mirror of
https://github.com/adulau/aha.git
synced 2025-01-01 05:36:24 +00:00
00977a59b9
Many struct file_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
292 lines
10 KiB
C
292 lines
10 KiB
C
/*
|
|
* file.c - part of debugfs, a tiny little debug file system
|
|
*
|
|
* Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
|
|
* Copyright (C) 2004 IBM Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License version
|
|
* 2 as published by the Free Software Foundation.
|
|
*
|
|
* debugfs is for people to use instead of /proc or /sys.
|
|
* See Documentation/DocBook/kernel-api for more details.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
static ssize_t default_read_file(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t default_write_file(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return count;
|
|
}
|
|
|
|
static int default_open(struct inode *inode, struct file *file)
|
|
{
|
|
if (inode->i_private)
|
|
file->private_data = inode->i_private;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct file_operations debugfs_file_operations = {
|
|
.read = default_read_file,
|
|
.write = default_write_file,
|
|
.open = default_open,
|
|
};
|
|
|
|
static void debugfs_u8_set(void *data, u64 val)
|
|
{
|
|
*(u8 *)data = val;
|
|
}
|
|
static u64 debugfs_u8_get(void *data)
|
|
{
|
|
return *(u8 *)data;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_u8, debugfs_u8_get, debugfs_u8_set, "%llu\n");
|
|
|
|
/**
|
|
* debugfs_create_u8 - create a debugfs file that is used to read and write an unsigned 8-bit value
|
|
* @name: a pointer to a string containing the name of the file to create.
|
|
* @mode: the permission that the file should have
|
|
* @parent: a pointer to the parent dentry for this file. This should be a
|
|
* directory dentry if set. If this parameter is %NULL, then the
|
|
* file will be created in the root of the debugfs filesystem.
|
|
* @value: a pointer to the variable that the file should read to and write
|
|
* from.
|
|
*
|
|
* This function creates a file in debugfs with the given name that
|
|
* contains the value of the variable @value. If the @mode variable is so
|
|
* set, it can be read from, and written to.
|
|
*
|
|
* This function will return a pointer to a dentry if it succeeds. This
|
|
* pointer must be passed to the debugfs_remove() function when the file is
|
|
* to be removed (no automatic cleanup happens if your module is unloaded,
|
|
* you are responsible here.) If an error occurs, %NULL will be returned.
|
|
*
|
|
* If debugfs is not enabled in the kernel, the value -%ENODEV will be
|
|
* returned. It is not wise to check for this value, but rather, check for
|
|
* %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
|
|
* code.
|
|
*/
|
|
struct dentry *debugfs_create_u8(const char *name, mode_t mode,
|
|
struct dentry *parent, u8 *value)
|
|
{
|
|
return debugfs_create_file(name, mode, parent, value, &fops_u8);
|
|
}
|
|
EXPORT_SYMBOL_GPL(debugfs_create_u8);
|
|
|
|
static void debugfs_u16_set(void *data, u64 val)
|
|
{
|
|
*(u16 *)data = val;
|
|
}
|
|
static u64 debugfs_u16_get(void *data)
|
|
{
|
|
return *(u16 *)data;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_u16, debugfs_u16_get, debugfs_u16_set, "%llu\n");
|
|
|
|
/**
|
|
* debugfs_create_u16 - create a debugfs file that is used to read and write an unsigned 16-bit value
|
|
* @name: a pointer to a string containing the name of the file to create.
|
|
* @mode: the permission that the file should have
|
|
* @parent: a pointer to the parent dentry for this file. This should be a
|
|
* directory dentry if set. If this parameter is %NULL, then the
|
|
* file will be created in the root of the debugfs filesystem.
|
|
* @value: a pointer to the variable that the file should read to and write
|
|
* from.
|
|
*
|
|
* This function creates a file in debugfs with the given name that
|
|
* contains the value of the variable @value. If the @mode variable is so
|
|
* set, it can be read from, and written to.
|
|
*
|
|
* This function will return a pointer to a dentry if it succeeds. This
|
|
* pointer must be passed to the debugfs_remove() function when the file is
|
|
* to be removed (no automatic cleanup happens if your module is unloaded,
|
|
* you are responsible here.) If an error occurs, %NULL will be returned.
|
|
*
|
|
* If debugfs is not enabled in the kernel, the value -%ENODEV will be
|
|
* returned. It is not wise to check for this value, but rather, check for
|
|
* %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
|
|
* code.
|
|
*/
|
|
struct dentry *debugfs_create_u16(const char *name, mode_t mode,
|
|
struct dentry *parent, u16 *value)
|
|
{
|
|
return debugfs_create_file(name, mode, parent, value, &fops_u16);
|
|
}
|
|
EXPORT_SYMBOL_GPL(debugfs_create_u16);
|
|
|
|
static void debugfs_u32_set(void *data, u64 val)
|
|
{
|
|
*(u32 *)data = val;
|
|
}
|
|
static u64 debugfs_u32_get(void *data)
|
|
{
|
|
return *(u32 *)data;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_u32, debugfs_u32_get, debugfs_u32_set, "%llu\n");
|
|
|
|
/**
|
|
* debugfs_create_u32 - create a debugfs file that is used to read and write an unsigned 32-bit value
|
|
* @name: a pointer to a string containing the name of the file to create.
|
|
* @mode: the permission that the file should have
|
|
* @parent: a pointer to the parent dentry for this file. This should be a
|
|
* directory dentry if set. If this parameter is %NULL, then the
|
|
* file will be created in the root of the debugfs filesystem.
|
|
* @value: a pointer to the variable that the file should read to and write
|
|
* from.
|
|
*
|
|
* This function creates a file in debugfs with the given name that
|
|
* contains the value of the variable @value. If the @mode variable is so
|
|
* set, it can be read from, and written to.
|
|
*
|
|
* This function will return a pointer to a dentry if it succeeds. This
|
|
* pointer must be passed to the debugfs_remove() function when the file is
|
|
* to be removed (no automatic cleanup happens if your module is unloaded,
|
|
* you are responsible here.) If an error occurs, %NULL will be returned.
|
|
*
|
|
* If debugfs is not enabled in the kernel, the value -%ENODEV will be
|
|
* returned. It is not wise to check for this value, but rather, check for
|
|
* %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
|
|
* code.
|
|
*/
|
|
struct dentry *debugfs_create_u32(const char *name, mode_t mode,
|
|
struct dentry *parent, u32 *value)
|
|
{
|
|
return debugfs_create_file(name, mode, parent, value, &fops_u32);
|
|
}
|
|
EXPORT_SYMBOL_GPL(debugfs_create_u32);
|
|
|
|
static ssize_t read_file_bool(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char buf[3];
|
|
u32 *val = file->private_data;
|
|
|
|
if (*val)
|
|
buf[0] = 'Y';
|
|
else
|
|
buf[0] = 'N';
|
|
buf[1] = '\n';
|
|
buf[2] = 0x00;
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
|
|
}
|
|
|
|
static ssize_t write_file_bool(struct file *file, const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
int buf_size;
|
|
u32 *val = file->private_data;
|
|
|
|
buf_size = min(count, (sizeof(buf)-1));
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
return -EFAULT;
|
|
|
|
switch (buf[0]) {
|
|
case 'y':
|
|
case 'Y':
|
|
case '1':
|
|
*val = 1;
|
|
break;
|
|
case 'n':
|
|
case 'N':
|
|
case '0':
|
|
*val = 0;
|
|
break;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations fops_bool = {
|
|
.read = read_file_bool,
|
|
.write = write_file_bool,
|
|
.open = default_open,
|
|
};
|
|
|
|
/**
|
|
* debugfs_create_bool - create a debugfs file that is used to read and write a boolean value
|
|
* @name: a pointer to a string containing the name of the file to create.
|
|
* @mode: the permission that the file should have
|
|
* @parent: a pointer to the parent dentry for this file. This should be a
|
|
* directory dentry if set. If this parameter is %NULL, then the
|
|
* file will be created in the root of the debugfs filesystem.
|
|
* @value: a pointer to the variable that the file should read to and write
|
|
* from.
|
|
*
|
|
* This function creates a file in debugfs with the given name that
|
|
* contains the value of the variable @value. If the @mode variable is so
|
|
* set, it can be read from, and written to.
|
|
*
|
|
* This function will return a pointer to a dentry if it succeeds. This
|
|
* pointer must be passed to the debugfs_remove() function when the file is
|
|
* to be removed (no automatic cleanup happens if your module is unloaded,
|
|
* you are responsible here.) If an error occurs, %NULL will be returned.
|
|
*
|
|
* If debugfs is not enabled in the kernel, the value -%ENODEV will be
|
|
* returned. It is not wise to check for this value, but rather, check for
|
|
* %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
|
|
* code.
|
|
*/
|
|
struct dentry *debugfs_create_bool(const char *name, mode_t mode,
|
|
struct dentry *parent, u32 *value)
|
|
{
|
|
return debugfs_create_file(name, mode, parent, value, &fops_bool);
|
|
}
|
|
EXPORT_SYMBOL_GPL(debugfs_create_bool);
|
|
|
|
static ssize_t read_file_blob(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct debugfs_blob_wrapper *blob = file->private_data;
|
|
return simple_read_from_buffer(user_buf, count, ppos, blob->data,
|
|
blob->size);
|
|
}
|
|
|
|
static const struct file_operations fops_blob = {
|
|
.read = read_file_blob,
|
|
.open = default_open,
|
|
};
|
|
|
|
/**
|
|
* debugfs_create_blob - create a debugfs file that is used to read and write a binary blob
|
|
* @name: a pointer to a string containing the name of the file to create.
|
|
* @mode: the permission that the file should have
|
|
* @parent: a pointer to the parent dentry for this file. This should be a
|
|
* directory dentry if set. If this parameter is %NULL, then the
|
|
* file will be created in the root of the debugfs filesystem.
|
|
* @blob: a pointer to a struct debugfs_blob_wrapper which contains a pointer
|
|
* to the blob data and the size of the data.
|
|
*
|
|
* This function creates a file in debugfs with the given name that exports
|
|
* @blob->data as a binary blob. If the @mode variable is so set it can be
|
|
* read from. Writing is not supported.
|
|
*
|
|
* This function will return a pointer to a dentry if it succeeds. This
|
|
* pointer must be passed to the debugfs_remove() function when the file is
|
|
* to be removed (no automatic cleanup happens if your module is unloaded,
|
|
* you are responsible here.) If an error occurs, %NULL will be returned.
|
|
*
|
|
* If debugfs is not enabled in the kernel, the value -%ENODEV will be
|
|
* returned. It is not wise to check for this value, but rather, check for
|
|
* %NULL or !%NULL instead as to eliminate the need for #ifdef in the calling
|
|
* code.
|
|
*/
|
|
struct dentry *debugfs_create_blob(const char *name, mode_t mode,
|
|
struct dentry *parent,
|
|
struct debugfs_blob_wrapper *blob)
|
|
{
|
|
return debugfs_create_file(name, mode, parent, blob, &fops_blob);
|
|
}
|
|
EXPORT_SYMBOL_GPL(debugfs_create_blob);
|