->pages_min = min_pages;
|
|
} else {
|
|
/*
|
|
* If it's a lowmem zone, reserve a number of pages
|
|
* proportionate to the zone's size.
|
|
*/
|
|
zone->pages_min = tmp;
|
|
}
|
|
|
|
zone->pages_low = zone->pages_min + (tmp >> 2);
|
|
zone->pages_high = zone->pages_min + (tmp >> 1);
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
}
|
|
|
|
/* update totalreserve_pages */
|
|
calculate_totalreserve_pages();
|
|
}
|
|
|
|
/*
|
|
* Initialise min_free_kbytes.
|
|
*
|
|
* For small machines we want it small (128k min). For large machines
|
|
* we want it large (64MB max). But it is not linear, because network
|
|
* bandwidth does not increase linearly with machine size. We use
|
|
*
|
|
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
|
|
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
|
|
*
|
|
* which yields
|
|
*
|
|
* 16MB: 512k
|
|
* 32MB: 724k
|
|
* 64MB: 1024k
|
|
* 128MB: 1448k
|
|
* 256MB: 2048k
|
|
* 512MB: 2896k
|
|
* 1024MB: 4096k
|
|
* 2048MB: 5792k
|
|
* 4096MB: 8192k
|
|
* 8192MB: 11584k
|
|
* 16384MB: 16384k
|
|
*/
|
|
static int __init init_per_zone_pages_min(void)
|
|
{
|
|
unsigned long lowmem_kbytes;
|
|
|
|
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
|
|
|
|
min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
|
|
if (min_free_kbytes < 128)
|
|
min_free_kbytes = 128;
|
|
if (min_free_kbytes > 65536)
|
|
min_free_kbytes = 65536;
|
|
setup_per_zone_pages_min();
|
|
setup_per_zone_lowmem_reserve();
|
|
return 0;
|
|
}
|
|
module_init(init_per_zone_pages_min)
|
|
|
|
/*
|
|
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
|
|
* that we can call two helper functions whenever min_free_kbytes
|
|
* changes.
|
|
*/
|
|
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
|
|
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec(table, write, file, buffer, length, ppos);
|
|
setup_per_zone_pages_min();
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
|
|
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct zone *zone;
|
|
int rc;
|
|
|
|
rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for_each_zone(zone)
|
|
zone->min_unmapped_pages = (zone->present_pages *
|
|
sysctl_min_unmapped_ratio) / 100;
|
|
return 0;
|
|
}
|
|
|
|
int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
|
|
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct zone *zone;
|
|
int rc;
|
|
|
|
rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for_each_zone(zone)
|
|
zone->min_slab_pages = (zone->present_pages *
|
|
sysctl_min_slab_ratio) / 100;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
|
|
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
|
|
* whenever sysctl_lowmem_reserve_ratio changes.
|
|
*
|
|
* The reserve ratio obviously has absolutely no relation with the
|
|
* pages_min watermarks. The lowmem reserve ratio can only make sense
|
|
* if in function of the boot time zone sizes.
|
|
*/
|
|
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
|
|
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec_minmax(table, write, file, buffer, length, ppos);
|
|
setup_per_zone_lowmem_reserve();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
|
|
* cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
|
|
* can have before it gets flushed back to buddy allocator.
|
|
*/
|
|
|
|
int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
|
|
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct zone *zone;
|
|
unsigned int cpu;
|
|
int ret;
|
|
|
|
ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
|
|
if (!write || (ret == -EINVAL))
|
|
return ret;
|
|
for_each_zone(zone) {
|
|
for_each_online_cpu(cpu) {
|
|
unsigned long high;
|
|
high = zone->present_pages / percpu_pagelist_fraction;
|
|
setup_pagelist_highmark(zone_pcp(zone, cpu), high);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int hashdist = HASHDIST_DEFAULT;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int __init set_hashdist(char *str)
|
|
{
|
|
if (!str)
|
|
return 0;
|
|
hashdist = simple_strtoul(str, &str, 0);
|
|
return 1;
|
|
}
|
|
__setup("hashdist=", set_hashdist);
|
|
#endif
|
|
|
|
/*
|
|
* allocate a large system hash table from bootmem
|
|
* - it is assumed that the hash table must contain an exact power-of-2
|
|
* quantity of entries
|
|
* - limit is the number of hash buckets, not the total allocation size
|
|
*/
|
|
void *__init alloc_large_system_hash(const char *tablename,
|
|
unsigned long bucketsize,
|
|
unsigned long numentries,
|
|
int scale,
|
|
int flags,
|
|
unsigned int *_hash_shift,
|
|
unsigned int *_hash_mask,
|
|
unsigned long limit)
|
|
{
|
|
unsigned long long max = limit;
|
|
unsigned long log2qty, size;
|
|
void *table = NULL;
|
|
|
|
/* allow the kernel cmdline to have a say */
|
|
if (!numentries) {
|
|
/* round applicable memory size up to nearest megabyte */
|
|
numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
|
|
numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
|
|
numentries >>= 20 - PAGE_SHIFT;
|
|
numentries <<= 20 - PAGE_SHIFT;
|
|
|
|
/* limit to 1 bucket per 2^scale bytes of low memory */
|
|
if (scale > PAGE_SHIFT)
|
|
numentries >>= (scale - PAGE_SHIFT);
|
|
else
|
|
numentries <<= (PAGE_SHIFT - scale);
|
|
}
|
|
numentries = roundup_pow_of_two(numentries);
|
|
|
|
/* limit allocation size to 1/16 total memory by default */
|
|
if (max == 0) {
|
|
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
|
|
do_div(max, bucketsize);
|
|
}
|
|
|
|
if (numentries > max)
|
|
numentries = max;
|
|
|
|
log2qty = long_log2(numentries);
|
|
|
|
do {
|
|
size = bucketsize << log2qty;
|
|
if (flags & HASH_EARLY)
|
|
table = alloc_bootmem(size);
|
|
else if (hashdist)
|
|
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
|
|
else {
|
|
unsigned long order;
|
|
for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
|
|
;
|
|
table = (void*) __get_free_pages(GFP_ATOMIC, order);
|
|
}
|
|
} while (!table && size > PAGE_SIZE && --log2qty);
|
|
|
|
if (!table)
|
|
panic("Failed to allocate %s hash table\n", tablename);
|
|
|
|
printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
|
|
tablename,
|
|
(1U << log2qty),
|
|
long_log2(size) - PAGE_SHIFT,
|
|
size);
|
|
|
|
if (_hash_shift)
|
|
*_hash_shift = log2qty;
|
|
if (_hash_mask)
|
|
*_hash_mask = (1 << log2qty) - 1;
|
|
|
|
return table;
|
|
}
|
|
|
|
#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
|
|
struct page *pfn_to_page(unsigned long pfn)
|
|
{
|
|
return __pfn_to_page(pfn);
|
|
}
|
|
unsigned long page_to_pfn(struct page *page)
|
|
{
|
|
return __page_to_pfn(page);
|
|
}
|
|
EXPORT_SYMBOL(pfn_to_page);
|
|
EXPORT_SYMBOL(page_to_pfn);
|
|
#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
|