aha/drivers/gpu/drm/radeon/atombios_crtc.c
Dave Airlie e024e11070 drm/radeon/kms: add initial colortiling support.
This adds new set/get tiling interfaces where the pitch
and macro/micro tiling enables can be set. Along with
a flag to decide if this object should have a surface when mapped.

The only thing we need to allocate with a mapped surface should be
the frontbuffer. Note rotate scanout shouldn't require one, and
back/depth shouldn't either, though mesa needs some fixes.

It fixes the TTM interfaces along Thomas's suggestions, and I've tested
the surface stealing code with two X servers and not seen any lockdep issues.

I've stopped tiling the fbcon frontbuffer, as I don't see there being
any advantage other than testing, I've left the testing commands in there,
just flip the fb_tiled to true in radeon_fb.c

Open: Can we integrate endian swapping in with this?

Future features:
texture tiling - need to relocate texture registers TXOFFSET* with tiling info.

This also merges Michel's cleanup surfaces regs at init time patch
even though it makes sense on its own, this patch really relies on it.

Some PowerMac firmwares set up a tiling surface at the beginning of VRAM
which messes us up otherwise.
that patch is:
Signed-off-by: Michel Dänzer <daenzer@vmware.com>

Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-07-29 15:42:18 +10:00

708 lines
23 KiB
C

/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/radeon_drm.h>
#include "radeon_fixed.h"
#include "radeon.h"
#include "atom.h"
#include "atom-bits.h"
static void atombios_lock_crtc(struct drm_crtc *crtc, int lock)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index =
GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucEnable = lock;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_enable_crtc(struct drm_crtc *crtc, int state)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucEnable = state;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_enable_crtc_memreq(struct drm_crtc *crtc, int state)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index = GetIndexIntoMasterTable(COMMAND, EnableCRTCMemReq);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucEnable = state;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_blank_crtc(struct drm_crtc *crtc, int state)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC);
BLANK_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucBlanking = state;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void atombios_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
switch (mode) {
case DRM_MODE_DPMS_ON:
if (ASIC_IS_DCE3(rdev))
atombios_enable_crtc_memreq(crtc, 1);
atombios_enable_crtc(crtc, 1);
atombios_blank_crtc(crtc, 0);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
atombios_blank_crtc(crtc, 1);
atombios_enable_crtc(crtc, 0);
if (ASIC_IS_DCE3(rdev))
atombios_enable_crtc_memreq(crtc, 0);
break;
}
if (mode != DRM_MODE_DPMS_OFF) {
radeon_crtc_load_lut(crtc);
}
}
static void
atombios_set_crtc_dtd_timing(struct drm_crtc *crtc,
SET_CRTC_USING_DTD_TIMING_PARAMETERS * crtc_param)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
SET_CRTC_USING_DTD_TIMING_PARAMETERS conv_param;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming);
conv_param.usH_Size = cpu_to_le16(crtc_param->usH_Size);
conv_param.usH_Blanking_Time =
cpu_to_le16(crtc_param->usH_Blanking_Time);
conv_param.usV_Size = cpu_to_le16(crtc_param->usV_Size);
conv_param.usV_Blanking_Time =
cpu_to_le16(crtc_param->usV_Blanking_Time);
conv_param.usH_SyncOffset = cpu_to_le16(crtc_param->usH_SyncOffset);
conv_param.usH_SyncWidth = cpu_to_le16(crtc_param->usH_SyncWidth);
conv_param.usV_SyncOffset = cpu_to_le16(crtc_param->usV_SyncOffset);
conv_param.usV_SyncWidth = cpu_to_le16(crtc_param->usV_SyncWidth);
conv_param.susModeMiscInfo.usAccess =
cpu_to_le16(crtc_param->susModeMiscInfo.usAccess);
conv_param.ucCRTC = crtc_param->ucCRTC;
printk("executing set crtc dtd timing\n");
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&conv_param);
}
void atombios_crtc_set_timing(struct drm_crtc *crtc,
SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION *
crtc_param)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION conv_param;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_Timing);
conv_param.usH_Total = cpu_to_le16(crtc_param->usH_Total);
conv_param.usH_Disp = cpu_to_le16(crtc_param->usH_Disp);
conv_param.usH_SyncStart = cpu_to_le16(crtc_param->usH_SyncStart);
conv_param.usH_SyncWidth = cpu_to_le16(crtc_param->usH_SyncWidth);
conv_param.usV_Total = cpu_to_le16(crtc_param->usV_Total);
conv_param.usV_Disp = cpu_to_le16(crtc_param->usV_Disp);
conv_param.usV_SyncStart = cpu_to_le16(crtc_param->usV_SyncStart);
conv_param.usV_SyncWidth = cpu_to_le16(crtc_param->usV_SyncWidth);
conv_param.susModeMiscInfo.usAccess =
cpu_to_le16(crtc_param->susModeMiscInfo.usAccess);
conv_param.ucCRTC = crtc_param->ucCRTC;
conv_param.ucOverscanRight = crtc_param->ucOverscanRight;
conv_param.ucOverscanLeft = crtc_param->ucOverscanLeft;
conv_param.ucOverscanBottom = crtc_param->ucOverscanBottom;
conv_param.ucOverscanTop = crtc_param->ucOverscanTop;
conv_param.ucReserved = crtc_param->ucReserved;
printk("executing set crtc timing\n");
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&conv_param);
}
void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder = NULL;
struct radeon_encoder *radeon_encoder = NULL;
uint8_t frev, crev;
int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock);
SET_PIXEL_CLOCK_PS_ALLOCATION args;
PIXEL_CLOCK_PARAMETERS *spc1_ptr;
PIXEL_CLOCK_PARAMETERS_V2 *spc2_ptr;
PIXEL_CLOCK_PARAMETERS_V3 *spc3_ptr;
uint32_t sclock = mode->clock;
uint32_t ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0;
struct radeon_pll *pll;
int pll_flags = 0;
memset(&args, 0, sizeof(args));
if (ASIC_IS_AVIVO(rdev)) {
uint32_t ss_cntl;
if ((rdev->family == CHIP_RS600) ||
(rdev->family == CHIP_RS690) ||
(rdev->family == CHIP_RS740))
pll_flags |= (RADEON_PLL_USE_FRAC_FB_DIV |
RADEON_PLL_PREFER_CLOSEST_LOWER);
if (ASIC_IS_DCE32(rdev) && mode->clock > 200000) /* range limits??? */
pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV;
else
pll_flags |= RADEON_PLL_PREFER_LOW_REF_DIV;
/* disable spread spectrum clocking for now -- thanks Hedy Lamarr */
if (radeon_crtc->crtc_id == 0) {
ss_cntl = RREG32(AVIVO_P1PLL_INT_SS_CNTL);
WREG32(AVIVO_P1PLL_INT_SS_CNTL, ss_cntl & ~1);
} else {
ss_cntl = RREG32(AVIVO_P2PLL_INT_SS_CNTL);
WREG32(AVIVO_P2PLL_INT_SS_CNTL, ss_cntl & ~1);
}
} else {
pll_flags |= RADEON_PLL_LEGACY;
if (mode->clock > 200000) /* range limits??? */
pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV;
else
pll_flags |= RADEON_PLL_PREFER_LOW_REF_DIV;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
if (!ASIC_IS_AVIVO(rdev)) {
if (encoder->encoder_type !=
DRM_MODE_ENCODER_DAC)
pll_flags |= RADEON_PLL_NO_ODD_POST_DIV;
if (!ASIC_IS_AVIVO(rdev)
&& (encoder->encoder_type ==
DRM_MODE_ENCODER_LVDS))
pll_flags |= RADEON_PLL_USE_REF_DIV;
}
radeon_encoder = to_radeon_encoder(encoder);
}
}
if (radeon_crtc->crtc_id == 0)
pll = &rdev->clock.p1pll;
else
pll = &rdev->clock.p2pll;
radeon_compute_pll(pll, mode->clock, &sclock, &fb_div, &frac_fb_div,
&ref_div, &post_div, pll_flags);
atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev,
&crev);
switch (frev) {
case 1:
switch (crev) {
case 1:
spc1_ptr = (PIXEL_CLOCK_PARAMETERS *) & args.sPCLKInput;
spc1_ptr->usPixelClock = cpu_to_le16(sclock);
spc1_ptr->usRefDiv = cpu_to_le16(ref_div);
spc1_ptr->usFbDiv = cpu_to_le16(fb_div);
spc1_ptr->ucFracFbDiv = frac_fb_div;
spc1_ptr->ucPostDiv = post_div;
spc1_ptr->ucPpll =
radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1;
spc1_ptr->ucCRTC = radeon_crtc->crtc_id;
spc1_ptr->ucRefDivSrc = 1;
break;
case 2:
spc2_ptr =
(PIXEL_CLOCK_PARAMETERS_V2 *) & args.sPCLKInput;
spc2_ptr->usPixelClock = cpu_to_le16(sclock);
spc2_ptr->usRefDiv = cpu_to_le16(ref_div);
spc2_ptr->usFbDiv = cpu_to_le16(fb_div);
spc2_ptr->ucFracFbDiv = frac_fb_div;
spc2_ptr->ucPostDiv = post_div;
spc2_ptr->ucPpll =
radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1;
spc2_ptr->ucCRTC = radeon_crtc->crtc_id;
spc2_ptr->ucRefDivSrc = 1;
break;
case 3:
if (!encoder)
return;
spc3_ptr =
(PIXEL_CLOCK_PARAMETERS_V3 *) & args.sPCLKInput;
spc3_ptr->usPixelClock = cpu_to_le16(sclock);
spc3_ptr->usRefDiv = cpu_to_le16(ref_div);
spc3_ptr->usFbDiv = cpu_to_le16(fb_div);
spc3_ptr->ucFracFbDiv = frac_fb_div;
spc3_ptr->ucPostDiv = post_div;
spc3_ptr->ucPpll =
radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1;
spc3_ptr->ucMiscInfo = (radeon_crtc->crtc_id << 2);
spc3_ptr->ucTransmitterId = radeon_encoder->encoder_id;
spc3_ptr->ucEncoderMode =
atombios_get_encoder_mode(encoder);
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
printk("executing set pll\n");
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_framebuffer *radeon_fb;
struct drm_gem_object *obj;
struct drm_radeon_gem_object *obj_priv;
uint64_t fb_location;
uint32_t fb_format, fb_pitch_pixels, tiling_flags;
if (!crtc->fb)
return -EINVAL;
radeon_fb = to_radeon_framebuffer(crtc->fb);
obj = radeon_fb->obj;
obj_priv = obj->driver_private;
if (radeon_gem_object_pin(obj, RADEON_GEM_DOMAIN_VRAM, &fb_location)) {
return -EINVAL;
}
switch (crtc->fb->bits_per_pixel) {
case 15:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_16BPP |
AVIVO_D1GRPH_CONTROL_16BPP_ARGB1555;
break;
case 16:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_16BPP |
AVIVO_D1GRPH_CONTROL_16BPP_RGB565;
break;
case 24:
case 32:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_32BPP |
AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888;
break;
default:
DRM_ERROR("Unsupported screen depth %d\n",
crtc->fb->bits_per_pixel);
return -EINVAL;
}
radeon_object_get_tiling_flags(obj->driver_private,
&tiling_flags, NULL);
if (tiling_flags & RADEON_TILING_MACRO)
fb_format |= AVIVO_D1GRPH_MACRO_ADDRESS_MODE;
if (tiling_flags & RADEON_TILING_MICRO)
fb_format |= AVIVO_D1GRPH_TILED;
if (radeon_crtc->crtc_id == 0)
WREG32(AVIVO_D1VGA_CONTROL, 0);
else
WREG32(AVIVO_D2VGA_CONTROL, 0);
WREG32(AVIVO_D1GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32) fb_location);
WREG32(AVIVO_D1GRPH_SECONDARY_SURFACE_ADDRESS +
radeon_crtc->crtc_offset, (u32) fb_location);
WREG32(AVIVO_D1GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format);
WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_X_START + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_Y_START + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_X_END + radeon_crtc->crtc_offset, crtc->fb->width);
WREG32(AVIVO_D1GRPH_Y_END + radeon_crtc->crtc_offset, crtc->fb->height);
fb_pitch_pixels = crtc->fb->pitch / (crtc->fb->bits_per_pixel / 8);
WREG32(AVIVO_D1GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels);
WREG32(AVIVO_D1GRPH_ENABLE + radeon_crtc->crtc_offset, 1);
WREG32(AVIVO_D1MODE_DESKTOP_HEIGHT + radeon_crtc->crtc_offset,
crtc->mode.vdisplay);
x &= ~3;
y &= ~1;
WREG32(AVIVO_D1MODE_VIEWPORT_START + radeon_crtc->crtc_offset,
(x << 16) | y);
WREG32(AVIVO_D1MODE_VIEWPORT_SIZE + radeon_crtc->crtc_offset,
(crtc->mode.hdisplay << 16) | crtc->mode.vdisplay);
if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE)
WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset,
AVIVO_D1MODE_INTERLEAVE_EN);
else
WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset, 0);
if (old_fb && old_fb != crtc->fb) {
radeon_fb = to_radeon_framebuffer(old_fb);
radeon_gem_object_unpin(radeon_fb->obj);
}
return 0;
}
int atombios_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder;
SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION crtc_timing;
/* TODO color tiling */
memset(&crtc_timing, 0, sizeof(crtc_timing));
/* TODO tv */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
}
crtc_timing.ucCRTC = radeon_crtc->crtc_id;
crtc_timing.usH_Total = adjusted_mode->crtc_htotal;
crtc_timing.usH_Disp = adjusted_mode->crtc_hdisplay;
crtc_timing.usH_SyncStart = adjusted_mode->crtc_hsync_start;
crtc_timing.usH_SyncWidth =
adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start;
crtc_timing.usV_Total = adjusted_mode->crtc_vtotal;
crtc_timing.usV_Disp = adjusted_mode->crtc_vdisplay;
crtc_timing.usV_SyncStart = adjusted_mode->crtc_vsync_start;
crtc_timing.usV_SyncWidth =
adjusted_mode->crtc_vsync_end - adjusted_mode->crtc_vsync_start;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
crtc_timing.susModeMiscInfo.usAccess |= ATOM_VSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
crtc_timing.susModeMiscInfo.usAccess |= ATOM_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_CSYNC)
crtc_timing.susModeMiscInfo.usAccess |= ATOM_COMPOSITESYNC;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
crtc_timing.susModeMiscInfo.usAccess |= ATOM_INTERLACE;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
crtc_timing.susModeMiscInfo.usAccess |= ATOM_DOUBLE_CLOCK_MODE;
atombios_crtc_set_pll(crtc, adjusted_mode);
atombios_crtc_set_timing(crtc, &crtc_timing);
if (ASIC_IS_AVIVO(rdev))
atombios_crtc_set_base(crtc, x, y, old_fb);
else {
if (radeon_crtc->crtc_id == 0) {
SET_CRTC_USING_DTD_TIMING_PARAMETERS crtc_dtd_timing;
memset(&crtc_dtd_timing, 0, sizeof(crtc_dtd_timing));
/* setup FP shadow regs on R4xx */
crtc_dtd_timing.ucCRTC = radeon_crtc->crtc_id;
crtc_dtd_timing.usH_Size = adjusted_mode->crtc_hdisplay;
crtc_dtd_timing.usV_Size = adjusted_mode->crtc_vdisplay;
crtc_dtd_timing.usH_Blanking_Time =
adjusted_mode->crtc_hblank_end -
adjusted_mode->crtc_hdisplay;
crtc_dtd_timing.usV_Blanking_Time =
adjusted_mode->crtc_vblank_end -
adjusted_mode->crtc_vdisplay;
crtc_dtd_timing.usH_SyncOffset =
adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_hdisplay;
crtc_dtd_timing.usV_SyncOffset =
adjusted_mode->crtc_vsync_start -
adjusted_mode->crtc_vdisplay;
crtc_dtd_timing.usH_SyncWidth =
adjusted_mode->crtc_hsync_end -
adjusted_mode->crtc_hsync_start;
crtc_dtd_timing.usV_SyncWidth =
adjusted_mode->crtc_vsync_end -
adjusted_mode->crtc_vsync_start;
/* crtc_dtd_timing.ucH_Border = adjusted_mode->crtc_hborder; */
/* crtc_dtd_timing.ucV_Border = adjusted_mode->crtc_vborder; */
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
crtc_dtd_timing.susModeMiscInfo.usAccess |=
ATOM_VSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
crtc_dtd_timing.susModeMiscInfo.usAccess |=
ATOM_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_CSYNC)
crtc_dtd_timing.susModeMiscInfo.usAccess |=
ATOM_COMPOSITESYNC;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
crtc_dtd_timing.susModeMiscInfo.usAccess |=
ATOM_INTERLACE;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
crtc_dtd_timing.susModeMiscInfo.usAccess |=
ATOM_DOUBLE_CLOCK_MODE;
atombios_set_crtc_dtd_timing(crtc, &crtc_dtd_timing);
}
radeon_crtc_set_base(crtc, x, y, old_fb);
radeon_legacy_atom_set_surface(crtc);
}
return 0;
}
static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static void atombios_crtc_prepare(struct drm_crtc *crtc)
{
atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
atombios_lock_crtc(crtc, 1);
}
static void atombios_crtc_commit(struct drm_crtc *crtc)
{
atombios_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
atombios_lock_crtc(crtc, 0);
}
static const struct drm_crtc_helper_funcs atombios_helper_funcs = {
.dpms = atombios_crtc_dpms,
.mode_fixup = atombios_crtc_mode_fixup,
.mode_set = atombios_crtc_mode_set,
.mode_set_base = atombios_crtc_set_base,
.prepare = atombios_crtc_prepare,
.commit = atombios_crtc_commit,
};
void radeon_atombios_init_crtc(struct drm_device *dev,
struct radeon_crtc *radeon_crtc)
{
if (radeon_crtc->crtc_id == 1)
radeon_crtc->crtc_offset =
AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL;
drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs);
}
void radeon_init_disp_bw_avivo(struct drm_device *dev,
struct drm_display_mode *mode1,
uint32_t pixel_bytes1,
struct drm_display_mode *mode2,
uint32_t pixel_bytes2)
{
struct radeon_device *rdev = dev->dev_private;
fixed20_12 min_mem_eff;
fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff;
fixed20_12 sclk_ff, mclk_ff;
uint32_t dc_lb_memory_split, temp;
min_mem_eff.full = rfixed_const_8(0);
if (rdev->disp_priority == 2) {
uint32_t mc_init_misc_lat_timer = 0;
if (rdev->family == CHIP_RV515)
mc_init_misc_lat_timer =
RREG32_MC(RV515_MC_INIT_MISC_LAT_TIMER);
else if (rdev->family == CHIP_RS690)
mc_init_misc_lat_timer =
RREG32_MC(RS690_MC_INIT_MISC_LAT_TIMER);
mc_init_misc_lat_timer &=
~(R300_MC_DISP1R_INIT_LAT_MASK <<
R300_MC_DISP1R_INIT_LAT_SHIFT);
mc_init_misc_lat_timer &=
~(R300_MC_DISP0R_INIT_LAT_MASK <<
R300_MC_DISP0R_INIT_LAT_SHIFT);
if (mode2)
mc_init_misc_lat_timer |=
(1 << R300_MC_DISP1R_INIT_LAT_SHIFT);
if (mode1)
mc_init_misc_lat_timer |=
(1 << R300_MC_DISP0R_INIT_LAT_SHIFT);
if (rdev->family == CHIP_RV515)
WREG32_MC(RV515_MC_INIT_MISC_LAT_TIMER,
mc_init_misc_lat_timer);
else if (rdev->family == CHIP_RS690)
WREG32_MC(RS690_MC_INIT_MISC_LAT_TIMER,
mc_init_misc_lat_timer);
}
/*
* determine is there is enough bw for current mode
*/
temp_ff.full = rfixed_const(100);
mclk_ff.full = rfixed_const(rdev->clock.default_mclk);
mclk_ff.full = rfixed_div(mclk_ff, temp_ff);
sclk_ff.full = rfixed_const(rdev->clock.default_sclk);
sclk_ff.full = rfixed_div(sclk_ff, temp_ff);
temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1);
temp_ff.full = rfixed_const(temp);
mem_bw.full = rfixed_mul(mclk_ff, temp_ff);
mem_bw.full = rfixed_mul(mem_bw, min_mem_eff);
pix_clk.full = 0;
pix_clk2.full = 0;
peak_disp_bw.full = 0;
if (mode1) {
temp_ff.full = rfixed_const(1000);
pix_clk.full = rfixed_const(mode1->clock); /* convert to fixed point */
pix_clk.full = rfixed_div(pix_clk, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes1);
peak_disp_bw.full += rfixed_mul(pix_clk, temp_ff);
}
if (mode2) {
temp_ff.full = rfixed_const(1000);
pix_clk2.full = rfixed_const(mode2->clock); /* convert to fixed point */
pix_clk2.full = rfixed_div(pix_clk2, temp_ff);
temp_ff.full = rfixed_const(pixel_bytes2);
peak_disp_bw.full += rfixed_mul(pix_clk2, temp_ff);
}
if (peak_disp_bw.full >= mem_bw.full) {
DRM_ERROR
("You may not have enough display bandwidth for current mode\n"
"If you have flickering problem, try to lower resolution, refresh rate, or color depth\n");
printk("peak disp bw %d, mem_bw %d\n",
rfixed_trunc(peak_disp_bw), rfixed_trunc(mem_bw));
}
/*
* Line Buffer Setup
* There is a single line buffer shared by both display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between the display
* controllers. The paritioning can either be done manually or via one of four
* preset allocations specified in bits 1:0:
* 0 - line buffer is divided in half and shared between each display controller
* 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4
* 2 - D1 gets the whole buffer
* 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4
* Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual allocation mode.
* In manual allocation mode, D1 always starts at 0, D1 end/2 is specified in bits
* 14:4; D2 allocation follows D1.
*/
/* is auto or manual better ? */
dc_lb_memory_split =
RREG32(AVIVO_DC_LB_MEMORY_SPLIT) & ~AVIVO_DC_LB_MEMORY_SPLIT_MASK;
dc_lb_memory_split &= ~AVIVO_DC_LB_MEMORY_SPLIT_SHIFT_MODE;
#if 1
/* auto */
if (mode1 && mode2) {
if (mode1->hdisplay > mode2->hdisplay) {
if (mode1->hdisplay > 2560)
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q;
else
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else if (mode2->hdisplay > mode1->hdisplay) {
if (mode2->hdisplay > 2560)
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
else
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else
dc_lb_memory_split |=
AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
} else if (mode1) {
dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_ONLY;
} else if (mode2) {
dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
}
#else
/* manual */
dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_SHIFT_MODE;
dc_lb_memory_split &=
~(AVIVO_DC_LB_DISP1_END_ADR_MASK <<
AVIVO_DC_LB_DISP1_END_ADR_SHIFT);
if (mode1) {
dc_lb_memory_split |=
((((mode1->hdisplay / 2) + 64) & AVIVO_DC_LB_DISP1_END_ADR_MASK)
<< AVIVO_DC_LB_DISP1_END_ADR_SHIFT);
} else if (mode2) {
dc_lb_memory_split |= (0 << AVIVO_DC_LB_DISP1_END_ADR_SHIFT);
}
#endif
WREG32(AVIVO_DC_LB_MEMORY_SPLIT, dc_lb_memory_split);
}