aha/include/linux/writeback.h
Trond Myklebust c63c7b0513 NFS: Fix a race when doing NFS write coalescing
Currently we do write coalescing in a very inefficient manner: one pass in
generic_writepages() in order to lock the pages for writing, then one pass
in nfs_flush_mapping() and/or nfs_sync_mapping_wait() in order to gather
the locked pages for coalescing into RPC requests of size "wsize".

In fact, it turns out there is actually a deadlock possible here since we
only start I/O on the second pass. If the user signals the process while
we're in nfs_sync_mapping_wait(), for instance, then we may exit before
starting I/O on all the requests that have been queued up.

Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2007-04-30 22:17:06 -07:00

130 lines
3.9 KiB
C

/*
* include/linux/writeback.h
*/
#ifndef WRITEBACK_H
#define WRITEBACK_H
struct backing_dev_info;
extern spinlock_t inode_lock;
extern struct list_head inode_in_use;
extern struct list_head inode_unused;
/*
* Yes, writeback.h requires sched.h
* No, sched.h is not included from here.
*/
static inline int task_is_pdflush(struct task_struct *task)
{
return task->flags & PF_FLUSHER;
}
#define current_is_pdflush() task_is_pdflush(current)
/*
* fs/fs-writeback.c
*/
enum writeback_sync_modes {
WB_SYNC_NONE, /* Don't wait on anything */
WB_SYNC_ALL, /* Wait on every mapping */
WB_SYNC_HOLD, /* Hold the inode on sb_dirty for sys_sync() */
};
/*
* A control structure which tells the writeback code what to do. These are
* always on the stack, and hence need no locking. They are always initialised
* in a manner such that unspecified fields are set to zero.
*/
struct writeback_control {
struct backing_dev_info *bdi; /* If !NULL, only write back this
queue */
enum writeback_sync_modes sync_mode;
unsigned long *older_than_this; /* If !NULL, only write back inodes
older than this */
long nr_to_write; /* Write this many pages, and decrement
this for each page written */
long pages_skipped; /* Pages which were not written */
/*
* For a_ops->writepages(): is start or end are non-zero then this is
* a hint that the filesystem need only write out the pages inside that
* byterange. The byte at `end' is included in the writeout request.
*/
loff_t range_start;
loff_t range_end;
unsigned nonblocking:1; /* Don't get stuck on request queues */
unsigned encountered_congestion:1; /* An output: a queue is full */
unsigned for_kupdate:1; /* A kupdate writeback */
unsigned for_reclaim:1; /* Invoked from the page allocator */
unsigned for_writepages:1; /* This is a writepages() call */
unsigned range_cyclic:1; /* range_start is cyclic */
void *fs_private; /* For use by ->writepages() */
};
/*
* fs/fs-writeback.c
*/
void writeback_inodes(struct writeback_control *wbc);
void wake_up_inode(struct inode *inode);
int inode_wait(void *);
void sync_inodes_sb(struct super_block *, int wait);
void sync_inodes(int wait);
/* writeback.h requires fs.h; it, too, is not included from here. */
static inline void wait_on_inode(struct inode *inode)
{
might_sleep();
wait_on_bit(&inode->i_state, __I_LOCK, inode_wait,
TASK_UNINTERRUPTIBLE);
}
/*
* mm/page-writeback.c
*/
int wakeup_pdflush(long nr_pages);
void laptop_io_completion(void);
void laptop_sync_completion(void);
void throttle_vm_writeout(gfp_t gfp_mask);
/* These are exported to sysctl. */
extern int dirty_background_ratio;
extern int vm_dirty_ratio;
extern int dirty_writeback_interval;
extern int dirty_expire_interval;
extern int block_dump;
extern int laptop_mode;
struct ctl_table;
struct file;
int dirty_writeback_centisecs_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
void page_writeback_init(void);
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
unsigned long nr_pages_dirtied);
static inline void
balance_dirty_pages_ratelimited(struct address_space *mapping)
{
balance_dirty_pages_ratelimited_nr(mapping, 1);
}
int pdflush_operation(void (*fn)(unsigned long), unsigned long arg0);
extern int generic_writepages(struct address_space *mapping,
struct writeback_control *wbc);
int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
int sync_page_range(struct inode *inode, struct address_space *mapping,
loff_t pos, loff_t count);
int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
loff_t pos, loff_t count);
void set_page_dirty_balance(struct page *page);
void writeback_set_ratelimit(void);
/* pdflush.c */
extern int nr_pdflush_threads; /* Global so it can be exported to sysctl
read-only. */
#endif /* WRITEBACK_H */