mirror of
https://github.com/adulau/aha.git
synced 2025-01-02 14:13:18 +00:00
201cd6cce4
ATH9K_ANT_VARIABLE is the default diversity control used. Consequently ath9k_hw_decrease_chain_power() does nothing. ath9k_hw_setantennaswitch() is unused too. Also, gbeacon_rate is unused. Signed-off-by: Sujith <Sujith.Manoharan@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
976 lines
28 KiB
C
976 lines
28 KiB
C
/*
|
|
* Copyright (c) 2008-2009 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Programming Atheros 802.11n analog front end radios
|
|
*
|
|
* AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
|
|
* devices have either an external AR2133 analog front end radio for single
|
|
* band 2.4 GHz communication or an AR5133 analog front end radio for dual
|
|
* band 2.4 GHz / 5 GHz communication.
|
|
*
|
|
* All devices after the AR5416 and AR5418 family starting with the AR9280
|
|
* have their analog front radios, MAC/BB and host PCIe/USB interface embedded
|
|
* into a single-chip and require less programming.
|
|
*
|
|
* The following single-chips exist with a respective embedded radio:
|
|
*
|
|
* AR9280 - 11n dual-band 2x2 MIMO for PCIe
|
|
* AR9281 - 11n single-band 1x2 MIMO for PCIe
|
|
* AR9285 - 11n single-band 1x1 for PCIe
|
|
* AR9287 - 11n single-band 2x2 MIMO for PCIe
|
|
*
|
|
* AR9220 - 11n dual-band 2x2 MIMO for PCI
|
|
* AR9223 - 11n single-band 2x2 MIMO for PCI
|
|
*
|
|
* AR9287 - 11n single-band 1x1 MIMO for USB
|
|
*/
|
|
|
|
#include "hw.h"
|
|
|
|
/**
|
|
* ath9k_hw_write_regs - ??
|
|
*
|
|
* @ah: atheros hardware structure
|
|
* @freqIndex:
|
|
* @regWrites:
|
|
*
|
|
* Used for both the chipsets with an external AR2133/AR5133 radios and
|
|
* single-chip devices.
|
|
*/
|
|
void ath9k_hw_write_regs(struct ath_hw *ah, u32 freqIndex, int regWrites)
|
|
{
|
|
REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
|
|
}
|
|
|
|
/**
|
|
* ath9k_hw_ar9280_set_channel - set channel on single-chip device
|
|
* @ah: atheros hardware structure
|
|
* @chan:
|
|
*
|
|
* This is the function to change channel on single-chip devices, that is
|
|
* all devices after ar9280.
|
|
*
|
|
* This function takes the channel value in MHz and sets
|
|
* hardware channel value. Assumes writes have been enabled to analog bus.
|
|
*
|
|
* Actual Expression,
|
|
*
|
|
* For 2GHz channel,
|
|
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
|
|
* (freq_ref = 40MHz)
|
|
*
|
|
* For 5GHz channel,
|
|
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
|
|
* (freq_ref = 40MHz/(24>>amodeRefSel))
|
|
*/
|
|
int ath9k_hw_ar9280_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
|
|
{
|
|
u16 bMode, fracMode, aModeRefSel = 0;
|
|
u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
|
|
struct chan_centers centers;
|
|
u32 refDivA = 24;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
freq = centers.synth_center;
|
|
|
|
reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
|
|
reg32 &= 0xc0000000;
|
|
|
|
if (freq < 4800) { /* 2 GHz, fractional mode */
|
|
u32 txctl;
|
|
int regWrites = 0;
|
|
|
|
bMode = 1;
|
|
fracMode = 1;
|
|
aModeRefSel = 0;
|
|
channelSel = (freq * 0x10000) / 15;
|
|
|
|
if (AR_SREV_9287_11_OR_LATER(ah)) {
|
|
if (freq == 2484) {
|
|
/* Enable channel spreading for channel 14 */
|
|
REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
|
|
1, regWrites);
|
|
} else {
|
|
REG_WRITE_ARRAY(&ah->iniCckfirNormal,
|
|
1, regWrites);
|
|
}
|
|
} else {
|
|
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
|
|
if (freq == 2484) {
|
|
/* Enable channel spreading for channel 14 */
|
|
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
} else {
|
|
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
}
|
|
}
|
|
} else {
|
|
bMode = 0;
|
|
fracMode = 0;
|
|
|
|
switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
|
|
case 0:
|
|
if ((freq % 20) == 0) {
|
|
aModeRefSel = 3;
|
|
} else if ((freq % 10) == 0) {
|
|
aModeRefSel = 2;
|
|
}
|
|
if (aModeRefSel)
|
|
break;
|
|
case 1:
|
|
default:
|
|
aModeRefSel = 0;
|
|
/*
|
|
* Enable 2G (fractional) mode for channels
|
|
* which are 5MHz spaced.
|
|
*/
|
|
fracMode = 1;
|
|
refDivA = 1;
|
|
channelSel = (freq * 0x8000) / 15;
|
|
|
|
/* RefDivA setting */
|
|
REG_RMW_FIELD(ah, AR_AN_SYNTH9,
|
|
AR_AN_SYNTH9_REFDIVA, refDivA);
|
|
|
|
}
|
|
|
|
if (!fracMode) {
|
|
ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
|
|
channelSel = ndiv & 0x1ff;
|
|
channelFrac = (ndiv & 0xfffffe00) * 2;
|
|
channelSel = (channelSel << 17) | channelFrac;
|
|
}
|
|
}
|
|
|
|
reg32 = reg32 |
|
|
(bMode << 29) |
|
|
(fracMode << 28) | (aModeRefSel << 26) | (channelSel);
|
|
|
|
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
|
|
|
|
ah->curchan = chan;
|
|
ah->curchan_rad_index = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ath9k_hw_9280_spur_mitigate - convert baseband spur frequency
|
|
* @ah: atheros hardware structure
|
|
* @chan:
|
|
*
|
|
* For single-chip solutions. Converts to baseband spur frequency given the
|
|
* input channel frequency and compute register settings below.
|
|
*/
|
|
void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
|
|
{
|
|
int bb_spur = AR_NO_SPUR;
|
|
int freq;
|
|
int bin, cur_bin;
|
|
int bb_spur_off, spur_subchannel_sd;
|
|
int spur_freq_sd;
|
|
int spur_delta_phase;
|
|
int denominator;
|
|
int upper, lower, cur_vit_mask;
|
|
int tmp, newVal;
|
|
int i;
|
|
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
|
|
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
|
|
};
|
|
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
|
|
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
|
|
};
|
|
int inc[4] = { 0, 100, 0, 0 };
|
|
struct chan_centers centers;
|
|
|
|
int8_t mask_m[123];
|
|
int8_t mask_p[123];
|
|
int8_t mask_amt;
|
|
int tmp_mask;
|
|
int cur_bb_spur;
|
|
bool is2GHz = IS_CHAN_2GHZ(chan);
|
|
|
|
memset(&mask_m, 0, sizeof(int8_t) * 123);
|
|
memset(&mask_p, 0, sizeof(int8_t) * 123);
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
freq = centers.synth_center;
|
|
|
|
ah->config.spurmode = SPUR_ENABLE_EEPROM;
|
|
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
|
|
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
|
|
|
|
if (is2GHz)
|
|
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
|
|
else
|
|
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
|
|
|
|
if (AR_NO_SPUR == cur_bb_spur)
|
|
break;
|
|
cur_bb_spur = cur_bb_spur - freq;
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
|
|
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
|
|
bb_spur = cur_bb_spur;
|
|
break;
|
|
}
|
|
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
|
|
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
|
|
bb_spur = cur_bb_spur;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AR_NO_SPUR == bb_spur) {
|
|
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
|
|
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
|
|
return;
|
|
} else {
|
|
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
|
|
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
|
|
}
|
|
|
|
bin = bb_spur * 320;
|
|
|
|
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
|
|
|
|
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
|
|
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
|
|
|
|
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
|
|
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
|
|
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
|
|
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
|
|
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
|
|
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
if (bb_spur < 0) {
|
|
spur_subchannel_sd = 1;
|
|
bb_spur_off = bb_spur + 10;
|
|
} else {
|
|
spur_subchannel_sd = 0;
|
|
bb_spur_off = bb_spur - 10;
|
|
}
|
|
} else {
|
|
spur_subchannel_sd = 0;
|
|
bb_spur_off = bb_spur;
|
|
}
|
|
|
|
if (IS_CHAN_HT40(chan))
|
|
spur_delta_phase =
|
|
((bb_spur * 262144) /
|
|
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
|
|
else
|
|
spur_delta_phase =
|
|
((bb_spur * 524288) /
|
|
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
|
|
|
|
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
|
|
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
|
|
|
|
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
|
|
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
|
|
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
|
|
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
|
|
|
|
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
|
|
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
|
|
|
|
cur_bin = -6000;
|
|
upper = bin + 100;
|
|
lower = bin - 100;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int pilot_mask = 0;
|
|
int chan_mask = 0;
|
|
int bp = 0;
|
|
for (bp = 0; bp < 30; bp++) {
|
|
if ((cur_bin > lower) && (cur_bin < upper)) {
|
|
pilot_mask = pilot_mask | 0x1 << bp;
|
|
chan_mask = chan_mask | 0x1 << bp;
|
|
}
|
|
cur_bin += 100;
|
|
}
|
|
cur_bin += inc[i];
|
|
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
|
|
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
|
|
}
|
|
|
|
cur_vit_mask = 6100;
|
|
upper = bin + 120;
|
|
lower = bin - 120;
|
|
|
|
for (i = 0; i < 123; i++) {
|
|
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
|
|
|
|
/* workaround for gcc bug #37014 */
|
|
volatile int tmp_v = abs(cur_vit_mask - bin);
|
|
|
|
if (tmp_v < 75)
|
|
mask_amt = 1;
|
|
else
|
|
mask_amt = 0;
|
|
if (cur_vit_mask < 0)
|
|
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
|
|
else
|
|
mask_p[cur_vit_mask / 100] = mask_amt;
|
|
}
|
|
cur_vit_mask -= 100;
|
|
}
|
|
|
|
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
|
|
| (mask_m[48] << 26) | (mask_m[49] << 24)
|
|
| (mask_m[50] << 22) | (mask_m[51] << 20)
|
|
| (mask_m[52] << 18) | (mask_m[53] << 16)
|
|
| (mask_m[54] << 14) | (mask_m[55] << 12)
|
|
| (mask_m[56] << 10) | (mask_m[57] << 8)
|
|
| (mask_m[58] << 6) | (mask_m[59] << 4)
|
|
| (mask_m[60] << 2) | (mask_m[61] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
|
|
|
|
tmp_mask = (mask_m[31] << 28)
|
|
| (mask_m[32] << 26) | (mask_m[33] << 24)
|
|
| (mask_m[34] << 22) | (mask_m[35] << 20)
|
|
| (mask_m[36] << 18) | (mask_m[37] << 16)
|
|
| (mask_m[48] << 14) | (mask_m[39] << 12)
|
|
| (mask_m[40] << 10) | (mask_m[41] << 8)
|
|
| (mask_m[42] << 6) | (mask_m[43] << 4)
|
|
| (mask_m[44] << 2) | (mask_m[45] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
|
|
|
|
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
|
|
| (mask_m[18] << 26) | (mask_m[18] << 24)
|
|
| (mask_m[20] << 22) | (mask_m[20] << 20)
|
|
| (mask_m[22] << 18) | (mask_m[22] << 16)
|
|
| (mask_m[24] << 14) | (mask_m[24] << 12)
|
|
| (mask_m[25] << 10) | (mask_m[26] << 8)
|
|
| (mask_m[27] << 6) | (mask_m[28] << 4)
|
|
| (mask_m[29] << 2) | (mask_m[30] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
|
|
|
|
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
|
|
| (mask_m[2] << 26) | (mask_m[3] << 24)
|
|
| (mask_m[4] << 22) | (mask_m[5] << 20)
|
|
| (mask_m[6] << 18) | (mask_m[7] << 16)
|
|
| (mask_m[8] << 14) | (mask_m[9] << 12)
|
|
| (mask_m[10] << 10) | (mask_m[11] << 8)
|
|
| (mask_m[12] << 6) | (mask_m[13] << 4)
|
|
| (mask_m[14] << 2) | (mask_m[15] << 0);
|
|
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[15] << 28)
|
|
| (mask_p[14] << 26) | (mask_p[13] << 24)
|
|
| (mask_p[12] << 22) | (mask_p[11] << 20)
|
|
| (mask_p[10] << 18) | (mask_p[9] << 16)
|
|
| (mask_p[8] << 14) | (mask_p[7] << 12)
|
|
| (mask_p[6] << 10) | (mask_p[5] << 8)
|
|
| (mask_p[4] << 6) | (mask_p[3] << 4)
|
|
| (mask_p[2] << 2) | (mask_p[1] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[30] << 28)
|
|
| (mask_p[29] << 26) | (mask_p[28] << 24)
|
|
| (mask_p[27] << 22) | (mask_p[26] << 20)
|
|
| (mask_p[25] << 18) | (mask_p[24] << 16)
|
|
| (mask_p[23] << 14) | (mask_p[22] << 12)
|
|
| (mask_p[21] << 10) | (mask_p[20] << 8)
|
|
| (mask_p[19] << 6) | (mask_p[18] << 4)
|
|
| (mask_p[17] << 2) | (mask_p[16] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[45] << 28)
|
|
| (mask_p[44] << 26) | (mask_p[43] << 24)
|
|
| (mask_p[42] << 22) | (mask_p[41] << 20)
|
|
| (mask_p[40] << 18) | (mask_p[39] << 16)
|
|
| (mask_p[38] << 14) | (mask_p[37] << 12)
|
|
| (mask_p[36] << 10) | (mask_p[35] << 8)
|
|
| (mask_p[34] << 6) | (mask_p[33] << 4)
|
|
| (mask_p[32] << 2) | (mask_p[31] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
|
|
| (mask_p[59] << 26) | (mask_p[58] << 24)
|
|
| (mask_p[57] << 22) | (mask_p[56] << 20)
|
|
| (mask_p[55] << 18) | (mask_p[54] << 16)
|
|
| (mask_p[53] << 14) | (mask_p[52] << 12)
|
|
| (mask_p[51] << 10) | (mask_p[50] << 8)
|
|
| (mask_p[49] << 6) | (mask_p[48] << 4)
|
|
| (mask_p[47] << 2) | (mask_p[46] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
|
|
}
|
|
|
|
/* All code below is for non single-chip solutions */
|
|
|
|
/**
|
|
* ath9k_phy_modify_rx_buffer() - perform analog swizzling of parameters
|
|
* @rfbuf:
|
|
* @reg32:
|
|
* @numBits:
|
|
* @firstBit:
|
|
* @column:
|
|
*
|
|
* Performs analog "swizzling" of parameters into their location.
|
|
* Used on external AR2133/AR5133 radios.
|
|
*/
|
|
static void ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
|
|
u32 numBits, u32 firstBit,
|
|
u32 column)
|
|
{
|
|
u32 tmp32, mask, arrayEntry, lastBit;
|
|
int32_t bitPosition, bitsLeft;
|
|
|
|
tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
|
|
arrayEntry = (firstBit - 1) / 8;
|
|
bitPosition = (firstBit - 1) % 8;
|
|
bitsLeft = numBits;
|
|
while (bitsLeft > 0) {
|
|
lastBit = (bitPosition + bitsLeft > 8) ?
|
|
8 : bitPosition + bitsLeft;
|
|
mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
|
|
(column * 8);
|
|
rfBuf[arrayEntry] &= ~mask;
|
|
rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
|
|
(column * 8)) & mask;
|
|
bitsLeft -= 8 - bitPosition;
|
|
tmp32 = tmp32 >> (8 - bitPosition);
|
|
bitPosition = 0;
|
|
arrayEntry++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fix on 2.4 GHz band for orientation sensitivity issue by increasing
|
|
* rf_pwd_icsyndiv.
|
|
*
|
|
* Theoretical Rules:
|
|
* if 2 GHz band
|
|
* if forceBiasAuto
|
|
* if synth_freq < 2412
|
|
* bias = 0
|
|
* else if 2412 <= synth_freq <= 2422
|
|
* bias = 1
|
|
* else // synth_freq > 2422
|
|
* bias = 2
|
|
* else if forceBias > 0
|
|
* bias = forceBias & 7
|
|
* else
|
|
* no change, use value from ini file
|
|
* else
|
|
* no change, invalid band
|
|
*
|
|
* 1st Mod:
|
|
* 2422 also uses value of 2
|
|
* <approved>
|
|
*
|
|
* 2nd Mod:
|
|
* Less than 2412 uses value of 0, 2412 and above uses value of 2
|
|
*/
|
|
static void ath9k_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 tmp_reg;
|
|
int reg_writes = 0;
|
|
u32 new_bias = 0;
|
|
|
|
if (!AR_SREV_5416(ah) || synth_freq >= 3000) {
|
|
return;
|
|
}
|
|
|
|
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
|
|
|
|
if (synth_freq < 2412)
|
|
new_bias = 0;
|
|
else if (synth_freq < 2422)
|
|
new_bias = 1;
|
|
else
|
|
new_bias = 2;
|
|
|
|
/* pre-reverse this field */
|
|
tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
|
|
|
|
ath_print(common, ATH_DBG_CONFIG,
|
|
"Force rf_pwd_icsyndiv to %1d on %4d\n",
|
|
new_bias, synth_freq);
|
|
|
|
/* swizzle rf_pwd_icsyndiv */
|
|
ath9k_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
|
|
|
|
/* write Bank 6 with new params */
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
|
|
}
|
|
|
|
/**
|
|
* ath9k_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
|
|
* @ah: atheros hardware stucture
|
|
* @chan:
|
|
*
|
|
* For the external AR2133/AR5133 radios, takes the MHz channel value and set
|
|
* the channel value. Assumes writes enabled to analog bus and bank6 register
|
|
* cache in ah->analogBank6Data.
|
|
*/
|
|
int ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 channelSel = 0;
|
|
u32 bModeSynth = 0;
|
|
u32 aModeRefSel = 0;
|
|
u32 reg32 = 0;
|
|
u16 freq;
|
|
struct chan_centers centers;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
freq = centers.synth_center;
|
|
|
|
if (freq < 4800) {
|
|
u32 txctl;
|
|
|
|
if (((freq - 2192) % 5) == 0) {
|
|
channelSel = ((freq - 672) * 2 - 3040) / 10;
|
|
bModeSynth = 0;
|
|
} else if (((freq - 2224) % 5) == 0) {
|
|
channelSel = ((freq - 704) * 2 - 3040) / 10;
|
|
bModeSynth = 1;
|
|
} else {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Invalid channel %u MHz\n", freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
channelSel = (channelSel << 2) & 0xff;
|
|
channelSel = ath9k_hw_reverse_bits(channelSel, 8);
|
|
|
|
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
|
|
if (freq == 2484) {
|
|
|
|
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
} else {
|
|
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
}
|
|
|
|
} else if ((freq % 20) == 0 && freq >= 5120) {
|
|
channelSel =
|
|
ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
|
|
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
|
|
} else if ((freq % 10) == 0) {
|
|
channelSel =
|
|
ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
|
|
if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
|
|
aModeRefSel = ath9k_hw_reverse_bits(2, 2);
|
|
else
|
|
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
|
|
} else if ((freq % 5) == 0) {
|
|
channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
|
|
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
|
|
} else {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Invalid channel %u MHz\n", freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ath9k_hw_force_bias(ah, freq);
|
|
|
|
reg32 =
|
|
(channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
|
|
(1 << 5) | 0x1;
|
|
|
|
REG_WRITE(ah, AR_PHY(0x37), reg32);
|
|
|
|
ah->curchan = chan;
|
|
ah->curchan_rad_index = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ath9k_hw_spur_mitigate - convert baseband spur frequency for external radios
|
|
* @ah: atheros hardware structure
|
|
* @chan:
|
|
*
|
|
* For non single-chip solutions. Converts to baseband spur frequency given the
|
|
* input channel frequency and compute register settings below.
|
|
*/
|
|
void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
|
|
{
|
|
int bb_spur = AR_NO_SPUR;
|
|
int bin, cur_bin;
|
|
int spur_freq_sd;
|
|
int spur_delta_phase;
|
|
int denominator;
|
|
int upper, lower, cur_vit_mask;
|
|
int tmp, new;
|
|
int i;
|
|
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
|
|
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
|
|
};
|
|
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
|
|
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
|
|
};
|
|
int inc[4] = { 0, 100, 0, 0 };
|
|
|
|
int8_t mask_m[123];
|
|
int8_t mask_p[123];
|
|
int8_t mask_amt;
|
|
int tmp_mask;
|
|
int cur_bb_spur;
|
|
bool is2GHz = IS_CHAN_2GHZ(chan);
|
|
|
|
memset(&mask_m, 0, sizeof(int8_t) * 123);
|
|
memset(&mask_p, 0, sizeof(int8_t) * 123);
|
|
|
|
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
|
|
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
|
|
if (AR_NO_SPUR == cur_bb_spur)
|
|
break;
|
|
cur_bb_spur = cur_bb_spur - (chan->channel * 10);
|
|
if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
|
|
bb_spur = cur_bb_spur;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AR_NO_SPUR == bb_spur)
|
|
return;
|
|
|
|
bin = bb_spur * 32;
|
|
|
|
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
|
|
new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
|
|
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
|
|
|
|
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
|
|
|
|
new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
|
|
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
|
|
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
|
|
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
|
|
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
|
|
REG_WRITE(ah, AR_PHY_SPUR_REG, new);
|
|
|
|
spur_delta_phase = ((bb_spur * 524288) / 100) &
|
|
AR_PHY_TIMING11_SPUR_DELTA_PHASE;
|
|
|
|
denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
|
|
spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
|
|
|
|
new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
|
|
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
|
|
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
|
|
REG_WRITE(ah, AR_PHY_TIMING11, new);
|
|
|
|
cur_bin = -6000;
|
|
upper = bin + 100;
|
|
lower = bin - 100;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int pilot_mask = 0;
|
|
int chan_mask = 0;
|
|
int bp = 0;
|
|
for (bp = 0; bp < 30; bp++) {
|
|
if ((cur_bin > lower) && (cur_bin < upper)) {
|
|
pilot_mask = pilot_mask | 0x1 << bp;
|
|
chan_mask = chan_mask | 0x1 << bp;
|
|
}
|
|
cur_bin += 100;
|
|
}
|
|
cur_bin += inc[i];
|
|
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
|
|
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
|
|
}
|
|
|
|
cur_vit_mask = 6100;
|
|
upper = bin + 120;
|
|
lower = bin - 120;
|
|
|
|
for (i = 0; i < 123; i++) {
|
|
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
|
|
|
|
/* workaround for gcc bug #37014 */
|
|
volatile int tmp_v = abs(cur_vit_mask - bin);
|
|
|
|
if (tmp_v < 75)
|
|
mask_amt = 1;
|
|
else
|
|
mask_amt = 0;
|
|
if (cur_vit_mask < 0)
|
|
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
|
|
else
|
|
mask_p[cur_vit_mask / 100] = mask_amt;
|
|
}
|
|
cur_vit_mask -= 100;
|
|
}
|
|
|
|
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
|
|
| (mask_m[48] << 26) | (mask_m[49] << 24)
|
|
| (mask_m[50] << 22) | (mask_m[51] << 20)
|
|
| (mask_m[52] << 18) | (mask_m[53] << 16)
|
|
| (mask_m[54] << 14) | (mask_m[55] << 12)
|
|
| (mask_m[56] << 10) | (mask_m[57] << 8)
|
|
| (mask_m[58] << 6) | (mask_m[59] << 4)
|
|
| (mask_m[60] << 2) | (mask_m[61] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
|
|
|
|
tmp_mask = (mask_m[31] << 28)
|
|
| (mask_m[32] << 26) | (mask_m[33] << 24)
|
|
| (mask_m[34] << 22) | (mask_m[35] << 20)
|
|
| (mask_m[36] << 18) | (mask_m[37] << 16)
|
|
| (mask_m[48] << 14) | (mask_m[39] << 12)
|
|
| (mask_m[40] << 10) | (mask_m[41] << 8)
|
|
| (mask_m[42] << 6) | (mask_m[43] << 4)
|
|
| (mask_m[44] << 2) | (mask_m[45] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
|
|
|
|
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
|
|
| (mask_m[18] << 26) | (mask_m[18] << 24)
|
|
| (mask_m[20] << 22) | (mask_m[20] << 20)
|
|
| (mask_m[22] << 18) | (mask_m[22] << 16)
|
|
| (mask_m[24] << 14) | (mask_m[24] << 12)
|
|
| (mask_m[25] << 10) | (mask_m[26] << 8)
|
|
| (mask_m[27] << 6) | (mask_m[28] << 4)
|
|
| (mask_m[29] << 2) | (mask_m[30] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
|
|
|
|
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
|
|
| (mask_m[2] << 26) | (mask_m[3] << 24)
|
|
| (mask_m[4] << 22) | (mask_m[5] << 20)
|
|
| (mask_m[6] << 18) | (mask_m[7] << 16)
|
|
| (mask_m[8] << 14) | (mask_m[9] << 12)
|
|
| (mask_m[10] << 10) | (mask_m[11] << 8)
|
|
| (mask_m[12] << 6) | (mask_m[13] << 4)
|
|
| (mask_m[14] << 2) | (mask_m[15] << 0);
|
|
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[15] << 28)
|
|
| (mask_p[14] << 26) | (mask_p[13] << 24)
|
|
| (mask_p[12] << 22) | (mask_p[11] << 20)
|
|
| (mask_p[10] << 18) | (mask_p[9] << 16)
|
|
| (mask_p[8] << 14) | (mask_p[7] << 12)
|
|
| (mask_p[6] << 10) | (mask_p[5] << 8)
|
|
| (mask_p[4] << 6) | (mask_p[3] << 4)
|
|
| (mask_p[2] << 2) | (mask_p[1] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[30] << 28)
|
|
| (mask_p[29] << 26) | (mask_p[28] << 24)
|
|
| (mask_p[27] << 22) | (mask_p[26] << 20)
|
|
| (mask_p[25] << 18) | (mask_p[24] << 16)
|
|
| (mask_p[23] << 14) | (mask_p[22] << 12)
|
|
| (mask_p[21] << 10) | (mask_p[20] << 8)
|
|
| (mask_p[19] << 6) | (mask_p[18] << 4)
|
|
| (mask_p[17] << 2) | (mask_p[16] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[45] << 28)
|
|
| (mask_p[44] << 26) | (mask_p[43] << 24)
|
|
| (mask_p[42] << 22) | (mask_p[41] << 20)
|
|
| (mask_p[40] << 18) | (mask_p[39] << 16)
|
|
| (mask_p[38] << 14) | (mask_p[37] << 12)
|
|
| (mask_p[36] << 10) | (mask_p[35] << 8)
|
|
| (mask_p[34] << 6) | (mask_p[33] << 4)
|
|
| (mask_p[32] << 2) | (mask_p[31] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
|
|
|
|
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
|
|
| (mask_p[59] << 26) | (mask_p[58] << 24)
|
|
| (mask_p[57] << 22) | (mask_p[56] << 20)
|
|
| (mask_p[55] << 18) | (mask_p[54] << 16)
|
|
| (mask_p[53] << 14) | (mask_p[52] << 12)
|
|
| (mask_p[51] << 10) | (mask_p[50] << 8)
|
|
| (mask_p[49] << 6) | (mask_p[48] << 4)
|
|
| (mask_p[47] << 2) | (mask_p[46] << 0);
|
|
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
|
|
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
|
|
}
|
|
|
|
/**
|
|
* ath9k_hw_rf_alloc_ext_banks - allocates banks for external radio programming
|
|
* @ah: atheros hardware structure
|
|
*
|
|
* Only required for older devices with external AR2133/AR5133 radios.
|
|
*/
|
|
int ath9k_hw_rf_alloc_ext_banks(struct ath_hw *ah)
|
|
{
|
|
#define ATH_ALLOC_BANK(bank, size) do { \
|
|
bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
|
|
if (!bank) { \
|
|
ath_print(common, ATH_DBG_FATAL, \
|
|
"Cannot allocate RF banks\n"); \
|
|
return -ENOMEM; \
|
|
} \
|
|
} while (0);
|
|
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
|
|
|
|
ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
|
|
ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
|
|
ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
|
|
ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
|
|
ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
|
|
ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
|
|
ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
|
|
ATH_ALLOC_BANK(ah->addac5416_21,
|
|
ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
|
|
ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
|
|
|
|
return 0;
|
|
#undef ATH_ALLOC_BANK
|
|
}
|
|
|
|
|
|
/**
|
|
* ath9k_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
|
|
* @ah: atheros hardware struture
|
|
* For the external AR2133/AR5133 radios banks.
|
|
*/
|
|
void
|
|
ath9k_hw_rf_free_ext_banks(struct ath_hw *ah)
|
|
{
|
|
#define ATH_FREE_BANK(bank) do { \
|
|
kfree(bank); \
|
|
bank = NULL; \
|
|
} while (0);
|
|
|
|
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
|
|
|
|
ATH_FREE_BANK(ah->analogBank0Data);
|
|
ATH_FREE_BANK(ah->analogBank1Data);
|
|
ATH_FREE_BANK(ah->analogBank2Data);
|
|
ATH_FREE_BANK(ah->analogBank3Data);
|
|
ATH_FREE_BANK(ah->analogBank6Data);
|
|
ATH_FREE_BANK(ah->analogBank6TPCData);
|
|
ATH_FREE_BANK(ah->analogBank7Data);
|
|
ATH_FREE_BANK(ah->addac5416_21);
|
|
ATH_FREE_BANK(ah->bank6Temp);
|
|
|
|
#undef ATH_FREE_BANK
|
|
}
|
|
|
|
/* *
|
|
* ath9k_hw_set_rf_regs - programs rf registers based on EEPROM
|
|
* @ah: atheros hardware structure
|
|
* @chan:
|
|
* @modesIndex:
|
|
*
|
|
* Used for the external AR2133/AR5133 radios.
|
|
*
|
|
* Reads the EEPROM header info from the device structure and programs
|
|
* all rf registers. This routine requires access to the analog
|
|
* rf device. This is not required for single-chip devices.
|
|
*/
|
|
bool ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
|
|
u16 modesIndex)
|
|
{
|
|
u32 eepMinorRev;
|
|
u32 ob5GHz = 0, db5GHz = 0;
|
|
u32 ob2GHz = 0, db2GHz = 0;
|
|
int regWrites = 0;
|
|
|
|
/*
|
|
* Software does not need to program bank data
|
|
* for single chip devices, that is AR9280 or anything
|
|
* after that.
|
|
*/
|
|
if (AR_SREV_9280_10_OR_LATER(ah))
|
|
return true;
|
|
|
|
/* Setup rf parameters */
|
|
eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
|
|
|
|
/* Setup Bank 0 Write */
|
|
RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
|
|
|
|
/* Setup Bank 1 Write */
|
|
RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
|
|
|
|
/* Setup Bank 2 Write */
|
|
RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
|
|
|
|
/* Setup Bank 6 Write */
|
|
RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
|
|
modesIndex);
|
|
{
|
|
int i;
|
|
for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
|
|
ah->analogBank6Data[i] =
|
|
INI_RA(&ah->iniBank6TPC, i, modesIndex);
|
|
}
|
|
}
|
|
|
|
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
|
|
if (eepMinorRev >= 2) {
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
|
|
db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
|
|
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
|
|
ob2GHz, 3, 197, 0);
|
|
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
|
|
db2GHz, 3, 194, 0);
|
|
} else {
|
|
ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
|
|
db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
|
|
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
|
|
ob5GHz, 3, 203, 0);
|
|
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
|
|
db5GHz, 3, 200, 0);
|
|
}
|
|
}
|
|
|
|
/* Setup Bank 7 Setup */
|
|
RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
|
|
|
|
/* Write Analog registers */
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
|
|
regWrites);
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
|
|
regWrites);
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
|
|
regWrites);
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
|
|
regWrites);
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
|
|
regWrites);
|
|
REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
|
|
regWrites);
|
|
|
|
return true;
|
|
}
|