mirror of
https://github.com/adulau/aha.git
synced 2025-01-04 07:03:38 +00:00
5ac7ba3ff5
When changing key mappings we need to make sure that the new keycode value can be stored in dev->keycodesize bytes. Signed-off-by: Vojtech Pavlik <vojtech@suse.cz> Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
1255 lines
30 KiB
C
1255 lines
30 KiB
C
/*
|
|
* linux/drivers/char/keyboard.c
|
|
*
|
|
* Written for linux by Johan Myreen as a translation from
|
|
* the assembly version by Linus (with diacriticals added)
|
|
*
|
|
* Some additional features added by Christoph Niemann (ChN), March 1993
|
|
*
|
|
* Loadable keymaps by Risto Kankkunen, May 1993
|
|
*
|
|
* Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
|
|
* Added decr/incr_console, dynamic keymaps, Unicode support,
|
|
* dynamic function/string keys, led setting, Sept 1994
|
|
* `Sticky' modifier keys, 951006.
|
|
*
|
|
* 11-11-96: SAK should now work in the raw mode (Martin Mares)
|
|
*
|
|
* Modified to provide 'generic' keyboard support by Hamish Macdonald
|
|
* Merge with the m68k keyboard driver and split-off of the PC low-level
|
|
* parts by Geert Uytterhoeven, May 1997
|
|
*
|
|
* 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
|
|
* 30-07-98: Dead keys redone, aeb@cwi.nl.
|
|
* 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/kbd_kern.h>
|
|
#include <linux/kbd_diacr.h>
|
|
#include <linux/vt_kern.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/input.h>
|
|
|
|
static void kbd_disconnect(struct input_handle *handle);
|
|
extern void ctrl_alt_del(void);
|
|
|
|
/*
|
|
* Exported functions/variables
|
|
*/
|
|
|
|
#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
|
|
|
|
/*
|
|
* Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
|
|
* This seems a good reason to start with NumLock off. On HIL keyboards
|
|
* of PARISC machines however there is no NumLock key and everyone expects the keypad
|
|
* to be used for numbers.
|
|
*/
|
|
|
|
#if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
|
|
#define KBD_DEFLEDS (1 << VC_NUMLOCK)
|
|
#else
|
|
#define KBD_DEFLEDS 0
|
|
#endif
|
|
|
|
#define KBD_DEFLOCK 0
|
|
|
|
void compute_shiftstate(void);
|
|
|
|
/*
|
|
* Handler Tables.
|
|
*/
|
|
|
|
#define K_HANDLERS\
|
|
k_self, k_fn, k_spec, k_pad,\
|
|
k_dead, k_cons, k_cur, k_shift,\
|
|
k_meta, k_ascii, k_lock, k_lowercase,\
|
|
k_slock, k_dead2, k_ignore, k_ignore
|
|
|
|
typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
|
|
char up_flag, struct pt_regs *regs);
|
|
static k_handler_fn K_HANDLERS;
|
|
static k_handler_fn *k_handler[16] = { K_HANDLERS };
|
|
|
|
#define FN_HANDLERS\
|
|
fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
|
|
fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
|
|
fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
|
|
fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
|
|
fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
|
|
|
|
typedef void (fn_handler_fn)(struct vc_data *vc, struct pt_regs *regs);
|
|
static fn_handler_fn FN_HANDLERS;
|
|
static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
|
|
|
|
/*
|
|
* Variables exported for vt_ioctl.c
|
|
*/
|
|
|
|
/* maximum values each key_handler can handle */
|
|
const int max_vals[] = {
|
|
255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
|
|
NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
|
|
255, NR_LOCK - 1, 255
|
|
};
|
|
|
|
const int NR_TYPES = ARRAY_SIZE(max_vals);
|
|
|
|
struct kbd_struct kbd_table[MAX_NR_CONSOLES];
|
|
static struct kbd_struct *kbd = kbd_table;
|
|
static struct kbd_struct kbd0;
|
|
|
|
int spawnpid, spawnsig;
|
|
|
|
/*
|
|
* Variables exported for vt.c
|
|
*/
|
|
|
|
int shift_state = 0;
|
|
|
|
/*
|
|
* Internal Data.
|
|
*/
|
|
|
|
static struct input_handler kbd_handler;
|
|
static unsigned long key_down[NBITS(KEY_MAX)]; /* keyboard key bitmap */
|
|
static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
|
|
static int dead_key_next;
|
|
static int npadch = -1; /* -1 or number assembled on pad */
|
|
static unsigned char diacr;
|
|
static char rep; /* flag telling character repeat */
|
|
|
|
static unsigned char ledstate = 0xff; /* undefined */
|
|
static unsigned char ledioctl;
|
|
|
|
static struct ledptr {
|
|
unsigned int *addr;
|
|
unsigned int mask;
|
|
unsigned char valid:1;
|
|
} ledptrs[3];
|
|
|
|
/* Simple translation table for the SysRq keys */
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
|
|
"\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
|
|
"qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
|
|
"dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
|
|
"bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
|
|
"\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
|
|
"230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
|
|
"\r\000/"; /* 0x60 - 0x6f */
|
|
static int sysrq_down;
|
|
#endif
|
|
static int sysrq_alt;
|
|
|
|
/*
|
|
* Translation of scancodes to keycodes. We set them on only the first attached
|
|
* keyboard - for per-keyboard setting, /dev/input/event is more useful.
|
|
*/
|
|
int getkeycode(unsigned int scancode)
|
|
{
|
|
struct list_head * node;
|
|
struct input_dev *dev = NULL;
|
|
|
|
list_for_each(node,&kbd_handler.h_list) {
|
|
struct input_handle * handle = to_handle_h(node);
|
|
if (handle->dev->keycodesize) {
|
|
dev = handle->dev;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dev)
|
|
return -ENODEV;
|
|
|
|
if (scancode >= dev->keycodemax)
|
|
return -EINVAL;
|
|
|
|
return INPUT_KEYCODE(dev, scancode);
|
|
}
|
|
|
|
int setkeycode(unsigned int scancode, unsigned int keycode)
|
|
{
|
|
struct list_head * node;
|
|
struct input_dev *dev = NULL;
|
|
unsigned int i, oldkey;
|
|
|
|
list_for_each(node,&kbd_handler.h_list) {
|
|
struct input_handle *handle = to_handle_h(node);
|
|
if (handle->dev->keycodesize) {
|
|
dev = handle->dev;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dev)
|
|
return -ENODEV;
|
|
|
|
if (scancode >= dev->keycodemax)
|
|
return -EINVAL;
|
|
if (keycode < 0 || keycode > KEY_MAX)
|
|
return -EINVAL;
|
|
if (keycode >> (dev->keycodesize * 8))
|
|
return -EINVAL;
|
|
|
|
oldkey = SET_INPUT_KEYCODE(dev, scancode, keycode);
|
|
|
|
clear_bit(oldkey, dev->keybit);
|
|
set_bit(keycode, dev->keybit);
|
|
|
|
for (i = 0; i < dev->keycodemax; i++)
|
|
if (INPUT_KEYCODE(dev,i) == oldkey)
|
|
set_bit(oldkey, dev->keybit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Making beeps and bells.
|
|
*/
|
|
static void kd_nosound(unsigned long ignored)
|
|
{
|
|
struct list_head * node;
|
|
|
|
list_for_each(node,&kbd_handler.h_list) {
|
|
struct input_handle *handle = to_handle_h(node);
|
|
if (test_bit(EV_SND, handle->dev->evbit)) {
|
|
if (test_bit(SND_TONE, handle->dev->sndbit))
|
|
input_event(handle->dev, EV_SND, SND_TONE, 0);
|
|
if (test_bit(SND_BELL, handle->dev->sndbit))
|
|
input_event(handle->dev, EV_SND, SND_BELL, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct timer_list kd_mksound_timer =
|
|
TIMER_INITIALIZER(kd_nosound, 0, 0);
|
|
|
|
void kd_mksound(unsigned int hz, unsigned int ticks)
|
|
{
|
|
struct list_head * node;
|
|
|
|
del_timer(&kd_mksound_timer);
|
|
|
|
if (hz) {
|
|
list_for_each_prev(node,&kbd_handler.h_list) {
|
|
struct input_handle *handle = to_handle_h(node);
|
|
if (test_bit(EV_SND, handle->dev->evbit)) {
|
|
if (test_bit(SND_TONE, handle->dev->sndbit)) {
|
|
input_event(handle->dev, EV_SND, SND_TONE, hz);
|
|
break;
|
|
}
|
|
if (test_bit(SND_BELL, handle->dev->sndbit)) {
|
|
input_event(handle->dev, EV_SND, SND_BELL, 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (ticks)
|
|
mod_timer(&kd_mksound_timer, jiffies + ticks);
|
|
} else
|
|
kd_nosound(0);
|
|
}
|
|
|
|
/*
|
|
* Setting the keyboard rate.
|
|
*/
|
|
|
|
int kbd_rate(struct kbd_repeat *rep)
|
|
{
|
|
struct list_head *node;
|
|
unsigned int d = 0;
|
|
unsigned int p = 0;
|
|
|
|
list_for_each(node,&kbd_handler.h_list) {
|
|
struct input_handle *handle = to_handle_h(node);
|
|
struct input_dev *dev = handle->dev;
|
|
|
|
if (test_bit(EV_REP, dev->evbit)) {
|
|
if (rep->delay > 0)
|
|
input_event(dev, EV_REP, REP_DELAY, rep->delay);
|
|
if (rep->period > 0)
|
|
input_event(dev, EV_REP, REP_PERIOD, rep->period);
|
|
d = dev->rep[REP_DELAY];
|
|
p = dev->rep[REP_PERIOD];
|
|
}
|
|
}
|
|
rep->delay = d;
|
|
rep->period = p;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper Functions.
|
|
*/
|
|
static void put_queue(struct vc_data *vc, int ch)
|
|
{
|
|
struct tty_struct *tty = vc->vc_tty;
|
|
|
|
if (tty) {
|
|
tty_insert_flip_char(tty, ch, 0);
|
|
con_schedule_flip(tty);
|
|
}
|
|
}
|
|
|
|
static void puts_queue(struct vc_data *vc, char *cp)
|
|
{
|
|
struct tty_struct *tty = vc->vc_tty;
|
|
|
|
if (!tty)
|
|
return;
|
|
|
|
while (*cp) {
|
|
tty_insert_flip_char(tty, *cp, 0);
|
|
cp++;
|
|
}
|
|
con_schedule_flip(tty);
|
|
}
|
|
|
|
static void applkey(struct vc_data *vc, int key, char mode)
|
|
{
|
|
static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
|
|
|
|
buf[1] = (mode ? 'O' : '[');
|
|
buf[2] = key;
|
|
puts_queue(vc, buf);
|
|
}
|
|
|
|
/*
|
|
* Many other routines do put_queue, but I think either
|
|
* they produce ASCII, or they produce some user-assigned
|
|
* string, and in both cases we might assume that it is
|
|
* in utf-8 already. UTF-8 is defined for words of up to 31 bits,
|
|
* but we need only 16 bits here
|
|
*/
|
|
static void to_utf8(struct vc_data *vc, ushort c)
|
|
{
|
|
if (c < 0x80)
|
|
/* 0******* */
|
|
put_queue(vc, c);
|
|
else if (c < 0x800) {
|
|
/* 110***** 10****** */
|
|
put_queue(vc, 0xc0 | (c >> 6));
|
|
put_queue(vc, 0x80 | (c & 0x3f));
|
|
} else {
|
|
/* 1110**** 10****** 10****** */
|
|
put_queue(vc, 0xe0 | (c >> 12));
|
|
put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
|
|
put_queue(vc, 0x80 | (c & 0x3f));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called after returning from RAW mode or when changing consoles - recompute
|
|
* shift_down[] and shift_state from key_down[] maybe called when keymap is
|
|
* undefined, so that shiftkey release is seen
|
|
*/
|
|
void compute_shiftstate(void)
|
|
{
|
|
unsigned int i, j, k, sym, val;
|
|
|
|
shift_state = 0;
|
|
memset(shift_down, 0, sizeof(shift_down));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(key_down); i++) {
|
|
|
|
if (!key_down[i])
|
|
continue;
|
|
|
|
k = i * BITS_PER_LONG;
|
|
|
|
for (j = 0; j < BITS_PER_LONG; j++, k++) {
|
|
|
|
if (!test_bit(k, key_down))
|
|
continue;
|
|
|
|
sym = U(key_maps[0][k]);
|
|
if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
|
|
continue;
|
|
|
|
val = KVAL(sym);
|
|
if (val == KVAL(K_CAPSSHIFT))
|
|
val = KVAL(K_SHIFT);
|
|
|
|
shift_down[val]++;
|
|
shift_state |= (1 << val);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have a combining character DIACR here, followed by the character CH.
|
|
* If the combination occurs in the table, return the corresponding value.
|
|
* Otherwise, if CH is a space or equals DIACR, return DIACR.
|
|
* Otherwise, conclude that DIACR was not combining after all,
|
|
* queue it and return CH.
|
|
*/
|
|
static unsigned char handle_diacr(struct vc_data *vc, unsigned char ch)
|
|
{
|
|
int d = diacr;
|
|
unsigned int i;
|
|
|
|
diacr = 0;
|
|
|
|
for (i = 0; i < accent_table_size; i++) {
|
|
if (accent_table[i].diacr == d && accent_table[i].base == ch)
|
|
return accent_table[i].result;
|
|
}
|
|
|
|
if (ch == ' ' || ch == d)
|
|
return d;
|
|
|
|
put_queue(vc, d);
|
|
return ch;
|
|
}
|
|
|
|
/*
|
|
* Special function handlers
|
|
*/
|
|
static void fn_enter(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (diacr) {
|
|
put_queue(vc, diacr);
|
|
diacr = 0;
|
|
}
|
|
put_queue(vc, 13);
|
|
if (vc_kbd_mode(kbd, VC_CRLF))
|
|
put_queue(vc, 10);
|
|
}
|
|
|
|
static void fn_caps_toggle(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (rep)
|
|
return;
|
|
chg_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
static void fn_caps_on(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (rep)
|
|
return;
|
|
set_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
static void fn_show_ptregs(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (regs)
|
|
show_regs(regs);
|
|
}
|
|
|
|
static void fn_hold(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
struct tty_struct *tty = vc->vc_tty;
|
|
|
|
if (rep || !tty)
|
|
return;
|
|
|
|
/*
|
|
* Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
|
|
* these routines are also activated by ^S/^Q.
|
|
* (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
|
|
*/
|
|
if (tty->stopped)
|
|
start_tty(tty);
|
|
else
|
|
stop_tty(tty);
|
|
}
|
|
|
|
static void fn_num(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (vc_kbd_mode(kbd,VC_APPLIC))
|
|
applkey(vc, 'P', 1);
|
|
else
|
|
fn_bare_num(vc, regs);
|
|
}
|
|
|
|
/*
|
|
* Bind this to Shift-NumLock if you work in application keypad mode
|
|
* but want to be able to change the NumLock flag.
|
|
* Bind this to NumLock if you prefer that the NumLock key always
|
|
* changes the NumLock flag.
|
|
*/
|
|
static void fn_bare_num(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (!rep)
|
|
chg_vc_kbd_led(kbd, VC_NUMLOCK);
|
|
}
|
|
|
|
static void fn_lastcons(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
/* switch to the last used console, ChN */
|
|
set_console(last_console);
|
|
}
|
|
|
|
static void fn_dec_console(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
int i, cur = fg_console;
|
|
|
|
/* Currently switching? Queue this next switch relative to that. */
|
|
if (want_console != -1)
|
|
cur = want_console;
|
|
|
|
for (i = cur-1; i != cur; i--) {
|
|
if (i == -1)
|
|
i = MAX_NR_CONSOLES-1;
|
|
if (vc_cons_allocated(i))
|
|
break;
|
|
}
|
|
set_console(i);
|
|
}
|
|
|
|
static void fn_inc_console(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
int i, cur = fg_console;
|
|
|
|
/* Currently switching? Queue this next switch relative to that. */
|
|
if (want_console != -1)
|
|
cur = want_console;
|
|
|
|
for (i = cur+1; i != cur; i++) {
|
|
if (i == MAX_NR_CONSOLES)
|
|
i = 0;
|
|
if (vc_cons_allocated(i))
|
|
break;
|
|
}
|
|
set_console(i);
|
|
}
|
|
|
|
static void fn_send_intr(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
struct tty_struct *tty = vc->vc_tty;
|
|
|
|
if (!tty)
|
|
return;
|
|
tty_insert_flip_char(tty, 0, TTY_BREAK);
|
|
con_schedule_flip(tty);
|
|
}
|
|
|
|
static void fn_scroll_forw(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
scrollfront(vc, 0);
|
|
}
|
|
|
|
static void fn_scroll_back(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
scrollback(vc, 0);
|
|
}
|
|
|
|
static void fn_show_mem(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
show_mem();
|
|
}
|
|
|
|
static void fn_show_state(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
show_state();
|
|
}
|
|
|
|
static void fn_boot_it(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
ctrl_alt_del();
|
|
}
|
|
|
|
static void fn_compose(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
dead_key_next = 1;
|
|
}
|
|
|
|
static void fn_spawn_con(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
if (spawnpid)
|
|
if(kill_proc(spawnpid, spawnsig, 1))
|
|
spawnpid = 0;
|
|
}
|
|
|
|
static void fn_SAK(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
struct tty_struct *tty = vc->vc_tty;
|
|
|
|
/*
|
|
* SAK should also work in all raw modes and reset
|
|
* them properly.
|
|
*/
|
|
if (tty)
|
|
do_SAK(tty);
|
|
reset_vc(vc);
|
|
}
|
|
|
|
static void fn_null(struct vc_data *vc, struct pt_regs *regs)
|
|
{
|
|
compute_shiftstate();
|
|
}
|
|
|
|
/*
|
|
* Special key handlers
|
|
*/
|
|
static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
}
|
|
|
|
static void k_spec(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
if (value >= ARRAY_SIZE(fn_handler))
|
|
return;
|
|
if ((kbd->kbdmode == VC_RAW ||
|
|
kbd->kbdmode == VC_MEDIUMRAW) &&
|
|
value != KVAL(K_SAK))
|
|
return; /* SAK is allowed even in raw mode */
|
|
fn_handler[value](vc, regs);
|
|
}
|
|
|
|
static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
|
|
}
|
|
|
|
static void k_self(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
if (up_flag)
|
|
return; /* no action, if this is a key release */
|
|
|
|
if (diacr)
|
|
value = handle_diacr(vc, value);
|
|
|
|
if (dead_key_next) {
|
|
dead_key_next = 0;
|
|
diacr = value;
|
|
return;
|
|
}
|
|
put_queue(vc, value);
|
|
}
|
|
|
|
/*
|
|
* Handle dead key. Note that we now may have several
|
|
* dead keys modifying the same character. Very useful
|
|
* for Vietnamese.
|
|
*/
|
|
static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
diacr = (diacr ? handle_diacr(vc, value) : value);
|
|
}
|
|
|
|
/*
|
|
* Obsolete - for backwards compatibility only
|
|
*/
|
|
static void k_dead(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
static unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
|
|
value = ret_diacr[value];
|
|
k_dead2(vc, value, up_flag, regs);
|
|
}
|
|
|
|
static void k_cons(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
set_console(value);
|
|
}
|
|
|
|
static void k_fn(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
unsigned v;
|
|
|
|
if (up_flag)
|
|
return;
|
|
v = value;
|
|
if (v < ARRAY_SIZE(func_table)) {
|
|
if (func_table[value])
|
|
puts_queue(vc, func_table[value]);
|
|
} else
|
|
printk(KERN_ERR "k_fn called with value=%d\n", value);
|
|
}
|
|
|
|
static void k_cur(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
static const char *cur_chars = "BDCA";
|
|
|
|
if (up_flag)
|
|
return;
|
|
applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
|
|
}
|
|
|
|
static void k_pad(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
static const char *pad_chars = "0123456789+-*/\015,.?()#";
|
|
static const char *app_map = "pqrstuvwxylSRQMnnmPQS";
|
|
|
|
if (up_flag)
|
|
return; /* no action, if this is a key release */
|
|
|
|
/* kludge... shift forces cursor/number keys */
|
|
if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
|
|
applkey(vc, app_map[value], 1);
|
|
return;
|
|
}
|
|
|
|
if (!vc_kbd_led(kbd, VC_NUMLOCK))
|
|
switch (value) {
|
|
case KVAL(K_PCOMMA):
|
|
case KVAL(K_PDOT):
|
|
k_fn(vc, KVAL(K_REMOVE), 0, regs);
|
|
return;
|
|
case KVAL(K_P0):
|
|
k_fn(vc, KVAL(K_INSERT), 0, regs);
|
|
return;
|
|
case KVAL(K_P1):
|
|
k_fn(vc, KVAL(K_SELECT), 0, regs);
|
|
return;
|
|
case KVAL(K_P2):
|
|
k_cur(vc, KVAL(K_DOWN), 0, regs);
|
|
return;
|
|
case KVAL(K_P3):
|
|
k_fn(vc, KVAL(K_PGDN), 0, regs);
|
|
return;
|
|
case KVAL(K_P4):
|
|
k_cur(vc, KVAL(K_LEFT), 0, regs);
|
|
return;
|
|
case KVAL(K_P6):
|
|
k_cur(vc, KVAL(K_RIGHT), 0, regs);
|
|
return;
|
|
case KVAL(K_P7):
|
|
k_fn(vc, KVAL(K_FIND), 0, regs);
|
|
return;
|
|
case KVAL(K_P8):
|
|
k_cur(vc, KVAL(K_UP), 0, regs);
|
|
return;
|
|
case KVAL(K_P9):
|
|
k_fn(vc, KVAL(K_PGUP), 0, regs);
|
|
return;
|
|
case KVAL(K_P5):
|
|
applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
|
|
return;
|
|
}
|
|
|
|
put_queue(vc, pad_chars[value]);
|
|
if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
|
|
put_queue(vc, 10);
|
|
}
|
|
|
|
static void k_shift(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
int old_state = shift_state;
|
|
|
|
if (rep)
|
|
return;
|
|
/*
|
|
* Mimic typewriter:
|
|
* a CapsShift key acts like Shift but undoes CapsLock
|
|
*/
|
|
if (value == KVAL(K_CAPSSHIFT)) {
|
|
value = KVAL(K_SHIFT);
|
|
if (!up_flag)
|
|
clr_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
if (up_flag) {
|
|
/*
|
|
* handle the case that two shift or control
|
|
* keys are depressed simultaneously
|
|
*/
|
|
if (shift_down[value])
|
|
shift_down[value]--;
|
|
} else
|
|
shift_down[value]++;
|
|
|
|
if (shift_down[value])
|
|
shift_state |= (1 << value);
|
|
else
|
|
shift_state &= ~(1 << value);
|
|
|
|
/* kludge */
|
|
if (up_flag && shift_state != old_state && npadch != -1) {
|
|
if (kbd->kbdmode == VC_UNICODE)
|
|
to_utf8(vc, npadch & 0xffff);
|
|
else
|
|
put_queue(vc, npadch & 0xff);
|
|
npadch = -1;
|
|
}
|
|
}
|
|
|
|
static void k_meta(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (vc_kbd_mode(kbd, VC_META)) {
|
|
put_queue(vc, '\033');
|
|
put_queue(vc, value);
|
|
} else
|
|
put_queue(vc, value | 0x80);
|
|
}
|
|
|
|
static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
int base;
|
|
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (value < 10) {
|
|
/* decimal input of code, while Alt depressed */
|
|
base = 10;
|
|
} else {
|
|
/* hexadecimal input of code, while AltGr depressed */
|
|
value -= 10;
|
|
base = 16;
|
|
}
|
|
|
|
if (npadch == -1)
|
|
npadch = value;
|
|
else
|
|
npadch = npadch * base + value;
|
|
}
|
|
|
|
static void k_lock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
if (up_flag || rep)
|
|
return;
|
|
chg_vc_kbd_lock(kbd, value);
|
|
}
|
|
|
|
static void k_slock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
|
|
{
|
|
k_shift(vc, value, up_flag, regs);
|
|
if (up_flag || rep)
|
|
return;
|
|
chg_vc_kbd_slock(kbd, value);
|
|
/* try to make Alt, oops, AltGr and such work */
|
|
if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
|
|
kbd->slockstate = 0;
|
|
chg_vc_kbd_slock(kbd, value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
|
|
* or (ii) whatever pattern of lights people want to show using KDSETLED,
|
|
* or (iii) specified bits of specified words in kernel memory.
|
|
*/
|
|
unsigned char getledstate(void)
|
|
{
|
|
return ledstate;
|
|
}
|
|
|
|
void setledstate(struct kbd_struct *kbd, unsigned int led)
|
|
{
|
|
if (!(led & ~7)) {
|
|
ledioctl = led;
|
|
kbd->ledmode = LED_SHOW_IOCTL;
|
|
} else
|
|
kbd->ledmode = LED_SHOW_FLAGS;
|
|
set_leds();
|
|
}
|
|
|
|
static inline unsigned char getleds(void)
|
|
{
|
|
struct kbd_struct *kbd = kbd_table + fg_console;
|
|
unsigned char leds;
|
|
int i;
|
|
|
|
if (kbd->ledmode == LED_SHOW_IOCTL)
|
|
return ledioctl;
|
|
|
|
leds = kbd->ledflagstate;
|
|
|
|
if (kbd->ledmode == LED_SHOW_MEM) {
|
|
for (i = 0; i < 3; i++)
|
|
if (ledptrs[i].valid) {
|
|
if (*ledptrs[i].addr & ledptrs[i].mask)
|
|
leds |= (1 << i);
|
|
else
|
|
leds &= ~(1 << i);
|
|
}
|
|
}
|
|
return leds;
|
|
}
|
|
|
|
/*
|
|
* This routine is the bottom half of the keyboard interrupt
|
|
* routine, and runs with all interrupts enabled. It does
|
|
* console changing, led setting and copy_to_cooked, which can
|
|
* take a reasonably long time.
|
|
*
|
|
* Aside from timing (which isn't really that important for
|
|
* keyboard interrupts as they happen often), using the software
|
|
* interrupt routines for this thing allows us to easily mask
|
|
* this when we don't want any of the above to happen.
|
|
* This allows for easy and efficient race-condition prevention
|
|
* for kbd_refresh_leds => input_event(dev, EV_LED, ...) => ...
|
|
*/
|
|
|
|
static void kbd_bh(unsigned long dummy)
|
|
{
|
|
struct list_head * node;
|
|
unsigned char leds = getleds();
|
|
|
|
if (leds != ledstate) {
|
|
list_for_each(node,&kbd_handler.h_list) {
|
|
struct input_handle * handle = to_handle_h(node);
|
|
input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01));
|
|
input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02));
|
|
input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04));
|
|
input_sync(handle->dev);
|
|
}
|
|
}
|
|
|
|
ledstate = leds;
|
|
}
|
|
|
|
DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
|
|
|
|
/*
|
|
* This allows a newly plugged keyboard to pick the LED state.
|
|
*/
|
|
static void kbd_refresh_leds(struct input_handle *handle)
|
|
{
|
|
unsigned char leds = ledstate;
|
|
|
|
tasklet_disable(&keyboard_tasklet);
|
|
if (leds != 0xff) {
|
|
input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01));
|
|
input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02));
|
|
input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04));
|
|
input_sync(handle->dev);
|
|
}
|
|
tasklet_enable(&keyboard_tasklet);
|
|
}
|
|
|
|
#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
|
|
defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC32) ||\
|
|
defined(CONFIG_SPARC64) || defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
|
|
(defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
|
|
|
|
#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
|
|
((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
|
|
|
|
static unsigned short x86_keycodes[256] =
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
|
|
284,285,309,298,312, 91,327,328,329,331,333,335,336,337,338,339,
|
|
367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
|
|
360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
|
|
103,104,105,275,287,279,306,106,274,107,294,364,358,363,362,361,
|
|
291,108,381,281,290,272,292,305,280, 99,112,257,258,359,113,114,
|
|
264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
|
|
377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
|
|
308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
|
|
332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
|
|
|
|
#ifdef CONFIG_MAC_EMUMOUSEBTN
|
|
extern int mac_hid_mouse_emulate_buttons(int, int, int);
|
|
#endif /* CONFIG_MAC_EMUMOUSEBTN */
|
|
|
|
#if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64)
|
|
static int sparc_l1_a_state = 0;
|
|
extern void sun_do_break(void);
|
|
#endif
|
|
|
|
static int emulate_raw(struct vc_data *vc, unsigned int keycode,
|
|
unsigned char up_flag)
|
|
{
|
|
if (keycode > 255 || !x86_keycodes[keycode])
|
|
return -1;
|
|
|
|
switch (keycode) {
|
|
case KEY_PAUSE:
|
|
put_queue(vc, 0xe1);
|
|
put_queue(vc, 0x1d | up_flag);
|
|
put_queue(vc, 0x45 | up_flag);
|
|
return 0;
|
|
case KEY_HANGUEL:
|
|
if (!up_flag) put_queue(vc, 0xf1);
|
|
return 0;
|
|
case KEY_HANJA:
|
|
if (!up_flag) put_queue(vc, 0xf2);
|
|
return 0;
|
|
}
|
|
|
|
if (keycode == KEY_SYSRQ && sysrq_alt) {
|
|
put_queue(vc, 0x54 | up_flag);
|
|
return 0;
|
|
}
|
|
|
|
if (x86_keycodes[keycode] & 0x100)
|
|
put_queue(vc, 0xe0);
|
|
|
|
put_queue(vc, (x86_keycodes[keycode] & 0x7f) | up_flag);
|
|
|
|
if (keycode == KEY_SYSRQ) {
|
|
put_queue(vc, 0xe0);
|
|
put_queue(vc, 0x37 | up_flag);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
#define HW_RAW(dev) 0
|
|
|
|
#warning "Cannot generate rawmode keyboard for your architecture yet."
|
|
|
|
static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
|
|
{
|
|
if (keycode > 127)
|
|
return -1;
|
|
|
|
put_queue(vc, keycode | up_flag);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void kbd_rawcode(unsigned char data)
|
|
{
|
|
struct vc_data *vc = vc_cons[fg_console].d;
|
|
kbd = kbd_table + fg_console;
|
|
if (kbd->kbdmode == VC_RAW)
|
|
put_queue(vc, data);
|
|
}
|
|
|
|
static void kbd_keycode(unsigned int keycode, int down,
|
|
int hw_raw, struct pt_regs *regs)
|
|
{
|
|
struct vc_data *vc = vc_cons[fg_console].d;
|
|
unsigned short keysym, *key_map;
|
|
unsigned char type, raw_mode;
|
|
struct tty_struct *tty;
|
|
int shift_final;
|
|
|
|
tty = vc->vc_tty;
|
|
|
|
if (tty && (!tty->driver_data)) {
|
|
/* No driver data? Strange. Okay we fix it then. */
|
|
tty->driver_data = vc;
|
|
}
|
|
|
|
kbd = kbd_table + fg_console;
|
|
|
|
if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
|
|
sysrq_alt = down;
|
|
#if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64)
|
|
if (keycode == KEY_STOP)
|
|
sparc_l1_a_state = down;
|
|
#endif
|
|
|
|
rep = (down == 2);
|
|
|
|
#ifdef CONFIG_MAC_EMUMOUSEBTN
|
|
if (mac_hid_mouse_emulate_buttons(1, keycode, down))
|
|
return;
|
|
#endif /* CONFIG_MAC_EMUMOUSEBTN */
|
|
|
|
if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
|
|
if (emulate_raw(vc, keycode, !down << 7))
|
|
if (keycode < BTN_MISC)
|
|
printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
|
|
if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
|
|
sysrq_down = down;
|
|
return;
|
|
}
|
|
if (sysrq_down && down && !rep) {
|
|
handle_sysrq(kbd_sysrq_xlate[keycode], regs, tty);
|
|
return;
|
|
}
|
|
#endif
|
|
#if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64)
|
|
if (keycode == KEY_A && sparc_l1_a_state) {
|
|
sparc_l1_a_state = 0;
|
|
sun_do_break();
|
|
}
|
|
#endif
|
|
|
|
if (kbd->kbdmode == VC_MEDIUMRAW) {
|
|
/*
|
|
* This is extended medium raw mode, with keys above 127
|
|
* encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
|
|
* the 'up' flag if needed. 0 is reserved, so this shouldn't
|
|
* interfere with anything else. The two bytes after 0 will
|
|
* always have the up flag set not to interfere with older
|
|
* applications. This allows for 16384 different keycodes,
|
|
* which should be enough.
|
|
*/
|
|
if (keycode < 128) {
|
|
put_queue(vc, keycode | (!down << 7));
|
|
} else {
|
|
put_queue(vc, !down << 7);
|
|
put_queue(vc, (keycode >> 7) | 0x80);
|
|
put_queue(vc, keycode | 0x80);
|
|
}
|
|
raw_mode = 1;
|
|
}
|
|
|
|
if (down)
|
|
set_bit(keycode, key_down);
|
|
else
|
|
clear_bit(keycode, key_down);
|
|
|
|
if (rep && (!vc_kbd_mode(kbd, VC_REPEAT) || (tty &&
|
|
(!L_ECHO(tty) && tty->driver->chars_in_buffer(tty))))) {
|
|
/*
|
|
* Don't repeat a key if the input buffers are not empty and the
|
|
* characters get aren't echoed locally. This makes key repeat
|
|
* usable with slow applications and under heavy loads.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
|
|
key_map = key_maps[shift_final];
|
|
|
|
if (!key_map) {
|
|
compute_shiftstate();
|
|
kbd->slockstate = 0;
|
|
return;
|
|
}
|
|
|
|
if (keycode > NR_KEYS)
|
|
return;
|
|
|
|
keysym = key_map[keycode];
|
|
type = KTYP(keysym);
|
|
|
|
if (type < 0xf0) {
|
|
if (down && !raw_mode) to_utf8(vc, keysym);
|
|
return;
|
|
}
|
|
|
|
type -= 0xf0;
|
|
|
|
if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
|
|
return;
|
|
|
|
if (type == KT_LETTER) {
|
|
type = KT_LATIN;
|
|
if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
|
|
key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
|
|
if (key_map)
|
|
keysym = key_map[keycode];
|
|
}
|
|
}
|
|
|
|
(*k_handler[type])(vc, keysym & 0xff, !down, regs);
|
|
|
|
if (type != KT_SLOCK)
|
|
kbd->slockstate = 0;
|
|
}
|
|
|
|
static void kbd_event(struct input_handle *handle, unsigned int event_type,
|
|
unsigned int event_code, int value)
|
|
{
|
|
if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
|
|
kbd_rawcode(value);
|
|
if (event_type == EV_KEY)
|
|
kbd_keycode(event_code, value, HW_RAW(handle->dev), handle->dev->regs);
|
|
tasklet_schedule(&keyboard_tasklet);
|
|
do_poke_blanked_console = 1;
|
|
schedule_console_callback();
|
|
}
|
|
|
|
static char kbd_name[] = "kbd";
|
|
|
|
/*
|
|
* When a keyboard (or other input device) is found, the kbd_connect
|
|
* function is called. The function then looks at the device, and if it
|
|
* likes it, it can open it and get events from it. In this (kbd_connect)
|
|
* function, we should decide which VT to bind that keyboard to initially.
|
|
*/
|
|
static struct input_handle *kbd_connect(struct input_handler *handler,
|
|
struct input_dev *dev,
|
|
struct input_device_id *id)
|
|
{
|
|
struct input_handle *handle;
|
|
int i;
|
|
|
|
for (i = KEY_RESERVED; i < BTN_MISC; i++)
|
|
if (test_bit(i, dev->keybit)) break;
|
|
|
|
if ((i == BTN_MISC) && !test_bit(EV_SND, dev->evbit))
|
|
return NULL;
|
|
|
|
if (!(handle = kmalloc(sizeof(struct input_handle), GFP_KERNEL)))
|
|
return NULL;
|
|
memset(handle, 0, sizeof(struct input_handle));
|
|
|
|
handle->dev = dev;
|
|
handle->handler = handler;
|
|
handle->name = kbd_name;
|
|
|
|
input_open_device(handle);
|
|
kbd_refresh_leds(handle);
|
|
|
|
return handle;
|
|
}
|
|
|
|
static void kbd_disconnect(struct input_handle *handle)
|
|
{
|
|
input_close_device(handle);
|
|
kfree(handle);
|
|
}
|
|
|
|
static struct input_device_id kbd_ids[] = {
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
|
|
.evbit = { BIT(EV_KEY) },
|
|
},
|
|
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
|
|
.evbit = { BIT(EV_SND) },
|
|
},
|
|
|
|
{ }, /* Terminating entry */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(input, kbd_ids);
|
|
|
|
static struct input_handler kbd_handler = {
|
|
.event = kbd_event,
|
|
.connect = kbd_connect,
|
|
.disconnect = kbd_disconnect,
|
|
.name = "kbd",
|
|
.id_table = kbd_ids,
|
|
};
|
|
|
|
int __init kbd_init(void)
|
|
{
|
|
int i;
|
|
|
|
kbd0.ledflagstate = kbd0.default_ledflagstate = KBD_DEFLEDS;
|
|
kbd0.ledmode = LED_SHOW_FLAGS;
|
|
kbd0.lockstate = KBD_DEFLOCK;
|
|
kbd0.slockstate = 0;
|
|
kbd0.modeflags = KBD_DEFMODE;
|
|
kbd0.kbdmode = VC_XLATE;
|
|
|
|
for (i = 0 ; i < MAX_NR_CONSOLES ; i++)
|
|
kbd_table[i] = kbd0;
|
|
|
|
input_register_handler(&kbd_handler);
|
|
|
|
tasklet_enable(&keyboard_tasklet);
|
|
tasklet_schedule(&keyboard_tasklet);
|
|
|
|
return 0;
|
|
}
|