aha/fs/udf/inode.c
Nick Piggin be021ee41a udf: convert to new aops
Convert udf to new aops.  Also seem to have fixed pagecache corruption in
udf_adinicb_commit_write -- page was marked uptodate when it is not.  Also,
fixed the silly setup where prepare_write was doing a kmap to be used in
commit_write: just do kmap_atomic in write_end.  Use libfs helpers to make
this easier.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: <bfennema@falcon.csc.calpoly.edu>
Cc: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:57 -07:00

1994 lines
59 KiB
C

/*
* inode.c
*
* PURPOSE
* Inode handling routines for the OSTA-UDF(tm) filesystem.
*
* COPYRIGHT
* This file is distributed under the terms of the GNU General Public
* License (GPL). Copies of the GPL can be obtained from:
* ftp://prep.ai.mit.edu/pub/gnu/GPL
* Each contributing author retains all rights to their own work.
*
* (C) 1998 Dave Boynton
* (C) 1998-2004 Ben Fennema
* (C) 1999-2000 Stelias Computing Inc
*
* HISTORY
*
* 10/04/98 dgb Added rudimentary directory functions
* 10/07/98 Fully working udf_block_map! It works!
* 11/25/98 bmap altered to better support extents
* 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode
* 12/12/98 rewrote udf_block_map to handle next extents and descs across
* block boundaries (which is not actually allowed)
* 12/20/98 added support for strategy 4096
* 03/07/99 rewrote udf_block_map (again)
* New funcs, inode_bmap, udf_next_aext
* 04/19/99 Support for writing device EA's for major/minor #
*/
#include "udfdecl.h"
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include "udf_i.h"
#include "udf_sb.h"
MODULE_AUTHOR("Ben Fennema");
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
MODULE_LICENSE("GPL");
#define EXTENT_MERGE_SIZE 5
static mode_t udf_convert_permissions(struct fileEntry *);
static int udf_update_inode(struct inode *, int);
static void udf_fill_inode(struct inode *, struct buffer_head *);
static int udf_alloc_i_data(struct inode *inode, size_t size);
static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
long *, int *);
static int8_t udf_insert_aext(struct inode *, struct extent_position,
kernel_lb_addr, uint32_t);
static void udf_split_extents(struct inode *, int *, int, int,
kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_prealloc_extents(struct inode *, int, int,
kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_merge_extents(struct inode *,
kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_update_extents(struct inode *,
kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
struct extent_position *);
static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
/*
* udf_delete_inode
*
* PURPOSE
* Clean-up before the specified inode is destroyed.
*
* DESCRIPTION
* This routine is called when the kernel destroys an inode structure
* ie. when iput() finds i_count == 0.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*
* Called at the last iput() if i_nlink is zero.
*/
void udf_delete_inode(struct inode *inode)
{
truncate_inode_pages(&inode->i_data, 0);
if (is_bad_inode(inode))
goto no_delete;
inode->i_size = 0;
udf_truncate(inode);
lock_kernel();
udf_update_inode(inode, IS_SYNC(inode));
udf_free_inode(inode);
unlock_kernel();
return;
no_delete:
clear_inode(inode);
}
/*
* If we are going to release inode from memory, we discard preallocation and
* truncate last inode extent to proper length. We could use drop_inode() but
* it's called under inode_lock and thus we cannot mark inode dirty there. We
* use clear_inode() but we have to make sure to write inode as it's not written
* automatically.
*/
void udf_clear_inode(struct inode *inode)
{
if (!(inode->i_sb->s_flags & MS_RDONLY)) {
lock_kernel();
/* Discard preallocation for directories, symlinks, etc. */
udf_discard_prealloc(inode);
udf_truncate_tail_extent(inode);
unlock_kernel();
write_inode_now(inode, 1);
}
kfree(UDF_I_DATA(inode));
UDF_I_DATA(inode) = NULL;
}
static int udf_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page, udf_get_block, wbc);
}
static int udf_readpage(struct file *file, struct page *page)
{
return block_read_full_page(page, udf_get_block);
}
static int udf_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
*pagep = NULL;
return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
udf_get_block);
}
static sector_t udf_bmap(struct address_space *mapping, sector_t block)
{
return generic_block_bmap(mapping, block, udf_get_block);
}
const struct address_space_operations udf_aops = {
.readpage = udf_readpage,
.writepage = udf_writepage,
.sync_page = block_sync_page,
.write_begin = udf_write_begin,
.write_end = generic_write_end,
.bmap = udf_bmap,
};
void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
{
struct page *page;
char *kaddr;
struct writeback_control udf_wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = 1,
};
/* from now on we have normal address_space methods */
inode->i_data.a_ops = &udf_aops;
if (!UDF_I_LENALLOC(inode)) {
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
else
UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
mark_inode_dirty(inode);
return;
}
page = grab_cache_page(inode->i_mapping, 0);
BUG_ON(!PageLocked(page));
if (!PageUptodate(page)) {
kaddr = kmap(page);
memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
UDF_I_LENALLOC(inode));
flush_dcache_page(page);
SetPageUptodate(page);
kunmap(page);
}
memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
UDF_I_LENALLOC(inode));
UDF_I_LENALLOC(inode) = 0;
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
else
UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
inode->i_data.a_ops->writepage(page, &udf_wbc);
page_cache_release(page);
mark_inode_dirty(inode);
}
struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
int *err)
{
int newblock;
struct buffer_head *dbh = NULL;
kernel_lb_addr eloc;
uint32_t elen;
uint8_t alloctype;
struct extent_position epos;
struct udf_fileident_bh sfibh, dfibh;
loff_t f_pos = udf_ext0_offset(inode) >> 2;
int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
struct fileIdentDesc cfi, *sfi, *dfi;
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
alloctype = ICBTAG_FLAG_AD_SHORT;
else
alloctype = ICBTAG_FLAG_AD_LONG;
if (!inode->i_size) {
UDF_I_ALLOCTYPE(inode) = alloctype;
mark_inode_dirty(inode);
return NULL;
}
/* alloc block, and copy data to it */
*block = udf_new_block(inode->i_sb, inode,
UDF_I_LOCATION(inode).partitionReferenceNum,
UDF_I_LOCATION(inode).logicalBlockNum, err);
if (!(*block))
return NULL;
newblock = udf_get_pblock(inode->i_sb, *block,
UDF_I_LOCATION(inode).partitionReferenceNum, 0);
if (!newblock)
return NULL;
dbh = udf_tgetblk(inode->i_sb, newblock);
if (!dbh)
return NULL;
lock_buffer(dbh);
memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
set_buffer_uptodate(dbh);
unlock_buffer(dbh);
mark_buffer_dirty_inode(dbh, inode);
sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
sfibh.sbh = sfibh.ebh = NULL;
dfibh.soffset = dfibh.eoffset = 0;
dfibh.sbh = dfibh.ebh = dbh;
while ((f_pos < size)) {
UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
if (!sfi) {
brelse(dbh);
return NULL;
}
UDF_I_ALLOCTYPE(inode) = alloctype;
sfi->descTag.tagLocation = cpu_to_le32(*block);
dfibh.soffset = dfibh.eoffset;
dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
brelse(dbh);
return NULL;
}
}
mark_buffer_dirty_inode(dbh, inode);
memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
UDF_I_LENALLOC(inode) = 0;
eloc.logicalBlockNum = *block;
eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
elen = inode->i_size;
UDF_I_LENEXTENTS(inode) = elen;
epos.bh = NULL;
epos.block = UDF_I_LOCATION(inode);
epos.offset = udf_file_entry_alloc_offset(inode);
udf_add_aext(inode, &epos, eloc, elen, 0);
/* UniqueID stuff */
brelse(epos.bh);
mark_inode_dirty(inode);
return dbh;
}
static int udf_get_block(struct inode *inode, sector_t block,
struct buffer_head *bh_result, int create)
{
int err, new;
struct buffer_head *bh;
unsigned long phys;
if (!create) {
phys = udf_block_map(inode, block);
if (phys)
map_bh(bh_result, inode->i_sb, phys);
return 0;
}
err = -EIO;
new = 0;
bh = NULL;
lock_kernel();
if (block < 0)
goto abort_negative;
if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
UDF_I_NEXT_ALLOC_BLOCK(inode)++;
UDF_I_NEXT_ALLOC_GOAL(inode)++;
}
err = 0;
bh = inode_getblk(inode, block, &err, &phys, &new);
BUG_ON(bh);
if (err)
goto abort;
BUG_ON(!phys);
if (new)
set_buffer_new(bh_result);
map_bh(bh_result, inode->i_sb, phys);
abort:
unlock_kernel();
return err;
abort_negative:
udf_warning(inode->i_sb, "udf_get_block", "block < 0");
goto abort;
}
static struct buffer_head *udf_getblk(struct inode *inode, long block,
int create, int *err)
{
struct buffer_head *bh;
struct buffer_head dummy;
dummy.b_state = 0;
dummy.b_blocknr = -1000;
*err = udf_get_block(inode, block, &dummy, create);
if (!*err && buffer_mapped(&dummy)) {
bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
if (buffer_new(&dummy)) {
lock_buffer(bh);
memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
unlock_buffer(bh);
mark_buffer_dirty_inode(bh, inode);
}
return bh;
}
return NULL;
}
/* Extend the file by 'blocks' blocks, return the number of extents added */
int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
kernel_long_ad * last_ext, sector_t blocks)
{
sector_t add;
int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
struct super_block *sb = inode->i_sb;
kernel_lb_addr prealloc_loc = {};
int prealloc_len = 0;
/* The previous extent is fake and we should not extend by anything
* - there's nothing to do... */
if (!blocks && fake)
return 0;
/* Round the last extent up to a multiple of block size */
if (last_ext->extLength & (sb->s_blocksize - 1)) {
last_ext->extLength =
(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
UDF_I_LENEXTENTS(inode) =
(UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
~(sb->s_blocksize - 1);
}
/* Last extent are just preallocated blocks? */
if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
/* Save the extent so that we can reattach it to the end */
prealloc_loc = last_ext->extLocation;
prealloc_len = last_ext->extLength;
/* Mark the extent as a hole */
last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
last_ext->extLocation.logicalBlockNum = 0;
last_ext->extLocation.partitionReferenceNum = 0;
}
/* Can we merge with the previous extent? */
if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
if (add > blocks)
add = blocks;
blocks -= add;
last_ext->extLength += add << sb->s_blocksize_bits;
}
if (fake) {
udf_add_aext(inode, last_pos, last_ext->extLocation,
last_ext->extLength, 1);
count++;
} else {
udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
}
/* Managed to do everything necessary? */
if (!blocks)
goto out;
/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
last_ext->extLocation.logicalBlockNum = 0;
last_ext->extLocation.partitionReferenceNum = 0;
add = (1 << (30-sb->s_blocksize_bits)) - 1;
last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
/* Create enough extents to cover the whole hole */
while (blocks > add) {
blocks -= add;
if (udf_add_aext(inode, last_pos, last_ext->extLocation,
last_ext->extLength, 1) == -1)
return -1;
count++;
}
if (blocks) {
last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
(blocks << sb->s_blocksize_bits);
if (udf_add_aext(inode, last_pos, last_ext->extLocation,
last_ext->extLength, 1) == -1)
return -1;
count++;
}
out:
/* Do we have some preallocated blocks saved? */
if (prealloc_len) {
if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
return -1;
last_ext->extLocation = prealloc_loc;
last_ext->extLength = prealloc_len;
count++;
}
/* last_pos should point to the last written extent... */
if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
last_pos->offset -= sizeof(short_ad);
else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
last_pos->offset -= sizeof(long_ad);
else
return -1;
return count;
}
static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
int *err, long *phys, int *new)
{
static sector_t last_block;
struct buffer_head *result = NULL;
kernel_long_ad laarr[EXTENT_MERGE_SIZE];
struct extent_position prev_epos, cur_epos, next_epos;
int count = 0, startnum = 0, endnum = 0;
uint32_t elen = 0, tmpelen;
kernel_lb_addr eloc, tmpeloc;
int c = 1;
loff_t lbcount = 0, b_off = 0;
uint32_t newblocknum, newblock;
sector_t offset = 0;
int8_t etype;
int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
int lastblock = 0;
prev_epos.offset = udf_file_entry_alloc_offset(inode);
prev_epos.block = UDF_I_LOCATION(inode);
prev_epos.bh = NULL;
cur_epos = next_epos = prev_epos;
b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
/* find the extent which contains the block we are looking for.
alternate between laarr[0] and laarr[1] for locations of the
current extent, and the previous extent */
do {
if (prev_epos.bh != cur_epos.bh) {
brelse(prev_epos.bh);
get_bh(cur_epos.bh);
prev_epos.bh = cur_epos.bh;
}
if (cur_epos.bh != next_epos.bh) {
brelse(cur_epos.bh);
get_bh(next_epos.bh);
cur_epos.bh = next_epos.bh;
}
lbcount += elen;
prev_epos.block = cur_epos.block;
cur_epos.block = next_epos.block;
prev_epos.offset = cur_epos.offset;
cur_epos.offset = next_epos.offset;
if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
break;
c = !c;
laarr[c].extLength = (etype << 30) | elen;
laarr[c].extLocation = eloc;
if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
pgoal = eloc.logicalBlockNum +
((elen + inode->i_sb->s_blocksize - 1) >>
inode->i_sb->s_blocksize_bits);
count++;
} while (lbcount + elen <= b_off);
b_off -= lbcount;
offset = b_off >> inode->i_sb->s_blocksize_bits;
/*
* Move prev_epos and cur_epos into indirect extent if we are at
* the pointer to it
*/
udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
/* if the extent is allocated and recorded, return the block
if the extent is not a multiple of the blocksize, round up */
if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
if (elen & (inode->i_sb->s_blocksize - 1)) {
elen = EXT_RECORDED_ALLOCATED |
((elen + inode->i_sb->s_blocksize - 1) &
~(inode->i_sb->s_blocksize - 1));
etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
}
brelse(prev_epos.bh);
brelse(cur_epos.bh);
brelse(next_epos.bh);
newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
*phys = newblock;
return NULL;
}
last_block = block;
/* Are we beyond EOF? */
if (etype == -1) {
int ret;
if (count) {
if (c)
laarr[0] = laarr[1];
startnum = 1;
} else {
/* Create a fake extent when there's not one */
memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
/* Will udf_extend_file() create real extent from a fake one? */
startnum = (offset > 0);
}
/* Create extents for the hole between EOF and offset */
ret = udf_extend_file(inode, &prev_epos, laarr, offset);
if (ret == -1) {
brelse(prev_epos.bh);
brelse(cur_epos.bh);
brelse(next_epos.bh);
/* We don't really know the error here so we just make
* something up */
*err = -ENOSPC;
return NULL;
}
c = 0;
offset = 0;
count += ret;
/* We are not covered by a preallocated extent? */
if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
/* Is there any real extent? - otherwise we overwrite
* the fake one... */
if (count)
c = !c;
laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
inode->i_sb->s_blocksize;
memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
count++;
endnum++;
}
endnum = c + 1;
lastblock = 1;
} else {
endnum = startnum = ((count > 2) ? 2 : count);
/* if the current extent is in position 0, swap it with the previous */
if (!c && count != 1) {
laarr[2] = laarr[0];
laarr[0] = laarr[1];
laarr[1] = laarr[2];
c = 1;
}
/* if the current block is located in an extent, read the next extent */
if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
laarr[c + 1].extLength = (etype << 30) | elen;
laarr[c + 1].extLocation = eloc;
count++;
startnum++;
endnum++;
} else {
lastblock = 1;
}
}
/* if the current extent is not recorded but allocated, get the
* block in the extent corresponding to the requested block */
if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
} else { /* otherwise, allocate a new block */
if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
goal = UDF_I_NEXT_ALLOC_GOAL(inode);
if (!goal) {
if (!(goal = pgoal))
goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
}
if (!(newblocknum = udf_new_block(inode->i_sb, inode,
UDF_I_LOCATION(inode).partitionReferenceNum,
goal, err))) {
brelse(prev_epos.bh);
*err = -ENOSPC;
return NULL;
}
UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
}
/* if the extent the requsted block is located in contains multiple blocks,
* split the extent into at most three extents. blocks prior to requested
* block, requested block, and blocks after requested block */
udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
#ifdef UDF_PREALLOCATE
/* preallocate blocks */
udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
#endif
/* merge any continuous blocks in laarr */
udf_merge_extents(inode, laarr, &endnum);
/* write back the new extents, inserting new extents if the new number
* of extents is greater than the old number, and deleting extents if
* the new number of extents is less than the old number */
udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
brelse(prev_epos.bh);
if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
return NULL;
}
*phys = newblock;
*err = 0;
*new = 1;
UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
inode->i_ctime = current_fs_time(inode->i_sb);
if (IS_SYNC(inode))
udf_sync_inode(inode);
else
mark_inode_dirty(inode);
return result;
}
static void udf_split_extents(struct inode *inode, int *c, int offset,
int newblocknum,
kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int *endnum)
{
if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
(laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
int curr = *c;
int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
int8_t etype = (laarr[curr].extLength >> 30);
if (blen == 1) {
;
} else if (!offset || blen == offset + 1) {
laarr[curr + 2] = laarr[curr + 1];
laarr[curr + 1] = laarr[curr];
} else {
laarr[curr + 3] = laarr[curr + 1];
laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
}
if (offset) {
if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
(offset << inode->i_sb->s_blocksize_bits);
laarr[curr].extLocation.logicalBlockNum = 0;
laarr[curr].extLocation.partitionReferenceNum = 0;
} else {
laarr[curr].extLength = (etype << 30) |
(offset << inode->i_sb->s_blocksize_bits);
}
curr++;
(*c)++;
(*endnum)++;
}
laarr[curr].extLocation.logicalBlockNum = newblocknum;
if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
laarr[curr].extLocation.partitionReferenceNum =
UDF_I_LOCATION(inode).partitionReferenceNum;
laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
inode->i_sb->s_blocksize;
curr++;
if (blen != offset + 1) {
if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
laarr[curr].extLocation.logicalBlockNum += (offset + 1);
laarr[curr].extLength = (etype << 30) |
((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
curr++;
(*endnum)++;
}
}
}
static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int *endnum)
{
int start, length = 0, currlength = 0, i;
if (*endnum >= (c + 1)) {
if (!lastblock)
return;
else
start = c;
} else {
if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
start = c + 1;
length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
} else {
start = c;
}
}
for (i = start + 1; i <= *endnum; i++) {
if (i == *endnum) {
if (lastblock)
length += UDF_DEFAULT_PREALLOC_BLOCKS;
} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
} else {
break;
}
}
if (length) {
int next = laarr[start].extLocation.logicalBlockNum +
(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
laarr[start].extLocation.partitionReferenceNum,
next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
if (numalloc) {
if (start == (c + 1)) {
laarr[start].extLength +=
(numalloc << inode->i_sb->s_blocksize_bits);
} else {
memmove(&laarr[c + 2], &laarr[c + 1],
sizeof(long_ad) * (*endnum - (c + 1)));
(*endnum)++;
laarr[c + 1].extLocation.logicalBlockNum = next;
laarr[c + 1].extLocation.partitionReferenceNum =
laarr[c].extLocation.partitionReferenceNum;
laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
(numalloc << inode->i_sb->s_blocksize_bits);
start = c + 1;
}
for (i = start + 1; numalloc && i < *endnum; i++) {
int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
if (elen > numalloc) {
laarr[i].extLength -=
(numalloc << inode->i_sb->s_blocksize_bits);
numalloc = 0;
} else {
numalloc -= elen;
if (*endnum > (i + 1))
memmove(&laarr[i], &laarr[i + 1],
sizeof(long_ad) * (*endnum - (i + 1)));
i--;
(*endnum)--;
}
}
UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
}
}
}
static void udf_merge_extents(struct inode *inode,
kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int *endnum)
{
int i;
for (i = 0; i < (*endnum - 1); i++) {
if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
(laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
laarr[i + 1].extLength = (laarr[i + 1].extLength -
(laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
laarr[i + 1].extLocation.logicalBlockNum =
laarr[i].extLocation.logicalBlockNum +
((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
inode->i_sb->s_blocksize_bits);
} else {
laarr[i].extLength = laarr[i + 1].extLength +
(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
if (*endnum > (i + 2))
memmove(&laarr[i + 1], &laarr[i + 2],
sizeof(long_ad) * (*endnum - (i + 2)));
i--;
(*endnum)--;
}
}
} else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
laarr[i].extLocation.logicalBlockNum = 0;
laarr[i].extLocation.partitionReferenceNum = 0;
if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
(laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
laarr[i + 1].extLength = (laarr[i + 1].extLength -
(laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
(UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
} else {
laarr[i].extLength = laarr[i + 1].extLength +
(((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
if (*endnum > (i + 2))
memmove(&laarr[i + 1], &laarr[i + 2],
sizeof(long_ad) * (*endnum - (i + 2)));
i--;
(*endnum)--;
}
} else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
laarr[i].extLocation.logicalBlockNum = 0;
laarr[i].extLocation.partitionReferenceNum = 0;
laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
EXT_NOT_RECORDED_NOT_ALLOCATED;
}
}
}
static void udf_update_extents(struct inode *inode,
kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int startnum, int endnum,
struct extent_position *epos)
{
int start = 0, i;
kernel_lb_addr tmploc;
uint32_t tmplen;
if (startnum > endnum) {
for (i = 0; i < (startnum - endnum); i++)
udf_delete_aext(inode, *epos, laarr[i].extLocation,
laarr[i].extLength);
} else if (startnum < endnum) {
for (i = 0; i < (endnum - startnum); i++) {
udf_insert_aext(inode, *epos, laarr[i].extLocation,
laarr[i].extLength);
udf_next_aext(inode, epos, &laarr[i].extLocation,
&laarr[i].extLength, 1);
start++;
}
}
for (i = start; i < endnum; i++) {
udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
udf_write_aext(inode, epos, laarr[i].extLocation,
laarr[i].extLength, 1);
}
}
struct buffer_head *udf_bread(struct inode *inode, int block,
int create, int *err)
{
struct buffer_head *bh = NULL;
bh = udf_getblk(inode, block, create, err);
if (!bh)
return NULL;
if (buffer_uptodate(bh))
return bh;
ll_rw_block(READ, 1, &bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return bh;
brelse(bh);
*err = -EIO;
return NULL;
}
void udf_truncate(struct inode *inode)
{
int offset;
int err;
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return;
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return;
lock_kernel();
if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
inode->i_size)) {
udf_expand_file_adinicb(inode, inode->i_size, &err);
if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
inode->i_size = UDF_I_LENALLOC(inode);
unlock_kernel();
return;
} else {
udf_truncate_extents(inode);
}
} else {
offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
UDF_I_LENALLOC(inode) = inode->i_size;
}
} else {
block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
udf_truncate_extents(inode);
}
inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
if (IS_SYNC(inode))
udf_sync_inode(inode);
else
mark_inode_dirty(inode);
unlock_kernel();
}
static void __udf_read_inode(struct inode *inode)
{
struct buffer_head *bh = NULL;
struct fileEntry *fe;
uint16_t ident;
/*
* Set defaults, but the inode is still incomplete!
* Note: get_new_inode() sets the following on a new inode:
* i_sb = sb
* i_no = ino
* i_flags = sb->s_flags
* i_state = 0
* clean_inode(): zero fills and sets
* i_count = 1
* i_nlink = 1
* i_op = NULL;
*/
bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
if (!bh) {
printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
inode->i_ino);
make_bad_inode(inode);
return;
}
if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
ident != TAG_IDENT_USE) {
printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
inode->i_ino, ident);
brelse(bh);
make_bad_inode(inode);
return;
}
fe = (struct fileEntry *)bh->b_data;
if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
struct buffer_head *ibh = NULL, *nbh = NULL;
struct indirectEntry *ie;
ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
if (ident == TAG_IDENT_IE) {
if (ibh) {
kernel_lb_addr loc;
ie = (struct indirectEntry *)ibh->b_data;
loc = lelb_to_cpu(ie->indirectICB.extLocation);
if (ie->indirectICB.extLength &&
(nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
if (ident == TAG_IDENT_FE ||
ident == TAG_IDENT_EFE) {
memcpy(&UDF_I_LOCATION(inode), &loc,
sizeof(kernel_lb_addr));
brelse(bh);
brelse(ibh);
brelse(nbh);
__udf_read_inode(inode);
return;
} else {
brelse(nbh);
brelse(ibh);
}
} else {
brelse(ibh);
}
}
} else {
brelse(ibh);
}
} else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
printk(KERN_ERR "udf: unsupported strategy type: %d\n",
le16_to_cpu(fe->icbTag.strategyType));
brelse(bh);
make_bad_inode(inode);
return;
}
udf_fill_inode(inode, bh);
brelse(bh);
}
static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
{
struct fileEntry *fe;
struct extendedFileEntry *efe;
time_t convtime;
long convtime_usec;
int offset;
fe = (struct fileEntry *)bh->b_data;
efe = (struct extendedFileEntry *)bh->b_data;
if (le16_to_cpu(fe->icbTag.strategyType) == 4)
UDF_I_STRAT4096(inode) = 0;
else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
UDF_I_STRAT4096(inode) = 1;
UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
UDF_I_UNIQUE(inode) = 0;
UDF_I_LENEATTR(inode) = 0;
UDF_I_LENEXTENTS(inode) = 0;
UDF_I_LENALLOC(inode) = 0;
UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
UDF_I_EFE(inode) = 1;
UDF_I_USE(inode) = 0;
if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
make_bad_inode(inode);
return;
}
memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
UDF_I_EFE(inode) = 0;
UDF_I_USE(inode) = 0;
if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
make_bad_inode(inode);
return;
}
memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
inode->i_sb->s_blocksize - sizeof(struct fileEntry));
} else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
UDF_I_EFE(inode) = 0;
UDF_I_USE(inode) = 1;
UDF_I_LENALLOC(inode) =
le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
make_bad_inode(inode);
return;
}
memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
return;
}
inode->i_uid = le32_to_cpu(fe->uid);
if (inode->i_uid == -1 ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
inode->i_gid = le32_to_cpu(fe->gid);
if (inode->i_gid == -1 ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
if (!inode->i_nlink)
inode->i_nlink = 1;
inode->i_size = le64_to_cpu(fe->informationLength);
UDF_I_LENEXTENTS(inode) = inode->i_size;
inode->i_mode = udf_convert_permissions(fe);
inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
if (UDF_I_EFE(inode) == 0) {
inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
(inode->i_sb->s_blocksize_bits - 9);
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(fe->accessTime))) {
inode->i_atime.tv_sec = convtime;
inode->i_atime.tv_nsec = convtime_usec * 1000;
} else {
inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
}
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(fe->modificationTime))) {
inode->i_mtime.tv_sec = convtime;
inode->i_mtime.tv_nsec = convtime_usec * 1000;
} else {
inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
}
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(fe->attrTime))) {
inode->i_ctime.tv_sec = convtime;
inode->i_ctime.tv_nsec = convtime_usec * 1000;
} else {
inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
}
UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
} else {
inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
(inode->i_sb->s_blocksize_bits - 9);
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(efe->accessTime))) {
inode->i_atime.tv_sec = convtime;
inode->i_atime.tv_nsec = convtime_usec * 1000;
} else {
inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
}
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(efe->modificationTime))) {
inode->i_mtime.tv_sec = convtime;
inode->i_mtime.tv_nsec = convtime_usec * 1000;
} else {
inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
}
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(efe->createTime))) {
UDF_I_CRTIME(inode).tv_sec = convtime;
UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
} else {
UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
}
if (udf_stamp_to_time(&convtime, &convtime_usec,
lets_to_cpu(efe->attrTime))) {
inode->i_ctime.tv_sec = convtime;
inode->i_ctime.tv_nsec = convtime_usec * 1000;
} else {
inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
}
UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
}
switch (fe->icbTag.fileType) {
case ICBTAG_FILE_TYPE_DIRECTORY:
inode->i_op = &udf_dir_inode_operations;
inode->i_fop = &udf_dir_operations;
inode->i_mode |= S_IFDIR;
inc_nlink(inode);
break;
case ICBTAG_FILE_TYPE_REALTIME:
case ICBTAG_FILE_TYPE_REGULAR:
case ICBTAG_FILE_TYPE_UNDEF:
if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
inode->i_data.a_ops = &udf_adinicb_aops;
else
inode->i_data.a_ops = &udf_aops;
inode->i_op = &udf_file_inode_operations;
inode->i_fop = &udf_file_operations;
inode->i_mode |= S_IFREG;
break;
case ICBTAG_FILE_TYPE_BLOCK:
inode->i_mode |= S_IFBLK;
break;
case ICBTAG_FILE_TYPE_CHAR:
inode->i_mode |= S_IFCHR;
break;
case ICBTAG_FILE_TYPE_FIFO:
init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
break;
case ICBTAG_FILE_TYPE_SOCKET:
init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
break;
case ICBTAG_FILE_TYPE_SYMLINK:
inode->i_data.a_ops = &udf_symlink_aops;
inode->i_op = &page_symlink_inode_operations;
inode->i_mode = S_IFLNK | S_IRWXUGO;
break;
default:
printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
inode->i_ino, fe->icbTag.fileType);
make_bad_inode(inode);
return;
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
if (dsea) {
init_special_inode(inode, inode->i_mode,
MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
le32_to_cpu(dsea->minorDeviceIdent)));
/* Developer ID ??? */
} else {
make_bad_inode(inode);
}
}
}
static int udf_alloc_i_data(struct inode *inode, size_t size)
{
UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
if (!UDF_I_DATA(inode)) {
printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
inode->i_ino);
return -ENOMEM;
}
return 0;
}
static mode_t udf_convert_permissions(struct fileEntry *fe)
{
mode_t mode;
uint32_t permissions;
uint32_t flags;
permissions = le32_to_cpu(fe->permissions);
flags = le16_to_cpu(fe->icbTag.flags);
mode = (( permissions ) & S_IRWXO) |
(( permissions >> 2 ) & S_IRWXG) |
(( permissions >> 4 ) & S_IRWXU) |
(( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
(( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
(( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
return mode;
}
/*
* udf_write_inode
*
* PURPOSE
* Write out the specified inode.
*
* DESCRIPTION
* This routine is called whenever an inode is synced.
* Currently this routine is just a placeholder.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
int udf_write_inode(struct inode *inode, int sync)
{
int ret;
lock_kernel();
ret = udf_update_inode(inode, sync);
unlock_kernel();
return ret;
}
int udf_sync_inode(struct inode *inode)
{
return udf_update_inode(inode, 1);
}
static int udf_update_inode(struct inode *inode, int do_sync)
{
struct buffer_head *bh = NULL;
struct fileEntry *fe;
struct extendedFileEntry *efe;
uint32_t udfperms;
uint16_t icbflags;
uint16_t crclen;
int i;
kernel_timestamp cpu_time;
int err = 0;
bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
if (!bh) {
udf_debug("bread failure\n");
return -EIO;
}
memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
fe = (struct fileEntry *)bh->b_data;
efe = (struct extendedFileEntry *)bh->b_data;
if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
struct unallocSpaceEntry *use =
(struct unallocSpaceEntry *)bh->b_data;
use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
use->descTag.descCRCLength = cpu_to_le16(crclen);
use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
use->descTag.tagChecksum = 0;
for (i = 0; i < 16; i++) {
if (i != 4)
use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
}
mark_buffer_dirty(bh);
brelse(bh);
return err;
}
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
fe->uid = cpu_to_le32(-1);
else
fe->uid = cpu_to_le32(inode->i_uid);
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
fe->gid = cpu_to_le32(-1);
else
fe->gid = cpu_to_le32(inode->i_gid);
udfperms = ((inode->i_mode & S_IRWXO) ) |
((inode->i_mode & S_IRWXG) << 2) |
((inode->i_mode & S_IRWXU) << 4);
udfperms |= (le32_to_cpu(fe->permissions) &
(FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
fe->permissions = cpu_to_le32(udfperms);
if (S_ISDIR(inode->i_mode))
fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
else
fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
fe->informationLength = cpu_to_le64(inode->i_size);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
regid *eid;
struct deviceSpec *dsea =
(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
if (!dsea) {
dsea = (struct deviceSpec *)
udf_add_extendedattr(inode,
sizeof(struct deviceSpec) +
sizeof(regid), 12, 0x3);
dsea->attrType = cpu_to_le32(12);
dsea->attrSubtype = 1;
dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
sizeof(regid));
dsea->impUseLength = cpu_to_le32(sizeof(regid));
}
eid = (regid *)dsea->impUse;
memset(eid, 0, sizeof(regid));
strcpy(eid->ident, UDF_ID_DEVELOPER);
eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
eid->identSuffix[1] = UDF_OS_ID_LINUX;
dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
}
if (UDF_I_EFE(inode) == 0) {
memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
inode->i_sb->s_blocksize - sizeof(struct fileEntry));
fe->logicalBlocksRecorded = cpu_to_le64(
(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
(inode->i_sb->s_blocksize_bits - 9));
if (udf_time_to_stamp(&cpu_time, inode->i_atime))
fe->accessTime = cpu_to_lets(cpu_time);
if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
fe->modificationTime = cpu_to_lets(cpu_time);
if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
fe->attrTime = cpu_to_lets(cpu_time);
memset(&(fe->impIdent), 0, sizeof(regid));
strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
crclen = sizeof(struct fileEntry);
} else {
memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
efe->objectSize = cpu_to_le64(inode->i_size);
efe->logicalBlocksRecorded = cpu_to_le64(
(inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
(inode->i_sb->s_blocksize_bits - 9));
if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
(UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
UDF_I_CRTIME(inode) = inode->i_atime;
}
if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
(UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
UDF_I_CRTIME(inode) = inode->i_mtime;
}
if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
(UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
UDF_I_CRTIME(inode) = inode->i_ctime;
}
if (udf_time_to_stamp(&cpu_time, inode->i_atime))
efe->accessTime = cpu_to_lets(cpu_time);
if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
efe->modificationTime = cpu_to_lets(cpu_time);
if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
efe->createTime = cpu_to_lets(cpu_time);
if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
efe->attrTime = cpu_to_lets(cpu_time);
memset(&(efe->impIdent), 0, sizeof(regid));
strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
crclen = sizeof(struct extendedFileEntry);
}
if (UDF_I_STRAT4096(inode)) {
fe->icbTag.strategyType = cpu_to_le16(4096);
fe->icbTag.strategyParameter = cpu_to_le16(1);
fe->icbTag.numEntries = cpu_to_le16(2);
} else {
fe->icbTag.strategyType = cpu_to_le16(4);
fe->icbTag.numEntries = cpu_to_le16(1);
}
if (S_ISDIR(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
else if (S_ISREG(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
else if (S_ISLNK(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
else if (S_ISBLK(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
else if (S_ISCHR(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
else if (S_ISFIFO(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
else if (S_ISSOCK(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
icbflags = UDF_I_ALLOCTYPE(inode) |
((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
(le16_to_cpu(fe->icbTag.flags) &
~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
fe->icbTag.flags = cpu_to_le16(icbflags);
if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
fe->descTag.descVersion = cpu_to_le16(3);
else
fe->descTag.descVersion = cpu_to_le16(2);
fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
fe->descTag.descCRCLength = cpu_to_le16(crclen);
fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
fe->descTag.tagChecksum = 0;
for (i = 0; i < 16; i++) {
if (i != 4)
fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
}
/* write the data blocks */
mark_buffer_dirty(bh);
if (do_sync) {
sync_dirty_buffer(bh);
if (buffer_req(bh) && !buffer_uptodate(bh)) {
printk("IO error syncing udf inode [%s:%08lx]\n",
inode->i_sb->s_id, inode->i_ino);
err = -EIO;
}
}
brelse(bh);
return err;
}
struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
{
unsigned long block = udf_get_lb_pblock(sb, ino, 0);
struct inode *inode = iget_locked(sb, block);
if (!inode)
return NULL;
if (inode->i_state & I_NEW) {
memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
__udf_read_inode(inode);
unlock_new_inode(inode);
}
if (is_bad_inode(inode))
goto out_iput;
if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
udf_debug("block=%d, partition=%d out of range\n",
ino.logicalBlockNum, ino.partitionReferenceNum);
make_bad_inode(inode);
goto out_iput;
}
return inode;
out_iput:
iput(inode);
return NULL;
}
int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
kernel_lb_addr eloc, uint32_t elen, int inc)
{
int adsize;
short_ad *sad = NULL;
long_ad *lad = NULL;
struct allocExtDesc *aed;
int8_t etype;
uint8_t *ptr;
if (!epos->bh)
ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
else
ptr = epos->bh->b_data + epos->offset;
if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
adsize = sizeof(short_ad);
else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
adsize = sizeof(long_ad);
else
return -1;
if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
char *sptr, *dptr;
struct buffer_head *nbh;
int err, loffset;
kernel_lb_addr obloc = epos->block;
if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
obloc.partitionReferenceNum,
obloc.logicalBlockNum, &err))) {
return -1;
}
if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
epos->block, 0)))) {
return -1;
}
lock_buffer(nbh);
memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
set_buffer_uptodate(nbh);
unlock_buffer(nbh);
mark_buffer_dirty_inode(nbh, inode);
aed = (struct allocExtDesc *)(nbh->b_data);
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
if (epos->offset + adsize > inode->i_sb->s_blocksize) {
loffset = epos->offset;
aed->lengthAllocDescs = cpu_to_le32(adsize);
sptr = ptr - adsize;
dptr = nbh->b_data + sizeof(struct allocExtDesc);
memcpy(dptr, sptr, adsize);
epos->offset = sizeof(struct allocExtDesc) + adsize;
} else {
loffset = epos->offset + adsize;
aed->lengthAllocDescs = cpu_to_le32(0);
sptr = ptr;
epos->offset = sizeof(struct allocExtDesc);
if (epos->bh) {
aed = (struct allocExtDesc *)epos->bh->b_data;
aed->lengthAllocDescs =
cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
} else {
UDF_I_LENALLOC(inode) += adsize;
mark_inode_dirty(inode);
}
}
if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
epos->block.logicalBlockNum, sizeof(tag));
else
udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
epos->block.logicalBlockNum, sizeof(tag));
switch (UDF_I_ALLOCTYPE(inode)) {
case ICBTAG_FLAG_AD_SHORT:
sad = (short_ad *)sptr;
sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
inode->i_sb->s_blocksize);
sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
break;
case ICBTAG_FLAG_AD_LONG:
lad = (long_ad *)sptr;
lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
inode->i_sb->s_blocksize);
lad->extLocation = cpu_to_lelb(epos->block);
memset(lad->impUse, 0x00, sizeof(lad->impUse));
break;
}
if (epos->bh) {
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
udf_update_tag(epos->bh->b_data, loffset);
else
udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(epos->bh, inode);
brelse(epos->bh);
} else {
mark_inode_dirty(inode);
}
epos->bh = nbh;
}
etype = udf_write_aext(inode, epos, eloc, elen, inc);
if (!epos->bh) {
UDF_I_LENALLOC(inode) += adsize;
mark_inode_dirty(inode);
} else {
aed = (struct allocExtDesc *)epos->bh->b_data;
aed->lengthAllocDescs =
cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
else
udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(epos->bh, inode);
}
return etype;
}
int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
kernel_lb_addr eloc, uint32_t elen, int inc)
{
int adsize;
uint8_t *ptr;
short_ad *sad;
long_ad *lad;
if (!epos->bh)
ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
else
ptr = epos->bh->b_data + epos->offset;
switch (UDF_I_ALLOCTYPE(inode)) {
case ICBTAG_FLAG_AD_SHORT:
sad = (short_ad *)ptr;
sad->extLength = cpu_to_le32(elen);
sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
adsize = sizeof(short_ad);
break;
case ICBTAG_FLAG_AD_LONG:
lad = (long_ad *)ptr;
lad->extLength = cpu_to_le32(elen);
lad->extLocation = cpu_to_lelb(eloc);
memset(lad->impUse, 0x00, sizeof(lad->impUse));
adsize = sizeof(long_ad);
break;
default:
return -1;
}
if (epos->bh) {
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
udf_update_tag(epos->bh->b_data,
le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
}
mark_buffer_dirty_inode(epos->bh, inode);
} else {
mark_inode_dirty(inode);
}
if (inc)
epos->offset += adsize;
return (elen >> 30);
}
int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
kernel_lb_addr * eloc, uint32_t * elen, int inc)
{
int8_t etype;
while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
(EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
epos->block = *eloc;
epos->offset = sizeof(struct allocExtDesc);
brelse(epos->bh);
if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
udf_debug("reading block %d failed!\n",
udf_get_lb_pblock(inode->i_sb, epos->block, 0));
return -1;
}
}
return etype;
}
int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
kernel_lb_addr * eloc, uint32_t * elen, int inc)
{
int alen;
int8_t etype;
uint8_t *ptr;
short_ad *sad;
long_ad *lad;
if (!epos->bh) {
if (!epos->offset)
epos->offset = udf_file_entry_alloc_offset(inode);
ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
} else {
if (!epos->offset)
epos->offset = sizeof(struct allocExtDesc);
ptr = epos->bh->b_data + epos->offset;
alen = sizeof(struct allocExtDesc) +
le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
}
switch (UDF_I_ALLOCTYPE(inode)) {
case ICBTAG_FLAG_AD_SHORT:
if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
return -1;
etype = le32_to_cpu(sad->extLength) >> 30;
eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
break;
case ICBTAG_FLAG_AD_LONG:
if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
return -1;
etype = le32_to_cpu(lad->extLength) >> 30;
*eloc = lelb_to_cpu(lad->extLocation);
*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
break;
default:
udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
return -1;
}
return etype;
}
static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
kernel_lb_addr neloc, uint32_t nelen)
{
kernel_lb_addr oeloc;
uint32_t oelen;
int8_t etype;
if (epos.bh)
get_bh(epos.bh);
while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
udf_write_aext(inode, &epos, neloc, nelen, 1);
neloc = oeloc;
nelen = (etype << 30) | oelen;
}
udf_add_aext(inode, &epos, neloc, nelen, 1);
brelse(epos.bh);
return (nelen >> 30);
}
int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
kernel_lb_addr eloc, uint32_t elen)
{
struct extent_position oepos;
int adsize;
int8_t etype;
struct allocExtDesc *aed;
if (epos.bh) {
get_bh(epos.bh);
get_bh(epos.bh);
}
if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
adsize = sizeof(short_ad);
else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
adsize = sizeof(long_ad);
else
adsize = 0;
oepos = epos;
if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
return -1;
while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
if (oepos.bh != epos.bh) {
oepos.block = epos.block;
brelse(oepos.bh);
get_bh(epos.bh);
oepos.bh = epos.bh;
oepos.offset = epos.offset - adsize;
}
}
memset(&eloc, 0x00, sizeof(kernel_lb_addr));
elen = 0;
if (epos.bh != oepos.bh) {
udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
udf_write_aext(inode, &oepos, eloc, elen, 1);
udf_write_aext(inode, &oepos, eloc, elen, 1);
if (!oepos.bh) {
UDF_I_LENALLOC(inode) -= (adsize * 2);
mark_inode_dirty(inode);
} else {
aed = (struct allocExtDesc *)oepos.bh->b_data;
aed->lengthAllocDescs =
cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
else
udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(oepos.bh, inode);
}
} else {
udf_write_aext(inode, &oepos, eloc, elen, 1);
if (!oepos.bh) {
UDF_I_LENALLOC(inode) -= adsize;
mark_inode_dirty(inode);
} else {
aed = (struct allocExtDesc *)oepos.bh->b_data;
aed->lengthAllocDescs =
cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
else
udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(oepos.bh, inode);
}
}
brelse(epos.bh);
brelse(oepos.bh);
return (elen >> 30);
}
int8_t inode_bmap(struct inode * inode, sector_t block,
struct extent_position * pos, kernel_lb_addr * eloc,
uint32_t * elen, sector_t * offset)
{
loff_t lbcount = 0, bcount =
(loff_t) block << inode->i_sb->s_blocksize_bits;
int8_t etype;
if (block < 0) {
printk(KERN_ERR "udf: inode_bmap: block < 0\n");
return -1;
}
pos->offset = 0;
pos->block = UDF_I_LOCATION(inode);
pos->bh = NULL;
*elen = 0;
do {
if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
*offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
UDF_I_LENEXTENTS(inode) = lbcount;
return -1;
}
lbcount += *elen;
} while (lbcount <= bcount);
*offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
return etype;
}
long udf_block_map(struct inode *inode, sector_t block)
{
kernel_lb_addr eloc;
uint32_t elen;
sector_t offset;
struct extent_position epos = {};
int ret;
lock_kernel();
if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
else
ret = 0;
unlock_kernel();
brelse(epos.bh);
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
return udf_fixed_to_variable(ret);
else
return ret;
}