mirror of
https://github.com/adulau/aha.git
synced 2025-01-01 05:36:24 +00:00
90f66914c8
Signed-off-by: David S. Miller <davem@davemloft.net>
2454 lines
57 KiB
C
2454 lines
57 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
|
|
* & Swedish University of Agricultural Sciences.
|
|
*
|
|
* Jens Laas <jens.laas@data.slu.se> Swedish University of
|
|
* Agricultural Sciences.
|
|
*
|
|
* Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
|
|
*
|
|
* This work is based on the LPC-trie which is originally descibed in:
|
|
*
|
|
* An experimental study of compression methods for dynamic tries
|
|
* Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
|
|
* http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
|
|
*
|
|
*
|
|
* IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
|
|
* IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
|
|
*
|
|
* Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
|
|
*
|
|
*
|
|
* Code from fib_hash has been reused which includes the following header:
|
|
*
|
|
*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* IPv4 FIB: lookup engine and maintenance routines.
|
|
*
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#define VERSION "0.323"
|
|
|
|
#include <linux/config.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/bitops.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <net/ip.h>
|
|
#include <net/protocol.h>
|
|
#include <net/route.h>
|
|
#include <net/tcp.h>
|
|
#include <net/sock.h>
|
|
#include <net/ip_fib.h>
|
|
#include "fib_lookup.h"
|
|
|
|
#undef CONFIG_IP_FIB_TRIE_STATS
|
|
#define MAX_CHILDS 16384
|
|
|
|
#define EXTRACT(p, n, str) ((str)<<(p)>>(32-(n)))
|
|
#define KEYLENGTH (8*sizeof(t_key))
|
|
#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
|
|
#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
|
|
|
|
static DEFINE_RWLOCK(fib_lock);
|
|
|
|
typedef unsigned int t_key;
|
|
|
|
#define T_TNODE 0
|
|
#define T_LEAF 1
|
|
#define NODE_TYPE_MASK 0x1UL
|
|
#define NODE_PARENT(_node) \
|
|
((struct tnode *)((_node)->_parent & ~NODE_TYPE_MASK))
|
|
#define NODE_SET_PARENT(_node, _ptr) \
|
|
((_node)->_parent = (((unsigned long)(_ptr)) | \
|
|
((_node)->_parent & NODE_TYPE_MASK)))
|
|
#define NODE_INIT_PARENT(_node, _type) \
|
|
((_node)->_parent = (_type))
|
|
#define NODE_TYPE(_node) \
|
|
((_node)->_parent & NODE_TYPE_MASK)
|
|
|
|
#define IS_TNODE(n) (!(n->_parent & T_LEAF))
|
|
#define IS_LEAF(n) (n->_parent & T_LEAF)
|
|
|
|
struct node {
|
|
t_key key;
|
|
unsigned long _parent;
|
|
};
|
|
|
|
struct leaf {
|
|
t_key key;
|
|
unsigned long _parent;
|
|
struct hlist_head list;
|
|
};
|
|
|
|
struct leaf_info {
|
|
struct hlist_node hlist;
|
|
int plen;
|
|
struct list_head falh;
|
|
};
|
|
|
|
struct tnode {
|
|
t_key key;
|
|
unsigned long _parent;
|
|
unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
|
|
unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
|
|
unsigned short full_children; /* KEYLENGTH bits needed */
|
|
unsigned short empty_children; /* KEYLENGTH bits needed */
|
|
struct node *child[0];
|
|
};
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats {
|
|
unsigned int gets;
|
|
unsigned int backtrack;
|
|
unsigned int semantic_match_passed;
|
|
unsigned int semantic_match_miss;
|
|
unsigned int null_node_hit;
|
|
};
|
|
#endif
|
|
|
|
struct trie_stat {
|
|
unsigned int totdepth;
|
|
unsigned int maxdepth;
|
|
unsigned int tnodes;
|
|
unsigned int leaves;
|
|
unsigned int nullpointers;
|
|
unsigned int nodesizes[MAX_CHILDS];
|
|
};
|
|
|
|
struct trie {
|
|
struct node *trie;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats stats;
|
|
#endif
|
|
int size;
|
|
unsigned int revision;
|
|
};
|
|
|
|
static int trie_debug = 0;
|
|
|
|
static int tnode_full(struct tnode *tn, struct node *n);
|
|
static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
|
|
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
|
|
static int tnode_child_length(struct tnode *tn);
|
|
static struct node *resize(struct trie *t, struct tnode *tn);
|
|
static struct tnode *inflate(struct trie *t, struct tnode *tn);
|
|
static struct tnode *halve(struct trie *t, struct tnode *tn);
|
|
static void tnode_free(struct tnode *tn);
|
|
static void trie_dump_seq(struct seq_file *seq, struct trie *t);
|
|
extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio);
|
|
extern int fib_detect_death(struct fib_info *fi, int order,
|
|
struct fib_info **last_resort, int *last_idx, int *dflt);
|
|
|
|
extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id,
|
|
struct nlmsghdr *n, struct netlink_skb_parms *req);
|
|
|
|
static kmem_cache_t *fn_alias_kmem;
|
|
static struct trie *trie_local = NULL, *trie_main = NULL;
|
|
|
|
static void trie_bug(char *err)
|
|
{
|
|
printk("Trie Bug: %s\n", err);
|
|
BUG();
|
|
}
|
|
|
|
static inline struct node *tnode_get_child(struct tnode *tn, int i)
|
|
{
|
|
if (i >= 1<<tn->bits)
|
|
trie_bug("tnode_get_child");
|
|
|
|
return tn->child[i];
|
|
}
|
|
|
|
static inline int tnode_child_length(struct tnode *tn)
|
|
{
|
|
return 1<<tn->bits;
|
|
}
|
|
|
|
/*
|
|
_________________________________________________________________
|
|
| i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
|
|
----------------------------------------------------------------
|
|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
|
|
|
_________________________________________________________________
|
|
| C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
|
|
-----------------------------------------------------------------
|
|
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
|
|
|
tp->pos = 7
|
|
tp->bits = 3
|
|
n->pos = 15
|
|
n->bits=4
|
|
KEYLENGTH=32
|
|
*/
|
|
|
|
static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
|
|
{
|
|
if (offset < KEYLENGTH)
|
|
return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int tkey_equals(t_key a, t_key b)
|
|
{
|
|
return a == b;
|
|
}
|
|
|
|
static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
|
|
{
|
|
if (bits == 0 || offset >= KEYLENGTH)
|
|
return 1;
|
|
bits = bits > KEYLENGTH ? KEYLENGTH : bits;
|
|
return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
|
|
}
|
|
|
|
static inline int tkey_mismatch(t_key a, int offset, t_key b)
|
|
{
|
|
t_key diff = a ^ b;
|
|
int i = offset;
|
|
|
|
if(!diff)
|
|
return 0;
|
|
while((diff << i) >> (KEYLENGTH-1) == 0)
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
/* Candiate for fib_semantics */
|
|
|
|
static void fn_free_alias(struct fib_alias *fa)
|
|
{
|
|
fib_release_info(fa->fa_info);
|
|
kmem_cache_free(fn_alias_kmem, fa);
|
|
}
|
|
|
|
/*
|
|
To understand this stuff, an understanding of keys and all their bits is
|
|
necessary. Every node in the trie has a key associated with it, but not
|
|
all of the bits in that key are significant.
|
|
|
|
Consider a node 'n' and its parent 'tp'.
|
|
|
|
If n is a leaf, every bit in its key is significant. Its presence is
|
|
necessitaded by path compression, since during a tree traversal (when
|
|
searching for a leaf - unless we are doing an insertion) we will completely
|
|
ignore all skipped bits we encounter. Thus we need to verify, at the end of
|
|
a potentially successful search, that we have indeed been walking the
|
|
correct key path.
|
|
|
|
Note that we can never "miss" the correct key in the tree if present by
|
|
following the wrong path. Path compression ensures that segments of the key
|
|
that are the same for all keys with a given prefix are skipped, but the
|
|
skipped part *is* identical for each node in the subtrie below the skipped
|
|
bit! trie_insert() in this implementation takes care of that - note the
|
|
call to tkey_sub_equals() in trie_insert().
|
|
|
|
if n is an internal node - a 'tnode' here, the various parts of its key
|
|
have many different meanings.
|
|
|
|
Example:
|
|
_________________________________________________________________
|
|
| i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
|
|
-----------------------------------------------------------------
|
|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
|
|
|
_________________________________________________________________
|
|
| C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
|
|
-----------------------------------------------------------------
|
|
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
|
|
|
tp->pos = 7
|
|
tp->bits = 3
|
|
n->pos = 15
|
|
n->bits=4
|
|
|
|
First, let's just ignore the bits that come before the parent tp, that is
|
|
the bits from 0 to (tp->pos-1). They are *known* but at this point we do
|
|
not use them for anything.
|
|
|
|
The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
|
|
index into the parent's child array. That is, they will be used to find
|
|
'n' among tp's children.
|
|
|
|
The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
|
|
for the node n.
|
|
|
|
All the bits we have seen so far are significant to the node n. The rest
|
|
of the bits are really not needed or indeed known in n->key.
|
|
|
|
The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
|
|
n's child array, and will of course be different for each child.
|
|
|
|
The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
|
|
at this point.
|
|
|
|
*/
|
|
|
|
static void check_tnode(struct tnode *tn)
|
|
{
|
|
if(tn && tn->pos+tn->bits > 32) {
|
|
printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits);
|
|
}
|
|
}
|
|
|
|
static int halve_threshold = 25;
|
|
static int inflate_threshold = 50;
|
|
|
|
static struct leaf *leaf_new(void)
|
|
{
|
|
struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
|
|
if(l) {
|
|
NODE_INIT_PARENT(l, T_LEAF);
|
|
INIT_HLIST_HEAD(&l->list);
|
|
}
|
|
return l;
|
|
}
|
|
|
|
static struct leaf_info *leaf_info_new(int plen)
|
|
{
|
|
struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
|
|
li->plen = plen;
|
|
INIT_LIST_HEAD(&li->falh);
|
|
return li;
|
|
}
|
|
|
|
static inline void free_leaf(struct leaf *l)
|
|
{
|
|
kfree(l);
|
|
}
|
|
|
|
static inline void free_leaf_info(struct leaf_info *li)
|
|
{
|
|
kfree(li);
|
|
}
|
|
|
|
static struct tnode* tnode_new(t_key key, int pos, int bits)
|
|
{
|
|
int nchildren = 1<<bits;
|
|
int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
|
|
struct tnode *tn = kmalloc(sz, GFP_KERNEL);
|
|
|
|
if(tn) {
|
|
memset(tn, 0, sz);
|
|
NODE_INIT_PARENT(tn, T_TNODE);
|
|
tn->pos = pos;
|
|
tn->bits = bits;
|
|
tn->key = key;
|
|
tn->full_children = 0;
|
|
tn->empty_children = 1<<bits;
|
|
}
|
|
if(trie_debug > 0)
|
|
printk("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
|
|
(unsigned int) (sizeof(struct node) * 1<<bits));
|
|
return tn;
|
|
}
|
|
|
|
static void tnode_free(struct tnode *tn)
|
|
{
|
|
if(!tn) {
|
|
trie_bug("tnode_free\n");
|
|
}
|
|
if(IS_LEAF(tn)) {
|
|
free_leaf((struct leaf *)tn);
|
|
if(trie_debug > 0 )
|
|
printk("FL %p \n", tn);
|
|
}
|
|
else if(IS_TNODE(tn)) {
|
|
kfree(tn);
|
|
if(trie_debug > 0 )
|
|
printk("FT %p \n", tn);
|
|
}
|
|
else {
|
|
trie_bug("tnode_free\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check whether a tnode 'n' is "full", i.e. it is an internal node
|
|
* and no bits are skipped. See discussion in dyntree paper p. 6
|
|
*/
|
|
|
|
static inline int tnode_full(struct tnode *tn, struct node *n)
|
|
{
|
|
if(n == NULL || IS_LEAF(n))
|
|
return 0;
|
|
|
|
return ((struct tnode *) n)->pos == tn->pos + tn->bits;
|
|
}
|
|
|
|
static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
|
|
{
|
|
tnode_put_child_reorg(tn, i, n, -1);
|
|
}
|
|
|
|
/*
|
|
* Add a child at position i overwriting the old value.
|
|
* Update the value of full_children and empty_children.
|
|
*/
|
|
|
|
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
|
|
{
|
|
struct node *chi;
|
|
int isfull;
|
|
|
|
if(i >= 1<<tn->bits) {
|
|
printk("bits=%d, i=%d\n", tn->bits, i);
|
|
trie_bug("tnode_put_child_reorg bits");
|
|
}
|
|
write_lock_bh(&fib_lock);
|
|
chi = tn->child[i];
|
|
|
|
/* update emptyChildren */
|
|
if (n == NULL && chi != NULL)
|
|
tn->empty_children++;
|
|
else if (n != NULL && chi == NULL)
|
|
tn->empty_children--;
|
|
|
|
/* update fullChildren */
|
|
if (wasfull == -1)
|
|
wasfull = tnode_full(tn, chi);
|
|
|
|
isfull = tnode_full(tn, n);
|
|
if (wasfull && !isfull)
|
|
tn->full_children--;
|
|
|
|
else if (!wasfull && isfull)
|
|
tn->full_children++;
|
|
if(n)
|
|
NODE_SET_PARENT(n, tn);
|
|
|
|
tn->child[i] = n;
|
|
write_unlock_bh(&fib_lock);
|
|
}
|
|
|
|
static struct node *resize(struct trie *t, struct tnode *tn)
|
|
{
|
|
int i;
|
|
|
|
if (!tn)
|
|
return NULL;
|
|
|
|
if(trie_debug)
|
|
printk("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
|
|
tn, inflate_threshold, halve_threshold);
|
|
|
|
/* No children */
|
|
if (tn->empty_children == tnode_child_length(tn)) {
|
|
tnode_free(tn);
|
|
return NULL;
|
|
}
|
|
/* One child */
|
|
if (tn->empty_children == tnode_child_length(tn) - 1)
|
|
for (i = 0; i < tnode_child_length(tn); i++) {
|
|
|
|
write_lock_bh(&fib_lock);
|
|
if (tn->child[i] != NULL) {
|
|
|
|
/* compress one level */
|
|
struct node *n = tn->child[i];
|
|
if(n)
|
|
NODE_INIT_PARENT(n, NODE_TYPE(n));
|
|
|
|
write_unlock_bh(&fib_lock);
|
|
tnode_free(tn);
|
|
return n;
|
|
}
|
|
write_unlock_bh(&fib_lock);
|
|
}
|
|
/*
|
|
* Double as long as the resulting node has a number of
|
|
* nonempty nodes that are above the threshold.
|
|
*/
|
|
|
|
/*
|
|
* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
|
|
* the Helsinki University of Technology and Matti Tikkanen of Nokia
|
|
* Telecommunications, page 6:
|
|
* "A node is doubled if the ratio of non-empty children to all
|
|
* children in the *doubled* node is at least 'high'."
|
|
*
|
|
* 'high' in this instance is the variable 'inflate_threshold'. It
|
|
* is expressed as a percentage, so we multiply it with
|
|
* tnode_child_length() and instead of multiplying by 2 (since the
|
|
* child array will be doubled by inflate()) and multiplying
|
|
* the left-hand side by 100 (to handle the percentage thing) we
|
|
* multiply the left-hand side by 50.
|
|
*
|
|
* The left-hand side may look a bit weird: tnode_child_length(tn)
|
|
* - tn->empty_children is of course the number of non-null children
|
|
* in the current node. tn->full_children is the number of "full"
|
|
* children, that is non-null tnodes with a skip value of 0.
|
|
* All of those will be doubled in the resulting inflated tnode, so
|
|
* we just count them one extra time here.
|
|
*
|
|
* A clearer way to write this would be:
|
|
*
|
|
* to_be_doubled = tn->full_children;
|
|
* not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
|
|
* tn->full_children;
|
|
*
|
|
* new_child_length = tnode_child_length(tn) * 2;
|
|
*
|
|
* new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
|
|
* new_child_length;
|
|
* if (new_fill_factor >= inflate_threshold)
|
|
*
|
|
* ...and so on, tho it would mess up the while() loop.
|
|
*
|
|
* anyway,
|
|
* 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
|
|
* inflate_threshold
|
|
*
|
|
* avoid a division:
|
|
* 100 * (not_to_be_doubled + 2*to_be_doubled) >=
|
|
* inflate_threshold * new_child_length
|
|
*
|
|
* expand not_to_be_doubled and to_be_doubled, and shorten:
|
|
* 100 * (tnode_child_length(tn) - tn->empty_children +
|
|
* tn->full_children ) >= inflate_threshold * new_child_length
|
|
*
|
|
* expand new_child_length:
|
|
* 100 * (tnode_child_length(tn) - tn->empty_children +
|
|
* tn->full_children ) >=
|
|
* inflate_threshold * tnode_child_length(tn) * 2
|
|
*
|
|
* shorten again:
|
|
* 50 * (tn->full_children + tnode_child_length(tn) -
|
|
* tn->empty_children ) >= inflate_threshold *
|
|
* tnode_child_length(tn)
|
|
*
|
|
*/
|
|
|
|
check_tnode(tn);
|
|
|
|
while ((tn->full_children > 0 &&
|
|
50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
|
|
inflate_threshold * tnode_child_length(tn))) {
|
|
|
|
tn = inflate(t, tn);
|
|
}
|
|
|
|
check_tnode(tn);
|
|
|
|
/*
|
|
* Halve as long as the number of empty children in this
|
|
* node is above threshold.
|
|
*/
|
|
while (tn->bits > 1 &&
|
|
100 * (tnode_child_length(tn) - tn->empty_children) <
|
|
halve_threshold * tnode_child_length(tn))
|
|
|
|
tn = halve(t, tn);
|
|
|
|
/* Only one child remains */
|
|
|
|
if (tn->empty_children == tnode_child_length(tn) - 1)
|
|
for (i = 0; i < tnode_child_length(tn); i++) {
|
|
|
|
write_lock_bh(&fib_lock);
|
|
if (tn->child[i] != NULL) {
|
|
/* compress one level */
|
|
struct node *n = tn->child[i];
|
|
|
|
if(n)
|
|
NODE_INIT_PARENT(n, NODE_TYPE(n));
|
|
|
|
write_unlock_bh(&fib_lock);
|
|
tnode_free(tn);
|
|
return n;
|
|
}
|
|
write_unlock_bh(&fib_lock);
|
|
}
|
|
|
|
return (struct node *) tn;
|
|
}
|
|
|
|
static struct tnode *inflate(struct trie *t, struct tnode *tn)
|
|
{
|
|
struct tnode *inode;
|
|
struct tnode *oldtnode = tn;
|
|
int olen = tnode_child_length(tn);
|
|
int i;
|
|
|
|
if(trie_debug)
|
|
printk("In inflate\n");
|
|
|
|
tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
|
|
|
|
if (!tn)
|
|
trie_bug("tnode_new failed");
|
|
|
|
for(i = 0; i < olen; i++) {
|
|
struct node *node = tnode_get_child(oldtnode, i);
|
|
|
|
/* An empty child */
|
|
if (node == NULL)
|
|
continue;
|
|
|
|
/* A leaf or an internal node with skipped bits */
|
|
|
|
if(IS_LEAF(node) || ((struct tnode *) node)->pos >
|
|
tn->pos + tn->bits - 1) {
|
|
if(tkey_extract_bits(node->key, tn->pos + tn->bits - 1,
|
|
1) == 0)
|
|
put_child(t, tn, 2*i, node);
|
|
else
|
|
put_child(t, tn, 2*i+1, node);
|
|
continue;
|
|
}
|
|
|
|
/* An internal node with two children */
|
|
inode = (struct tnode *) node;
|
|
|
|
if (inode->bits == 1) {
|
|
put_child(t, tn, 2*i, inode->child[0]);
|
|
put_child(t, tn, 2*i+1, inode->child[1]);
|
|
|
|
tnode_free(inode);
|
|
}
|
|
|
|
/* An internal node with more than two children */
|
|
else {
|
|
struct tnode *left, *right;
|
|
int size, j;
|
|
|
|
/* We will replace this node 'inode' with two new
|
|
* ones, 'left' and 'right', each with half of the
|
|
* original children. The two new nodes will have
|
|
* a position one bit further down the key and this
|
|
* means that the "significant" part of their keys
|
|
* (see the discussion near the top of this file)
|
|
* will differ by one bit, which will be "0" in
|
|
* left's key and "1" in right's key. Since we are
|
|
* moving the key position by one step, the bit that
|
|
* we are moving away from - the bit at position
|
|
* (inode->pos) - is the one that will differ between
|
|
* left and right. So... we synthesize that bit in the
|
|
* two new keys.
|
|
* The mask 'm' below will be a single "one" bit at
|
|
* the position (inode->pos)
|
|
*/
|
|
|
|
t_key m = TKEY_GET_MASK(inode->pos, 1);
|
|
|
|
/* Use the old key, but set the new significant
|
|
* bit to zero.
|
|
*/
|
|
left = tnode_new(inode->key&(~m), inode->pos + 1,
|
|
inode->bits - 1);
|
|
|
|
if(!left)
|
|
trie_bug("tnode_new failed");
|
|
|
|
|
|
/* Use the old key, but set the new significant
|
|
* bit to one.
|
|
*/
|
|
right = tnode_new(inode->key|m, inode->pos + 1,
|
|
inode->bits - 1);
|
|
|
|
if(!right)
|
|
trie_bug("tnode_new failed");
|
|
|
|
size = tnode_child_length(left);
|
|
for(j = 0; j < size; j++) {
|
|
put_child(t, left, j, inode->child[j]);
|
|
put_child(t, right, j, inode->child[j + size]);
|
|
}
|
|
put_child(t, tn, 2*i, resize(t, left));
|
|
put_child(t, tn, 2*i+1, resize(t, right));
|
|
|
|
tnode_free(inode);
|
|
}
|
|
}
|
|
tnode_free(oldtnode);
|
|
return tn;
|
|
}
|
|
|
|
static struct tnode *halve(struct trie *t, struct tnode *tn)
|
|
{
|
|
struct tnode *oldtnode = tn;
|
|
struct node *left, *right;
|
|
int i;
|
|
int olen = tnode_child_length(tn);
|
|
|
|
if(trie_debug) printk("In halve\n");
|
|
|
|
tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
|
|
|
|
if(!tn)
|
|
trie_bug("tnode_new failed");
|
|
|
|
for(i = 0; i < olen; i += 2) {
|
|
left = tnode_get_child(oldtnode, i);
|
|
right = tnode_get_child(oldtnode, i+1);
|
|
|
|
/* At least one of the children is empty */
|
|
if (left == NULL) {
|
|
if (right == NULL) /* Both are empty */
|
|
continue;
|
|
put_child(t, tn, i/2, right);
|
|
} else if (right == NULL)
|
|
put_child(t, tn, i/2, left);
|
|
|
|
/* Two nonempty children */
|
|
else {
|
|
struct tnode *newBinNode =
|
|
tnode_new(left->key, tn->pos + tn->bits, 1);
|
|
|
|
if(!newBinNode)
|
|
trie_bug("tnode_new failed");
|
|
|
|
put_child(t, newBinNode, 0, left);
|
|
put_child(t, newBinNode, 1, right);
|
|
put_child(t, tn, i/2, resize(t, newBinNode));
|
|
}
|
|
}
|
|
tnode_free(oldtnode);
|
|
return tn;
|
|
}
|
|
|
|
static void *trie_init(struct trie *t)
|
|
{
|
|
if(t) {
|
|
t->size = 0;
|
|
t->trie = NULL;
|
|
t->revision = 0;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
memset(&t->stats, 0, sizeof(struct trie_use_stats));
|
|
#endif
|
|
}
|
|
return t;
|
|
}
|
|
|
|
static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
|
|
{
|
|
struct hlist_node *node;
|
|
struct leaf_info *li;
|
|
|
|
hlist_for_each_entry(li, node, head, hlist) {
|
|
|
|
if ( li->plen == plen )
|
|
return li;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct list_head * get_fa_head(struct leaf *l, int plen)
|
|
{
|
|
struct list_head *fa_head=NULL;
|
|
struct leaf_info *li = find_leaf_info(&l->list, plen);
|
|
|
|
if(li)
|
|
fa_head = &li->falh;
|
|
|
|
return fa_head;
|
|
}
|
|
|
|
static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
|
|
{
|
|
struct leaf_info *li=NULL, *last=NULL;
|
|
struct hlist_node *node, *tmp;
|
|
|
|
write_lock_bh(&fib_lock);
|
|
|
|
if(hlist_empty(head))
|
|
hlist_add_head(&new->hlist, head);
|
|
else {
|
|
hlist_for_each_entry_safe(li, node, tmp, head, hlist) {
|
|
|
|
if (new->plen > li->plen)
|
|
break;
|
|
|
|
last = li;
|
|
}
|
|
if(last)
|
|
hlist_add_after(&last->hlist, &new->hlist);
|
|
else
|
|
hlist_add_before(&new->hlist, &li->hlist);
|
|
}
|
|
write_unlock_bh(&fib_lock);
|
|
}
|
|
|
|
static struct leaf *
|
|
fib_find_node(struct trie *t, u32 key)
|
|
{
|
|
int pos;
|
|
struct tnode *tn;
|
|
struct node *n;
|
|
|
|
pos = 0;
|
|
n=t->trie;
|
|
|
|
while (n != NULL && NODE_TYPE(n) == T_TNODE) {
|
|
tn = (struct tnode *) n;
|
|
|
|
check_tnode(tn);
|
|
|
|
if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
|
|
pos=tn->pos + tn->bits;
|
|
n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
/* Case we have found a leaf. Compare prefixes */
|
|
|
|
if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
|
|
struct leaf *l = (struct leaf *) n;
|
|
return l;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
|
|
{
|
|
int i = 0;
|
|
int wasfull;
|
|
t_key cindex, key;
|
|
struct tnode *tp = NULL;
|
|
|
|
if(!tn)
|
|
BUG();
|
|
|
|
key = tn->key;
|
|
i = 0;
|
|
|
|
while (tn != NULL && NODE_PARENT(tn) != NULL) {
|
|
|
|
if( i > 10 ) {
|
|
printk("Rebalance tn=%p \n", tn);
|
|
if(tn) printk("tn->parent=%p \n", NODE_PARENT(tn));
|
|
|
|
printk("Rebalance tp=%p \n", tp);
|
|
if(tp) printk("tp->parent=%p \n", NODE_PARENT(tp));
|
|
}
|
|
|
|
if( i > 12 ) BUG();
|
|
i++;
|
|
|
|
tp = NODE_PARENT(tn);
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
|
|
tn = (struct tnode *) resize (t, (struct tnode *)tn);
|
|
tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
|
|
|
|
if(!NODE_PARENT(tn))
|
|
break;
|
|
|
|
tn = NODE_PARENT(tn);
|
|
}
|
|
/* Handle last (top) tnode */
|
|
if (IS_TNODE(tn))
|
|
tn = (struct tnode*) resize(t, (struct tnode *)tn);
|
|
|
|
return (struct node*) tn;
|
|
}
|
|
|
|
static struct list_head *
|
|
fib_insert_node(struct trie *t, u32 key, int plen)
|
|
{
|
|
int pos, newpos;
|
|
struct tnode *tp = NULL, *tn = NULL;
|
|
struct node *n;
|
|
struct leaf *l;
|
|
int missbit;
|
|
struct list_head *fa_head=NULL;
|
|
struct leaf_info *li;
|
|
t_key cindex;
|
|
|
|
pos = 0;
|
|
n=t->trie;
|
|
|
|
/* If we point to NULL, stop. Either the tree is empty and we should
|
|
* just put a new leaf in if, or we have reached an empty child slot,
|
|
* and we should just put our new leaf in that.
|
|
* If we point to a T_TNODE, check if it matches our key. Note that
|
|
* a T_TNODE might be skipping any number of bits - its 'pos' need
|
|
* not be the parent's 'pos'+'bits'!
|
|
*
|
|
* If it does match the current key, get pos/bits from it, extract
|
|
* the index from our key, push the T_TNODE and walk the tree.
|
|
*
|
|
* If it doesn't, we have to replace it with a new T_TNODE.
|
|
*
|
|
* If we point to a T_LEAF, it might or might not have the same key
|
|
* as we do. If it does, just change the value, update the T_LEAF's
|
|
* value, and return it.
|
|
* If it doesn't, we need to replace it with a T_TNODE.
|
|
*/
|
|
|
|
while (n != NULL && NODE_TYPE(n) == T_TNODE) {
|
|
tn = (struct tnode *) n;
|
|
|
|
check_tnode(tn);
|
|
|
|
if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
|
|
tp = tn;
|
|
pos=tn->pos + tn->bits;
|
|
n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
|
|
|
|
if(n && NODE_PARENT(n) != tn) {
|
|
printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n));
|
|
BUG();
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* n ----> NULL, LEAF or TNODE
|
|
*
|
|
* tp is n's (parent) ----> NULL or TNODE
|
|
*/
|
|
|
|
if(tp && IS_LEAF(tp))
|
|
BUG();
|
|
|
|
t->revision++;
|
|
|
|
/* Case 1: n is a leaf. Compare prefixes */
|
|
|
|
if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
|
|
struct leaf *l = ( struct leaf *) n;
|
|
|
|
li = leaf_info_new(plen);
|
|
|
|
if(! li)
|
|
BUG();
|
|
|
|
fa_head = &li->falh;
|
|
insert_leaf_info(&l->list, li);
|
|
goto done;
|
|
}
|
|
t->size++;
|
|
l = leaf_new();
|
|
|
|
if(! l)
|
|
BUG();
|
|
|
|
l->key = key;
|
|
li = leaf_info_new(plen);
|
|
|
|
if(! li)
|
|
BUG();
|
|
|
|
fa_head = &li->falh;
|
|
insert_leaf_info(&l->list, li);
|
|
|
|
/* Case 2: n is NULL, and will just insert a new leaf */
|
|
if (t->trie && n == NULL) {
|
|
|
|
NODE_SET_PARENT(l, tp);
|
|
|
|
if (!tp)
|
|
BUG();
|
|
|
|
else {
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
|
|
}
|
|
}
|
|
/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
|
|
else {
|
|
/*
|
|
* Add a new tnode here
|
|
* first tnode need some special handling
|
|
*/
|
|
|
|
if (tp)
|
|
pos=tp->pos+tp->bits;
|
|
else
|
|
pos=0;
|
|
if(n) {
|
|
newpos = tkey_mismatch(key, pos, n->key);
|
|
tn = tnode_new(n->key, newpos, 1);
|
|
}
|
|
else {
|
|
newpos = 0;
|
|
tn = tnode_new(key, newpos, 1); /* First tnode */
|
|
}
|
|
if(!tn)
|
|
trie_bug("tnode_pfx_new failed");
|
|
|
|
NODE_SET_PARENT(tn, tp);
|
|
|
|
missbit=tkey_extract_bits(key, newpos, 1);
|
|
put_child(t, tn, missbit, (struct node *)l);
|
|
put_child(t, tn, 1-missbit, n);
|
|
|
|
if(tp) {
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
|
|
}
|
|
else {
|
|
t->trie = (struct node*) tn; /* First tnode */
|
|
tp = tn;
|
|
}
|
|
}
|
|
if(tp && tp->pos+tp->bits > 32) {
|
|
printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
|
|
tp, tp->pos, tp->bits, key, plen);
|
|
}
|
|
/* Rebalance the trie */
|
|
t->trie = trie_rebalance(t, tp);
|
|
done:;
|
|
return fa_head;
|
|
}
|
|
|
|
static int
|
|
fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
|
|
struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct fib_alias *fa, *new_fa;
|
|
struct list_head *fa_head=NULL;
|
|
struct fib_info *fi;
|
|
int plen = r->rtm_dst_len;
|
|
int type = r->rtm_type;
|
|
u8 tos = r->rtm_tos;
|
|
u32 key, mask;
|
|
int err;
|
|
struct leaf *l;
|
|
|
|
if (plen > 32)
|
|
return -EINVAL;
|
|
|
|
key = 0;
|
|
if (rta->rta_dst)
|
|
memcpy(&key, rta->rta_dst, 4);
|
|
|
|
key = ntohl(key);
|
|
|
|
if(trie_debug)
|
|
printk("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
|
|
|
|
mask = ntohl( inet_make_mask(plen) );
|
|
|
|
if(key & ~mask)
|
|
return -EINVAL;
|
|
|
|
key = key & mask;
|
|
|
|
if ((fi = fib_create_info(r, rta, nlhdr, &err)) == NULL)
|
|
goto err;
|
|
|
|
l = fib_find_node(t, key);
|
|
fa = NULL;
|
|
|
|
if(l) {
|
|
fa_head = get_fa_head(l, plen);
|
|
fa = fib_find_alias(fa_head, tos, fi->fib_priority);
|
|
}
|
|
|
|
/* Now fa, if non-NULL, points to the first fib alias
|
|
* with the same keys [prefix,tos,priority], if such key already
|
|
* exists or to the node before which we will insert new one.
|
|
*
|
|
* If fa is NULL, we will need to allocate a new one and
|
|
* insert to the head of f.
|
|
*
|
|
* If f is NULL, no fib node matched the destination key
|
|
* and we need to allocate a new one of those as well.
|
|
*/
|
|
|
|
if (fa &&
|
|
fa->fa_info->fib_priority == fi->fib_priority) {
|
|
struct fib_alias *fa_orig;
|
|
|
|
err = -EEXIST;
|
|
if (nlhdr->nlmsg_flags & NLM_F_EXCL)
|
|
goto out;
|
|
|
|
if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
|
|
struct fib_info *fi_drop;
|
|
u8 state;
|
|
|
|
write_lock_bh(&fib_lock);
|
|
|
|
fi_drop = fa->fa_info;
|
|
fa->fa_info = fi;
|
|
fa->fa_type = type;
|
|
fa->fa_scope = r->rtm_scope;
|
|
state = fa->fa_state;
|
|
fa->fa_state &= ~FA_S_ACCESSED;
|
|
|
|
write_unlock_bh(&fib_lock);
|
|
|
|
fib_release_info(fi_drop);
|
|
if (state & FA_S_ACCESSED)
|
|
rt_cache_flush(-1);
|
|
|
|
goto succeeded;
|
|
}
|
|
/* Error if we find a perfect match which
|
|
* uses the same scope, type, and nexthop
|
|
* information.
|
|
*/
|
|
fa_orig = fa;
|
|
list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
|
|
if (fa->fa_tos != tos)
|
|
break;
|
|
if (fa->fa_info->fib_priority != fi->fib_priority)
|
|
break;
|
|
if (fa->fa_type == type &&
|
|
fa->fa_scope == r->rtm_scope &&
|
|
fa->fa_info == fi) {
|
|
goto out;
|
|
}
|
|
}
|
|
if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
|
|
fa = fa_orig;
|
|
}
|
|
err = -ENOENT;
|
|
if (!(nlhdr->nlmsg_flags&NLM_F_CREATE))
|
|
goto out;
|
|
|
|
err = -ENOBUFS;
|
|
new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
|
|
if (new_fa == NULL)
|
|
goto out;
|
|
|
|
new_fa->fa_info = fi;
|
|
new_fa->fa_tos = tos;
|
|
new_fa->fa_type = type;
|
|
new_fa->fa_scope = r->rtm_scope;
|
|
new_fa->fa_state = 0;
|
|
#if 0
|
|
new_fa->dst = NULL;
|
|
#endif
|
|
/*
|
|
* Insert new entry to the list.
|
|
*/
|
|
|
|
if(!fa_head)
|
|
fa_head = fib_insert_node(t, key, plen);
|
|
|
|
write_lock_bh(&fib_lock);
|
|
|
|
list_add_tail(&new_fa->fa_list,
|
|
(fa ? &fa->fa_list : fa_head));
|
|
|
|
write_unlock_bh(&fib_lock);
|
|
|
|
rt_cache_flush(-1);
|
|
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
|
|
succeeded:
|
|
return 0;
|
|
out:
|
|
fib_release_info(fi);
|
|
err:;
|
|
return err;
|
|
}
|
|
|
|
static inline int check_leaf(struct trie *t, struct leaf *l, t_key key, int *plen, const struct flowi *flp,
|
|
struct fib_result *res, int *err)
|
|
{
|
|
int i;
|
|
t_key mask;
|
|
struct leaf_info *li;
|
|
struct hlist_head *hhead = &l->list;
|
|
struct hlist_node *node;
|
|
|
|
hlist_for_each_entry(li, node, hhead, hlist) {
|
|
|
|
i = li->plen;
|
|
mask = ntohl(inet_make_mask(i));
|
|
if (l->key != (key & mask))
|
|
continue;
|
|
|
|
if (((*err) = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) == 0) {
|
|
*plen = i;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.semantic_match_passed++;
|
|
#endif
|
|
return 1;
|
|
}
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.semantic_match_miss++;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
int plen, ret = 0;
|
|
struct node *n;
|
|
struct tnode *pn;
|
|
int pos, bits;
|
|
t_key key=ntohl(flp->fl4_dst);
|
|
int chopped_off;
|
|
t_key cindex = 0;
|
|
int current_prefix_length = KEYLENGTH;
|
|
n = t->trie;
|
|
|
|
read_lock(&fib_lock);
|
|
if(!n)
|
|
goto failed;
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.gets++;
|
|
#endif
|
|
|
|
/* Just a leaf? */
|
|
if (IS_LEAF(n)) {
|
|
if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret) )
|
|
goto found;
|
|
goto failed;
|
|
}
|
|
pn = (struct tnode *) n;
|
|
chopped_off = 0;
|
|
|
|
while (pn) {
|
|
|
|
pos = pn->pos;
|
|
bits = pn->bits;
|
|
|
|
if(!chopped_off)
|
|
cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
|
|
|
|
n = tnode_get_child(pn, cindex);
|
|
|
|
if (n == NULL) {
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.null_node_hit++;
|
|
#endif
|
|
goto backtrace;
|
|
}
|
|
|
|
if (IS_TNODE(n)) {
|
|
#define HL_OPTIMIZE
|
|
#ifdef HL_OPTIMIZE
|
|
struct tnode *cn = (struct tnode *)n;
|
|
t_key node_prefix, key_prefix, pref_mismatch;
|
|
int mp;
|
|
|
|
/*
|
|
* It's a tnode, and we can do some extra checks here if we
|
|
* like, to avoid descending into a dead-end branch.
|
|
* This tnode is in the parent's child array at index
|
|
* key[p_pos..p_pos+p_bits] but potentially with some bits
|
|
* chopped off, so in reality the index may be just a
|
|
* subprefix, padded with zero at the end.
|
|
* We can also take a look at any skipped bits in this
|
|
* tnode - everything up to p_pos is supposed to be ok,
|
|
* and the non-chopped bits of the index (se previous
|
|
* paragraph) are also guaranteed ok, but the rest is
|
|
* considered unknown.
|
|
*
|
|
* The skipped bits are key[pos+bits..cn->pos].
|
|
*/
|
|
|
|
/* If current_prefix_length < pos+bits, we are already doing
|
|
* actual prefix matching, which means everything from
|
|
* pos+(bits-chopped_off) onward must be zero along some
|
|
* branch of this subtree - otherwise there is *no* valid
|
|
* prefix present. Here we can only check the skipped
|
|
* bits. Remember, since we have already indexed into the
|
|
* parent's child array, we know that the bits we chopped of
|
|
* *are* zero.
|
|
*/
|
|
|
|
/* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
|
|
|
|
if (current_prefix_length < pos+bits) {
|
|
if (tkey_extract_bits(cn->key, current_prefix_length,
|
|
cn->pos - current_prefix_length) != 0 ||
|
|
!(cn->child[0]))
|
|
goto backtrace;
|
|
}
|
|
|
|
/*
|
|
* If chopped_off=0, the index is fully validated and we
|
|
* only need to look at the skipped bits for this, the new,
|
|
* tnode. What we actually want to do is to find out if
|
|
* these skipped bits match our key perfectly, or if we will
|
|
* have to count on finding a matching prefix further down,
|
|
* because if we do, we would like to have some way of
|
|
* verifying the existence of such a prefix at this point.
|
|
*/
|
|
|
|
/* The only thing we can do at this point is to verify that
|
|
* any such matching prefix can indeed be a prefix to our
|
|
* key, and if the bits in the node we are inspecting that
|
|
* do not match our key are not ZERO, this cannot be true.
|
|
* Thus, find out where there is a mismatch (before cn->pos)
|
|
* and verify that all the mismatching bits are zero in the
|
|
* new tnode's key.
|
|
*/
|
|
|
|
/* Note: We aren't very concerned about the piece of the key
|
|
* that precede pn->pos+pn->bits, since these have already been
|
|
* checked. The bits after cn->pos aren't checked since these are
|
|
* by definition "unknown" at this point. Thus, what we want to
|
|
* see is if we are about to enter the "prefix matching" state,
|
|
* and in that case verify that the skipped bits that will prevail
|
|
* throughout this subtree are zero, as they have to be if we are
|
|
* to find a matching prefix.
|
|
*/
|
|
|
|
node_prefix = MASK_PFX(cn->key, cn->pos);
|
|
key_prefix = MASK_PFX(key, cn->pos);
|
|
pref_mismatch = key_prefix^node_prefix;
|
|
mp = 0;
|
|
|
|
/* In short: If skipped bits in this node do not match the search
|
|
* key, enter the "prefix matching" state.directly.
|
|
*/
|
|
if (pref_mismatch) {
|
|
while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
|
|
mp++;
|
|
pref_mismatch = pref_mismatch <<1;
|
|
}
|
|
key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
|
|
|
|
if (key_prefix != 0)
|
|
goto backtrace;
|
|
|
|
if (current_prefix_length >= cn->pos)
|
|
current_prefix_length=mp;
|
|
}
|
|
#endif
|
|
pn = (struct tnode *)n; /* Descend */
|
|
chopped_off = 0;
|
|
continue;
|
|
}
|
|
if (IS_LEAF(n)) {
|
|
if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret))
|
|
goto found;
|
|
}
|
|
backtrace:
|
|
chopped_off++;
|
|
|
|
/* As zero don't change the child key (cindex) */
|
|
while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) {
|
|
chopped_off++;
|
|
}
|
|
|
|
/* Decrease current_... with bits chopped off */
|
|
if (current_prefix_length > pn->pos + pn->bits - chopped_off)
|
|
current_prefix_length = pn->pos + pn->bits - chopped_off;
|
|
|
|
/*
|
|
* Either we do the actual chop off according or if we have
|
|
* chopped off all bits in this tnode walk up to our parent.
|
|
*/
|
|
|
|
if(chopped_off <= pn->bits)
|
|
cindex &= ~(1 << (chopped_off-1));
|
|
else {
|
|
if( NODE_PARENT(pn) == NULL)
|
|
goto failed;
|
|
|
|
/* Get Child's index */
|
|
cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
|
|
pn = NODE_PARENT(pn);
|
|
chopped_off = 0;
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.backtrack++;
|
|
#endif
|
|
goto backtrace;
|
|
}
|
|
}
|
|
failed:
|
|
ret = 1;
|
|
found:
|
|
read_unlock(&fib_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int trie_leaf_remove(struct trie *t, t_key key)
|
|
{
|
|
t_key cindex;
|
|
struct tnode *tp = NULL;
|
|
struct node *n = t->trie;
|
|
struct leaf *l;
|
|
|
|
if(trie_debug)
|
|
printk("entering trie_leaf_remove(%p)\n", n);
|
|
|
|
/* Note that in the case skipped bits, those bits are *not* checked!
|
|
* When we finish this, we will have NULL or a T_LEAF, and the
|
|
* T_LEAF may or may not match our key.
|
|
*/
|
|
|
|
while (n != NULL && IS_TNODE(n)) {
|
|
struct tnode *tn = (struct tnode *) n;
|
|
check_tnode(tn);
|
|
n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
|
|
|
|
if(n && NODE_PARENT(n) != tn) {
|
|
printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n));
|
|
BUG();
|
|
}
|
|
}
|
|
l = (struct leaf *) n;
|
|
|
|
if(!n || !tkey_equals(l->key, key))
|
|
return 0;
|
|
|
|
/*
|
|
* Key found.
|
|
* Remove the leaf and rebalance the tree
|
|
*/
|
|
|
|
t->revision++;
|
|
t->size--;
|
|
|
|
tp = NODE_PARENT(n);
|
|
tnode_free((struct tnode *) n);
|
|
|
|
if(tp) {
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
put_child(t, (struct tnode *)tp, cindex, NULL);
|
|
t->trie = trie_rebalance(t, tp);
|
|
}
|
|
else
|
|
t->trie = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
|
|
struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
u32 key, mask;
|
|
int plen = r->rtm_dst_len;
|
|
u8 tos = r->rtm_tos;
|
|
struct fib_alias *fa, *fa_to_delete;
|
|
struct list_head *fa_head;
|
|
struct leaf *l;
|
|
|
|
if (plen > 32)
|
|
return -EINVAL;
|
|
|
|
key = 0;
|
|
if (rta->rta_dst)
|
|
memcpy(&key, rta->rta_dst, 4);
|
|
|
|
key = ntohl(key);
|
|
mask = ntohl( inet_make_mask(plen) );
|
|
|
|
if(key & ~mask)
|
|
return -EINVAL;
|
|
|
|
key = key & mask;
|
|
l = fib_find_node(t, key);
|
|
|
|
if(!l)
|
|
return -ESRCH;
|
|
|
|
fa_head = get_fa_head(l, plen);
|
|
fa = fib_find_alias(fa_head, tos, 0);
|
|
|
|
if (!fa)
|
|
return -ESRCH;
|
|
|
|
if (trie_debug)
|
|
printk("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
|
|
|
|
fa_to_delete = NULL;
|
|
fa_head = fa->fa_list.prev;
|
|
list_for_each_entry(fa, fa_head, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
if (fa->fa_tos != tos)
|
|
break;
|
|
|
|
if ((!r->rtm_type ||
|
|
fa->fa_type == r->rtm_type) &&
|
|
(r->rtm_scope == RT_SCOPE_NOWHERE ||
|
|
fa->fa_scope == r->rtm_scope) &&
|
|
(!r->rtm_protocol ||
|
|
fi->fib_protocol == r->rtm_protocol) &&
|
|
fib_nh_match(r, nlhdr, rta, fi) == 0) {
|
|
fa_to_delete = fa;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (fa_to_delete) {
|
|
int kill_li = 0;
|
|
struct leaf_info *li;
|
|
|
|
fa = fa_to_delete;
|
|
rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
|
|
|
|
l = fib_find_node(t, key);
|
|
li = find_leaf_info(&l->list, plen);
|
|
|
|
write_lock_bh(&fib_lock);
|
|
|
|
list_del(&fa->fa_list);
|
|
|
|
if(list_empty(fa_head)) {
|
|
hlist_del(&li->hlist);
|
|
kill_li = 1;
|
|
}
|
|
write_unlock_bh(&fib_lock);
|
|
|
|
if(kill_li)
|
|
free_leaf_info(li);
|
|
|
|
if(hlist_empty(&l->list))
|
|
trie_leaf_remove(t, key);
|
|
|
|
if (fa->fa_state & FA_S_ACCESSED)
|
|
rt_cache_flush(-1);
|
|
|
|
fn_free_alias(fa);
|
|
return 0;
|
|
}
|
|
return -ESRCH;
|
|
}
|
|
|
|
static int trie_flush_list(struct trie *t, struct list_head *head)
|
|
{
|
|
struct fib_alias *fa, *fa_node;
|
|
int found = 0;
|
|
|
|
list_for_each_entry_safe(fa, fa_node, head, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
if (fi && (fi->fib_flags&RTNH_F_DEAD)) {
|
|
|
|
write_lock_bh(&fib_lock);
|
|
list_del(&fa->fa_list);
|
|
write_unlock_bh(&fib_lock);
|
|
|
|
fn_free_alias(fa);
|
|
found++;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static int trie_flush_leaf(struct trie *t, struct leaf *l)
|
|
{
|
|
int found = 0;
|
|
struct hlist_head *lih = &l->list;
|
|
struct hlist_node *node, *tmp;
|
|
struct leaf_info *li = NULL;
|
|
|
|
hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
|
|
|
|
found += trie_flush_list(t, &li->falh);
|
|
|
|
if (list_empty(&li->falh)) {
|
|
|
|
write_lock_bh(&fib_lock);
|
|
hlist_del(&li->hlist);
|
|
write_unlock_bh(&fib_lock);
|
|
|
|
free_leaf_info(li);
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
|
|
{
|
|
struct node *c = (struct node *) thisleaf;
|
|
struct tnode *p;
|
|
int idx;
|
|
|
|
if(c == NULL) {
|
|
if(t->trie == NULL)
|
|
return NULL;
|
|
|
|
if (IS_LEAF(t->trie)) /* trie w. just a leaf */
|
|
return (struct leaf *) t->trie;
|
|
|
|
p = (struct tnode*) t->trie; /* Start */
|
|
}
|
|
else
|
|
p = (struct tnode *) NODE_PARENT(c);
|
|
while (p) {
|
|
int pos, last;
|
|
|
|
/* Find the next child of the parent */
|
|
if(c)
|
|
pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
|
|
else
|
|
pos = 0;
|
|
|
|
last = 1 << p->bits;
|
|
for(idx = pos; idx < last ; idx++) {
|
|
if( p->child[idx]) {
|
|
|
|
/* Decend if tnode */
|
|
|
|
while (IS_TNODE(p->child[idx])) {
|
|
p = (struct tnode*) p->child[idx];
|
|
idx = 0;
|
|
|
|
/* Rightmost non-NULL branch */
|
|
if( p && IS_TNODE(p) )
|
|
while ( p->child[idx] == NULL && idx < (1 << p->bits) ) idx++;
|
|
|
|
/* Done with this tnode? */
|
|
if( idx >= (1 << p->bits) || p->child[idx] == NULL )
|
|
goto up;
|
|
}
|
|
return (struct leaf*) p->child[idx];
|
|
}
|
|
}
|
|
up:
|
|
/* No more children go up one step */
|
|
c = (struct node*) p;
|
|
p = (struct tnode *) NODE_PARENT(p);
|
|
}
|
|
return NULL; /* Ready. Root of trie */
|
|
}
|
|
|
|
static int fn_trie_flush(struct fib_table *tb)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct leaf *ll = NULL, *l = NULL;
|
|
int found = 0, h;
|
|
|
|
t->revision++;
|
|
|
|
for (h=0; (l = nextleaf(t, l)) != NULL; h++) {
|
|
found += trie_flush_leaf(t, l);
|
|
|
|
if (ll && hlist_empty(&ll->list))
|
|
trie_leaf_remove(t, ll->key);
|
|
ll = l;
|
|
}
|
|
|
|
if (ll && hlist_empty(&ll->list))
|
|
trie_leaf_remove(t, ll->key);
|
|
|
|
if(trie_debug)
|
|
printk("trie_flush found=%d\n", found);
|
|
return found;
|
|
}
|
|
|
|
static int trie_last_dflt=-1;
|
|
|
|
static void
|
|
fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
int order, last_idx;
|
|
struct fib_info *fi = NULL;
|
|
struct fib_info *last_resort;
|
|
struct fib_alias *fa = NULL;
|
|
struct list_head *fa_head;
|
|
struct leaf *l;
|
|
|
|
last_idx = -1;
|
|
last_resort = NULL;
|
|
order = -1;
|
|
|
|
read_lock(&fib_lock);
|
|
|
|
l = fib_find_node(t, 0);
|
|
if(!l)
|
|
goto out;
|
|
|
|
fa_head = get_fa_head(l, 0);
|
|
if(!fa_head)
|
|
goto out;
|
|
|
|
if (list_empty(fa_head))
|
|
goto out;
|
|
|
|
list_for_each_entry(fa, fa_head, fa_list) {
|
|
struct fib_info *next_fi = fa->fa_info;
|
|
|
|
if (fa->fa_scope != res->scope ||
|
|
fa->fa_type != RTN_UNICAST)
|
|
continue;
|
|
|
|
if (next_fi->fib_priority > res->fi->fib_priority)
|
|
break;
|
|
if (!next_fi->fib_nh[0].nh_gw ||
|
|
next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
|
|
continue;
|
|
fa->fa_state |= FA_S_ACCESSED;
|
|
|
|
if (fi == NULL) {
|
|
if (next_fi != res->fi)
|
|
break;
|
|
} else if (!fib_detect_death(fi, order, &last_resort,
|
|
&last_idx, &trie_last_dflt)) {
|
|
if (res->fi)
|
|
fib_info_put(res->fi);
|
|
res->fi = fi;
|
|
atomic_inc(&fi->fib_clntref);
|
|
trie_last_dflt = order;
|
|
goto out;
|
|
}
|
|
fi = next_fi;
|
|
order++;
|
|
}
|
|
if (order <= 0 || fi == NULL) {
|
|
trie_last_dflt = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
|
|
if (res->fi)
|
|
fib_info_put(res->fi);
|
|
res->fi = fi;
|
|
atomic_inc(&fi->fib_clntref);
|
|
trie_last_dflt = order;
|
|
goto out;
|
|
}
|
|
if (last_idx >= 0) {
|
|
if (res->fi)
|
|
fib_info_put(res->fi);
|
|
res->fi = last_resort;
|
|
if (last_resort)
|
|
atomic_inc(&last_resort->fib_clntref);
|
|
}
|
|
trie_last_dflt = last_idx;
|
|
out:;
|
|
read_unlock(&fib_lock);
|
|
}
|
|
|
|
static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
|
|
struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
int i, s_i;
|
|
struct fib_alias *fa;
|
|
|
|
u32 xkey=htonl(key);
|
|
|
|
s_i=cb->args[3];
|
|
i = 0;
|
|
|
|
list_for_each_entry(fa, fah, fa_list) {
|
|
if (i < s_i) {
|
|
i++;
|
|
continue;
|
|
}
|
|
if (fa->fa_info->fib_nh == NULL) {
|
|
printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
|
|
i++;
|
|
continue;
|
|
}
|
|
if (fa->fa_info == NULL) {
|
|
printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWROUTE,
|
|
tb->tb_id,
|
|
fa->fa_type,
|
|
fa->fa_scope,
|
|
&xkey,
|
|
plen,
|
|
fa->fa_tos,
|
|
fa->fa_info, 0) < 0) {
|
|
cb->args[3] = i;
|
|
return -1;
|
|
}
|
|
i++;
|
|
}
|
|
cb->args[3]=i;
|
|
return skb->len;
|
|
}
|
|
|
|
static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
|
|
struct netlink_callback *cb)
|
|
{
|
|
int h, s_h;
|
|
struct list_head *fa_head;
|
|
struct leaf *l = NULL;
|
|
s_h=cb->args[2];
|
|
|
|
for (h=0; (l = nextleaf(t, l)) != NULL; h++) {
|
|
|
|
if (h < s_h)
|
|
continue;
|
|
if (h > s_h)
|
|
memset(&cb->args[3], 0,
|
|
sizeof(cb->args) - 3*sizeof(cb->args[0]));
|
|
|
|
fa_head = get_fa_head(l, plen);
|
|
|
|
if(!fa_head)
|
|
continue;
|
|
|
|
if(list_empty(fa_head))
|
|
continue;
|
|
|
|
if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
|
|
cb->args[2]=h;
|
|
return -1;
|
|
}
|
|
}
|
|
cb->args[2]=h;
|
|
return skb->len;
|
|
}
|
|
|
|
static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
int m, s_m;
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
|
|
s_m = cb->args[1];
|
|
|
|
read_lock(&fib_lock);
|
|
for (m=0; m<=32; m++) {
|
|
|
|
if (m < s_m)
|
|
continue;
|
|
if (m > s_m)
|
|
memset(&cb->args[2], 0,
|
|
sizeof(cb->args) - 2*sizeof(cb->args[0]));
|
|
|
|
if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
|
|
cb->args[1] = m;
|
|
goto out;
|
|
}
|
|
}
|
|
read_unlock(&fib_lock);
|
|
cb->args[1] = m;
|
|
return skb->len;
|
|
out:
|
|
read_unlock(&fib_lock);
|
|
return -1;
|
|
}
|
|
|
|
/* Fix more generic FIB names for init later */
|
|
|
|
#ifdef CONFIG_IP_MULTIPLE_TABLES
|
|
struct fib_table * fib_hash_init(int id)
|
|
#else
|
|
struct fib_table * __init fib_hash_init(int id)
|
|
#endif
|
|
{
|
|
struct fib_table *tb;
|
|
struct trie *t;
|
|
|
|
if (fn_alias_kmem == NULL)
|
|
fn_alias_kmem = kmem_cache_create("ip_fib_alias",
|
|
sizeof(struct fib_alias),
|
|
0, SLAB_HWCACHE_ALIGN,
|
|
NULL, NULL);
|
|
|
|
tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
|
|
GFP_KERNEL);
|
|
if (tb == NULL)
|
|
return NULL;
|
|
|
|
tb->tb_id = id;
|
|
tb->tb_lookup = fn_trie_lookup;
|
|
tb->tb_insert = fn_trie_insert;
|
|
tb->tb_delete = fn_trie_delete;
|
|
tb->tb_flush = fn_trie_flush;
|
|
tb->tb_select_default = fn_trie_select_default;
|
|
tb->tb_dump = fn_trie_dump;
|
|
memset(tb->tb_data, 0, sizeof(struct trie));
|
|
|
|
t = (struct trie *) tb->tb_data;
|
|
|
|
trie_init(t);
|
|
|
|
if (id == RT_TABLE_LOCAL)
|
|
trie_local=t;
|
|
else if (id == RT_TABLE_MAIN)
|
|
trie_main=t;
|
|
|
|
if (id == RT_TABLE_LOCAL)
|
|
printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
|
|
|
|
return tb;
|
|
}
|
|
|
|
/* Trie dump functions */
|
|
|
|
static void putspace_seq(struct seq_file *seq, int n)
|
|
{
|
|
while (n--) seq_printf(seq, " ");
|
|
}
|
|
|
|
static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
|
|
{
|
|
while (bits--)
|
|
seq_printf(seq, "%s", (v & (1<<bits))?"1":"0");
|
|
}
|
|
|
|
static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
|
|
int pend, int cindex, int bits)
|
|
{
|
|
putspace_seq(seq, indent);
|
|
if (IS_LEAF(n))
|
|
seq_printf(seq, "|");
|
|
else
|
|
seq_printf(seq, "+");
|
|
if (bits) {
|
|
seq_printf(seq, "%d/", cindex);
|
|
printbin_seq(seq, cindex, bits);
|
|
seq_printf(seq, ": ");
|
|
}
|
|
else
|
|
seq_printf(seq, "<root>: ");
|
|
seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);
|
|
|
|
if (IS_LEAF(n))
|
|
seq_printf(seq, "key=%d.%d.%d.%d\n",
|
|
n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
|
|
else {
|
|
int plen=((struct tnode *)n)->pos;
|
|
t_key prf=MASK_PFX(n->key, plen);
|
|
seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
|
|
prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
|
|
}
|
|
if (IS_LEAF(n)) {
|
|
struct leaf *l=(struct leaf *)n;
|
|
struct fib_alias *fa;
|
|
int i;
|
|
for (i=32; i>=0; i--)
|
|
if(find_leaf_info(&l->list, i)) {
|
|
|
|
struct list_head *fa_head = get_fa_head(l, i);
|
|
|
|
if(!fa_head)
|
|
continue;
|
|
|
|
if(list_empty(fa_head))
|
|
continue;
|
|
|
|
putspace_seq(seq, indent+2);
|
|
seq_printf(seq, "{/%d...dumping}\n", i);
|
|
|
|
|
|
list_for_each_entry(fa, fa_head, fa_list) {
|
|
putspace_seq(seq, indent+2);
|
|
if (fa->fa_info->fib_nh == NULL) {
|
|
seq_printf(seq, "Error _fib_nh=NULL\n");
|
|
continue;
|
|
}
|
|
if (fa->fa_info == NULL) {
|
|
seq_printf(seq, "Error fa_info=NULL\n");
|
|
continue;
|
|
}
|
|
|
|
seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
|
|
fa->fa_type,
|
|
fa->fa_scope,
|
|
fa->fa_tos);
|
|
}
|
|
}
|
|
}
|
|
else if (IS_TNODE(n)) {
|
|
struct tnode *tn=(struct tnode *)n;
|
|
putspace_seq(seq, indent); seq_printf(seq, "| ");
|
|
seq_printf(seq, "{key prefix=%08x/", tn->key&TKEY_GET_MASK(0, tn->pos));
|
|
printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
|
|
seq_printf(seq, "}\n");
|
|
putspace_seq(seq, indent); seq_printf(seq, "| ");
|
|
seq_printf(seq, "{pos=%d", tn->pos);
|
|
seq_printf(seq, " (skip=%d bits)", tn->pos - pend);
|
|
seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits));
|
|
putspace_seq(seq, indent); seq_printf(seq, "| ");
|
|
seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children);
|
|
}
|
|
}
|
|
|
|
static void trie_dump_seq(struct seq_file *seq, struct trie *t)
|
|
{
|
|
struct node *n=t->trie;
|
|
int cindex=0;
|
|
int indent=1;
|
|
int pend=0;
|
|
int depth = 0;
|
|
|
|
read_lock(&fib_lock);
|
|
|
|
seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
|
|
if (n) {
|
|
printnode_seq(seq, indent, n, pend, cindex, 0);
|
|
if (IS_TNODE(n)) {
|
|
struct tnode *tn=(struct tnode *)n;
|
|
pend = tn->pos+tn->bits;
|
|
putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
|
|
indent += 3;
|
|
depth++;
|
|
|
|
while (tn && cindex < (1 << tn->bits)) {
|
|
if (tn->child[cindex]) {
|
|
|
|
/* Got a child */
|
|
|
|
printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits);
|
|
if (IS_LEAF(tn->child[cindex])) {
|
|
cindex++;
|
|
|
|
}
|
|
else {
|
|
/*
|
|
* New tnode. Decend one level
|
|
*/
|
|
|
|
depth++;
|
|
n=tn->child[cindex];
|
|
tn=(struct tnode *)n;
|
|
pend=tn->pos+tn->bits;
|
|
putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
|
|
indent+=3;
|
|
cindex=0;
|
|
}
|
|
}
|
|
else
|
|
cindex++;
|
|
|
|
/*
|
|
* Test if we are done
|
|
*/
|
|
|
|
while (cindex >= (1 << tn->bits)) {
|
|
|
|
/*
|
|
* Move upwards and test for root
|
|
* pop off all traversed nodes
|
|
*/
|
|
|
|
if (NODE_PARENT(tn) == NULL) {
|
|
tn = NULL;
|
|
n = NULL;
|
|
break;
|
|
}
|
|
else {
|
|
cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
|
|
tn = NODE_PARENT(tn);
|
|
cindex++;
|
|
n=(struct node *)tn;
|
|
pend=tn->pos+tn->bits;
|
|
indent-=3;
|
|
depth--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else n = NULL;
|
|
}
|
|
else seq_printf(seq, "------ trie is empty\n");
|
|
|
|
read_unlock(&fib_lock);
|
|
}
|
|
|
|
static struct trie_stat *trie_stat_new(void)
|
|
{
|
|
struct trie_stat *s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
|
|
int i;
|
|
|
|
if(s) {
|
|
s->totdepth = 0;
|
|
s->maxdepth = 0;
|
|
s->tnodes = 0;
|
|
s->leaves = 0;
|
|
s->nullpointers = 0;
|
|
|
|
for(i=0; i< MAX_CHILDS; i++)
|
|
s->nodesizes[i] = 0;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static struct trie_stat *trie_collect_stats(struct trie *t)
|
|
{
|
|
struct node *n=t->trie;
|
|
struct trie_stat *s = trie_stat_new();
|
|
int cindex = 0;
|
|
int indent = 1;
|
|
int pend = 0;
|
|
int depth = 0;
|
|
|
|
read_lock(&fib_lock);
|
|
|
|
if (s) {
|
|
if (n) {
|
|
if (IS_TNODE(n)) {
|
|
struct tnode *tn = (struct tnode *)n;
|
|
pend=tn->pos+tn->bits;
|
|
indent += 3;
|
|
s->nodesizes[tn->bits]++;
|
|
depth++;
|
|
|
|
while (tn && cindex < (1 << tn->bits)) {
|
|
if (tn->child[cindex]) {
|
|
/* Got a child */
|
|
|
|
if (IS_LEAF(tn->child[cindex])) {
|
|
cindex++;
|
|
|
|
/* stats */
|
|
if (depth > s->maxdepth)
|
|
s->maxdepth = depth;
|
|
s->totdepth += depth;
|
|
s->leaves++;
|
|
}
|
|
|
|
else {
|
|
/*
|
|
* New tnode. Decend one level
|
|
*/
|
|
|
|
s->tnodes++;
|
|
s->nodesizes[tn->bits]++;
|
|
depth++;
|
|
|
|
n = tn->child[cindex];
|
|
tn = (struct tnode *)n;
|
|
pend = tn->pos+tn->bits;
|
|
|
|
indent += 3;
|
|
cindex = 0;
|
|
}
|
|
}
|
|
else {
|
|
cindex++;
|
|
s->nullpointers++;
|
|
}
|
|
|
|
/*
|
|
* Test if we are done
|
|
*/
|
|
|
|
while (cindex >= (1 << tn->bits)) {
|
|
|
|
/*
|
|
* Move upwards and test for root
|
|
* pop off all traversed nodes
|
|
*/
|
|
|
|
|
|
if (NODE_PARENT(tn) == NULL) {
|
|
tn = NULL;
|
|
n = NULL;
|
|
break;
|
|
}
|
|
else {
|
|
cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
|
|
tn = NODE_PARENT(tn);
|
|
cindex++;
|
|
n = (struct node *)tn;
|
|
pend=tn->pos+tn->bits;
|
|
indent -= 3;
|
|
depth--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else n = NULL;
|
|
}
|
|
}
|
|
|
|
read_unlock(&fib_lock);
|
|
return s;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static struct fib_alias *fib_triestat_get_first(struct seq_file *seq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
void *v = NULL;
|
|
|
|
if (ip_fib_main_table)
|
|
v = *pos ? fib_triestat_get_next(seq) : SEQ_START_TOKEN;
|
|
return v;
|
|
}
|
|
|
|
static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return v == SEQ_START_TOKEN ? fib_triestat_get_first(seq) : fib_triestat_get_next(seq);
|
|
}
|
|
|
|
static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
|
|
}
|
|
|
|
/*
|
|
* This outputs /proc/net/fib_triestats
|
|
*
|
|
* It always works in backward compatibility mode.
|
|
* The format of the file is not supposed to be changed.
|
|
*/
|
|
|
|
static void collect_and_show(struct trie *t, struct seq_file *seq)
|
|
{
|
|
int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
|
|
int i, max, pointers;
|
|
struct trie_stat *stat;
|
|
int avdepth;
|
|
|
|
stat = trie_collect_stats(t);
|
|
|
|
bytes=0;
|
|
seq_printf(seq, "trie=%p\n", t);
|
|
|
|
if (stat) {
|
|
if (stat->leaves)
|
|
avdepth=stat->totdepth*100 / stat->leaves;
|
|
else
|
|
avdepth=0;
|
|
seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
|
|
seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
|
|
|
|
seq_printf(seq, "Leaves: %d\n", stat->leaves);
|
|
bytes += sizeof(struct leaf) * stat->leaves;
|
|
seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
|
|
bytes += sizeof(struct tnode) * stat->tnodes;
|
|
|
|
max = MAX_CHILDS-1;
|
|
|
|
while (max >= 0 && stat->nodesizes[max] == 0)
|
|
max--;
|
|
pointers = 0;
|
|
|
|
for (i = 1; i <= max; i++)
|
|
if (stat->nodesizes[i] != 0) {
|
|
seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
|
|
pointers += (1<<i) * stat->nodesizes[i];
|
|
}
|
|
seq_printf(seq, "\n");
|
|
seq_printf(seq, "Pointers: %d\n", pointers);
|
|
bytes += sizeof(struct node *) * pointers;
|
|
seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
|
|
seq_printf(seq, "Total size: %d kB\n", bytes / 1024);
|
|
|
|
kfree(stat);
|
|
}
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
seq_printf(seq, "Counters:\n---------\n");
|
|
seq_printf(seq,"gets = %d\n", t->stats.gets);
|
|
seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
|
|
seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
|
|
seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
|
|
seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
|
|
#ifdef CLEAR_STATS
|
|
memset(&(t->stats), 0, sizeof(t->stats));
|
|
#endif
|
|
#endif /* CONFIG_IP_FIB_TRIE_STATS */
|
|
}
|
|
|
|
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
char bf[128];
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
|
|
sizeof(struct leaf), sizeof(struct tnode));
|
|
if (trie_local)
|
|
collect_and_show(trie_local, seq);
|
|
|
|
if (trie_main)
|
|
collect_and_show(trie_main, seq);
|
|
}
|
|
else {
|
|
snprintf(bf, sizeof(bf),
|
|
"*\t%08X\t%08X", 200, 400);
|
|
|
|
seq_printf(seq, "%-127s\n", bf);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct seq_operations fib_triestat_seq_ops = {
|
|
.start = fib_triestat_seq_start,
|
|
.next = fib_triestat_seq_next,
|
|
.stop = fib_triestat_seq_stop,
|
|
.show = fib_triestat_seq_show,
|
|
};
|
|
|
|
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq;
|
|
int rc = -ENOMEM;
|
|
|
|
rc = seq_open(file, &fib_triestat_seq_ops);
|
|
if (rc)
|
|
goto out_kfree;
|
|
|
|
seq = file->private_data;
|
|
out:
|
|
return rc;
|
|
out_kfree:
|
|
goto out;
|
|
}
|
|
|
|
static struct file_operations fib_triestat_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_triestat_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
int __init fib_stat_proc_init(void)
|
|
{
|
|
if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __init fib_stat_proc_exit(void)
|
|
{
|
|
proc_net_remove("fib_triestat");
|
|
}
|
|
|
|
static struct fib_alias *fib_trie_get_first(struct seq_file *seq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
void *v = NULL;
|
|
|
|
if (ip_fib_main_table)
|
|
v = *pos ? fib_trie_get_next(seq) : SEQ_START_TOKEN;
|
|
return v;
|
|
}
|
|
|
|
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return v == SEQ_START_TOKEN ? fib_trie_get_first(seq) : fib_trie_get_next(seq);
|
|
}
|
|
|
|
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
|
|
}
|
|
|
|
/*
|
|
* This outputs /proc/net/fib_trie.
|
|
*
|
|
* It always works in backward compatibility mode.
|
|
* The format of the file is not supposed to be changed.
|
|
*/
|
|
|
|
static int fib_trie_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
char bf[128];
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
if (trie_local)
|
|
trie_dump_seq(seq, trie_local);
|
|
|
|
if (trie_main)
|
|
trie_dump_seq(seq, trie_main);
|
|
}
|
|
|
|
else {
|
|
snprintf(bf, sizeof(bf),
|
|
"*\t%08X\t%08X", 200, 400);
|
|
seq_printf(seq, "%-127s\n", bf);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct seq_operations fib_trie_seq_ops = {
|
|
.start = fib_trie_seq_start,
|
|
.next = fib_trie_seq_next,
|
|
.stop = fib_trie_seq_stop,
|
|
.show = fib_trie_seq_show,
|
|
};
|
|
|
|
static int fib_trie_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq;
|
|
int rc = -ENOMEM;
|
|
|
|
rc = seq_open(file, &fib_trie_seq_ops);
|
|
if (rc)
|
|
goto out_kfree;
|
|
|
|
seq = file->private_data;
|
|
out:
|
|
return rc;
|
|
out_kfree:
|
|
goto out;
|
|
}
|
|
|
|
static struct file_operations fib_trie_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_trie_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
int __init fib_proc_init(void)
|
|
{
|
|
if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __init fib_proc_exit(void)
|
|
{
|
|
proc_net_remove("fib_trie");
|
|
}
|
|
|
|
#endif /* CONFIG_PROC_FS */
|