aha/drivers/sbus/char/envctrl.c
viro@ZenIV.linux.org.uk 0aaaa02829 [PATCH] envctrl fixes
envctrl doesn't need unistd.h; moreover, since it declares errno static
gcc4 gets very unhappy about including unistd.h.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 10:16:27 -07:00

1152 lines
31 KiB
C

/* $Id: envctrl.c,v 1.25 2002/01/15 09:01:26 davem Exp $
* envctrl.c: Temperature and Fan monitoring on Machines providing it.
*
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 2000 Vinh Truong (vinh.truong@eng.sun.com)
* VT - The implementation is to support Sun Microelectronics (SME) platform
* environment monitoring. SME platforms use pcf8584 as the i2c bus
* controller to access pcf8591 (8-bit A/D and D/A converter) and
* pcf8571 (256 x 8-bit static low-voltage RAM with I2C-bus interface).
* At board level, it follows SME Firmware I2C Specification. Reference:
* http://www-eu2.semiconductors.com/pip/PCF8584P
* http://www-eu2.semiconductors.com/pip/PCF8574AP
* http://www-eu2.semiconductors.com/pip/PCF8591P
*
* EB - Added support for CP1500 Global Address and PS/Voltage monitoring.
* Eric Brower <ebrower@usa.net>
*
* DB - Audit every copy_to_user in envctrl_read.
* Daniele Bellucci <bellucda@tiscali.it>
*/
#define __KERNEL_SYSCALLS__
static int errno;
#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <asm/ebus.h>
#include <asm/uaccess.h>
#include <asm/envctrl.h>
#define ENVCTRL_MINOR 162
#define PCF8584_ADDRESS 0x55
#define CONTROL_PIN 0x80
#define CONTROL_ES0 0x40
#define CONTROL_ES1 0x20
#define CONTROL_ES2 0x10
#define CONTROL_ENI 0x08
#define CONTROL_STA 0x04
#define CONTROL_STO 0x02
#define CONTROL_ACK 0x01
#define STATUS_PIN 0x80
#define STATUS_STS 0x20
#define STATUS_BER 0x10
#define STATUS_LRB 0x08
#define STATUS_AD0 0x08
#define STATUS_AAB 0x04
#define STATUS_LAB 0x02
#define STATUS_BB 0x01
/*
* CLK Mode Register.
*/
#define BUS_CLK_90 0x00
#define BUS_CLK_45 0x01
#define BUS_CLK_11 0x02
#define BUS_CLK_1_5 0x03
#define CLK_3 0x00
#define CLK_4_43 0x10
#define CLK_6 0x14
#define CLK_8 0x18
#define CLK_12 0x1c
#define OBD_SEND_START 0xc5 /* value to generate I2c_bus START condition */
#define OBD_SEND_STOP 0xc3 /* value to generate I2c_bus STOP condition */
/* Monitor type of i2c child device.
* Firmware definitions.
*/
#define PCF8584_MAX_CHANNELS 8
#define PCF8584_GLOBALADDR_TYPE 6 /* global address monitor */
#define PCF8584_FANSTAT_TYPE 3 /* fan status monitor */
#define PCF8584_VOLTAGE_TYPE 2 /* voltage monitor */
#define PCF8584_TEMP_TYPE 1 /* temperature monitor*/
/* Monitor type of i2c child device.
* Driver definitions.
*/
#define ENVCTRL_NOMON 0
#define ENVCTRL_CPUTEMP_MON 1 /* cpu temperature monitor */
#define ENVCTRL_CPUVOLTAGE_MON 2 /* voltage monitor */
#define ENVCTRL_FANSTAT_MON 3 /* fan status monitor */
#define ENVCTRL_ETHERTEMP_MON 4 /* ethernet temperarture */
/* monitor */
#define ENVCTRL_VOLTAGESTAT_MON 5 /* voltage status monitor */
#define ENVCTRL_MTHRBDTEMP_MON 6 /* motherboard temperature */
#define ENVCTRL_SCSITEMP_MON 7 /* scsi temperarture */
#define ENVCTRL_GLOBALADDR_MON 8 /* global address */
/* Child device type.
* Driver definitions.
*/
#define I2C_ADC 0 /* pcf8591 */
#define I2C_GPIO 1 /* pcf8571 */
/* Data read from child device may need to decode
* through a data table and a scale.
* Translation type as defined by firmware.
*/
#define ENVCTRL_TRANSLATE_NO 0
#define ENVCTRL_TRANSLATE_PARTIAL 1
#define ENVCTRL_TRANSLATE_COMBINED 2
#define ENVCTRL_TRANSLATE_FULL 3 /* table[data] */
#define ENVCTRL_TRANSLATE_SCALE 4 /* table[data]/scale */
/* Driver miscellaneous definitions. */
#define ENVCTRL_MAX_CPU 4
#define CHANNEL_DESC_SZ 256
/* Mask values for combined GlobalAddress/PowerStatus node */
#define ENVCTRL_GLOBALADDR_ADDR_MASK 0x1F
#define ENVCTRL_GLOBALADDR_PSTAT_MASK 0x60
/* Node 0x70 ignored on CompactPCI CP1400/1500 platforms
* (see envctrl_init_i2c_child)
*/
#define ENVCTRL_CPCI_IGNORED_NODE 0x70
#define PCF8584_DATA 0x00
#define PCF8584_CSR 0x01
/* Each child device can be monitored by up to PCF8584_MAX_CHANNELS.
* Property of a port or channel as defined by the firmware.
*/
struct pcf8584_channel {
unsigned char chnl_no;
unsigned char io_direction;
unsigned char type;
unsigned char last;
};
/* Each child device may have one or more tables of bytes to help decode
* data. Table property as defined by the firmware.
*/
struct pcf8584_tblprop {
unsigned int type;
unsigned int scale;
unsigned int offset; /* offset from the beginning of the table */
unsigned int size;
};
/* i2c child */
struct i2c_child_t {
/* Either ADC or GPIO. */
unsigned char i2ctype;
unsigned long addr;
struct pcf8584_channel chnl_array[PCF8584_MAX_CHANNELS];
/* Channel info. */
unsigned int total_chnls; /* Number of monitor channels. */
unsigned char fan_mask; /* Byte mask for fan status channels. */
unsigned char voltage_mask; /* Byte mask for voltage status channels. */
struct pcf8584_tblprop tblprop_array[PCF8584_MAX_CHANNELS];
/* Properties of all monitor channels. */
unsigned int total_tbls; /* Number of monitor tables. */
char *tables; /* Pointer to table(s). */
char chnls_desc[CHANNEL_DESC_SZ]; /* Channel description. */
char mon_type[PCF8584_MAX_CHANNELS];
};
static void __iomem *i2c;
static struct i2c_child_t i2c_childlist[ENVCTRL_MAX_CPU*2];
static unsigned char chnls_mask[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
static unsigned int warning_temperature = 0;
static unsigned int shutdown_temperature = 0;
static char read_cpu;
/* Forward declarations. */
static struct i2c_child_t *envctrl_get_i2c_child(unsigned char);
/* Function Description: Test the PIN bit (Pending Interrupt Not)
* to test when serial transmission is completed .
* Return : None.
*/
static void envtrl_i2c_test_pin(void)
{
int limit = 1000000;
while (--limit > 0) {
if (!(readb(i2c + PCF8584_CSR) & STATUS_PIN))
break;
udelay(1);
}
if (limit <= 0)
printk(KERN_INFO "envctrl: Pin status will not clear.\n");
}
/* Function Description: Test busy bit.
* Return : None.
*/
static void envctrl_i2c_test_bb(void)
{
int limit = 1000000;
while (--limit > 0) {
/* Busy bit 0 means busy. */
if (readb(i2c + PCF8584_CSR) & STATUS_BB)
break;
udelay(1);
}
if (limit <= 0)
printk(KERN_INFO "envctrl: Busy bit will not clear.\n");
}
/* Function Description: Send the address for a read access.
* Return : 0 if not acknowledged, otherwise acknowledged.
*/
static int envctrl_i2c_read_addr(unsigned char addr)
{
envctrl_i2c_test_bb();
/* Load address. */
writeb(addr + 1, i2c + PCF8584_DATA);
envctrl_i2c_test_bb();
writeb(OBD_SEND_START, i2c + PCF8584_CSR);
/* Wait for PIN. */
envtrl_i2c_test_pin();
/* CSR 0 means acknowledged. */
if (!(readb(i2c + PCF8584_CSR) & STATUS_LRB)) {
return readb(i2c + PCF8584_DATA);
} else {
writeb(OBD_SEND_STOP, i2c + PCF8584_CSR);
return 0;
}
}
/* Function Description: Send the address for write mode.
* Return : None.
*/
static void envctrl_i2c_write_addr(unsigned char addr)
{
envctrl_i2c_test_bb();
writeb(addr, i2c + PCF8584_DATA);
/* Generate Start condition. */
writeb(OBD_SEND_START, i2c + PCF8584_CSR);
}
/* Function Description: Read 1 byte of data from addr
* set by envctrl_i2c_read_addr()
* Return : Data from address set by envctrl_i2c_read_addr().
*/
static unsigned char envctrl_i2c_read_data(void)
{
envtrl_i2c_test_pin();
writeb(CONTROL_ES0, i2c + PCF8584_CSR); /* Send neg ack. */
return readb(i2c + PCF8584_DATA);
}
/* Function Description: Instruct the device which port to read data from.
* Return : None.
*/
static void envctrl_i2c_write_data(unsigned char port)
{
envtrl_i2c_test_pin();
writeb(port, i2c + PCF8584_DATA);
}
/* Function Description: Generate Stop condition after last byte is sent.
* Return : None.
*/
static void envctrl_i2c_stop(void)
{
envtrl_i2c_test_pin();
writeb(OBD_SEND_STOP, i2c + PCF8584_CSR);
}
/* Function Description: Read adc device.
* Return : Data at address and port.
*/
static unsigned char envctrl_i2c_read_8591(unsigned char addr, unsigned char port)
{
/* Send address. */
envctrl_i2c_write_addr(addr);
/* Setup port to read. */
envctrl_i2c_write_data(port);
envctrl_i2c_stop();
/* Read port. */
envctrl_i2c_read_addr(addr);
/* Do a single byte read and send stop. */
envctrl_i2c_read_data();
envctrl_i2c_stop();
return readb(i2c + PCF8584_DATA);
}
/* Function Description: Read gpio device.
* Return : Data at address.
*/
static unsigned char envctrl_i2c_read_8574(unsigned char addr)
{
unsigned char rd;
envctrl_i2c_read_addr(addr);
/* Do a single byte read and send stop. */
rd = envctrl_i2c_read_data();
envctrl_i2c_stop();
return rd;
}
/* Function Description: Decode data read from an adc device using firmware
* table.
* Return: Number of read bytes. Data is stored in bufdata in ascii format.
*/
static int envctrl_i2c_data_translate(unsigned char data, int translate_type,
int scale, char *tbl, char *bufdata)
{
int len = 0;
switch (translate_type) {
case ENVCTRL_TRANSLATE_NO:
/* No decode necessary. */
len = 1;
bufdata[0] = data;
break;
case ENVCTRL_TRANSLATE_FULL:
/* Decode this way: data = table[data]. */
len = 1;
bufdata[0] = tbl[data];
break;
case ENVCTRL_TRANSLATE_SCALE:
/* Decode this way: data = table[data]/scale */
sprintf(bufdata,"%d ", (tbl[data] * 10) / (scale));
len = strlen(bufdata);
bufdata[len - 1] = bufdata[len - 2];
bufdata[len - 2] = '.';
break;
default:
break;
};
return len;
}
/* Function Description: Read cpu-related data such as cpu temperature, voltage.
* Return: Number of read bytes. Data is stored in bufdata in ascii format.
*/
static int envctrl_read_cpu_info(int cpu, struct i2c_child_t *pchild,
char mon_type, unsigned char *bufdata)
{
unsigned char data;
int i;
char *tbl, j = -1;
/* Find the right monitor type and channel. */
for (i = 0; i < PCF8584_MAX_CHANNELS; i++) {
if (pchild->mon_type[i] == mon_type) {
if (++j == cpu) {
break;
}
}
}
if (j != cpu)
return 0;
/* Read data from address and port. */
data = envctrl_i2c_read_8591((unsigned char)pchild->addr,
(unsigned char)pchild->chnl_array[i].chnl_no);
/* Find decoding table. */
tbl = pchild->tables + pchild->tblprop_array[i].offset;
return envctrl_i2c_data_translate(data, pchild->tblprop_array[i].type,
pchild->tblprop_array[i].scale,
tbl, bufdata);
}
/* Function Description: Read noncpu-related data such as motherboard
* temperature.
* Return: Number of read bytes. Data is stored in bufdata in ascii format.
*/
static int envctrl_read_noncpu_info(struct i2c_child_t *pchild,
char mon_type, unsigned char *bufdata)
{
unsigned char data;
int i;
char *tbl = NULL;
for (i = 0; i < PCF8584_MAX_CHANNELS; i++) {
if (pchild->mon_type[i] == mon_type)
break;
}
if (i >= PCF8584_MAX_CHANNELS)
return 0;
/* Read data from address and port. */
data = envctrl_i2c_read_8591((unsigned char)pchild->addr,
(unsigned char)pchild->chnl_array[i].chnl_no);
/* Find decoding table. */
tbl = pchild->tables + pchild->tblprop_array[i].offset;
return envctrl_i2c_data_translate(data, pchild->tblprop_array[i].type,
pchild->tblprop_array[i].scale,
tbl, bufdata);
}
/* Function Description: Read fan status.
* Return : Always 1 byte. Status stored in bufdata.
*/
static int envctrl_i2c_fan_status(struct i2c_child_t *pchild,
unsigned char data,
char *bufdata)
{
unsigned char tmp, ret = 0;
int i, j = 0;
tmp = data & pchild->fan_mask;
if (tmp == pchild->fan_mask) {
/* All bits are on. All fans are functioning. */
ret = ENVCTRL_ALL_FANS_GOOD;
} else if (tmp == 0) {
/* No bits are on. No fans are functioning. */
ret = ENVCTRL_ALL_FANS_BAD;
} else {
/* Go through all channels, mark 'on' the matched bits.
* Notice that fan_mask may have discontiguous bits but
* return mask are always contiguous. For example if we
* monitor 4 fans at channels 0,1,2,4, the return mask
* should be 00010000 if only fan at channel 4 is working.
*/
for (i = 0; i < PCF8584_MAX_CHANNELS;i++) {
if (pchild->fan_mask & chnls_mask[i]) {
if (!(chnls_mask[i] & tmp))
ret |= chnls_mask[j];
j++;
}
}
}
bufdata[0] = ret;
return 1;
}
/* Function Description: Read global addressing line.
* Return : Always 1 byte. Status stored in bufdata.
*/
static int envctrl_i2c_globaladdr(struct i2c_child_t *pchild,
unsigned char data,
char *bufdata)
{
/* Translatation table is not necessary, as global
* addr is the integer value of the GA# bits.
*
* NOTE: MSB is documented as zero, but I see it as '1' always....
*
* -----------------------------------------------
* | 0 | FAL | DEG | GA4 | GA3 | GA2 | GA1 | GA0 |
* -----------------------------------------------
* GA0 - GA4 integer value of Global Address (backplane slot#)
* DEG 0 = cPCI Power supply output is starting to degrade
* 1 = cPCI Power supply output is OK
* FAL 0 = cPCI Power supply has failed
* 1 = cPCI Power supply output is OK
*/
bufdata[0] = (data & ENVCTRL_GLOBALADDR_ADDR_MASK);
return 1;
}
/* Function Description: Read standard voltage and power supply status.
* Return : Always 1 byte. Status stored in bufdata.
*/
static unsigned char envctrl_i2c_voltage_status(struct i2c_child_t *pchild,
unsigned char data,
char *bufdata)
{
unsigned char tmp, ret = 0;
int i, j = 0;
tmp = data & pchild->voltage_mask;
/* Two channels are used to monitor voltage and power supply. */
if (tmp == pchild->voltage_mask) {
/* All bits are on. Voltage and power supply are okay. */
ret = ENVCTRL_VOLTAGE_POWERSUPPLY_GOOD;
} else if (tmp == 0) {
/* All bits are off. Voltage and power supply are bad */
ret = ENVCTRL_VOLTAGE_POWERSUPPLY_BAD;
} else {
/* Either voltage or power supply has problem. */
for (i = 0; i < PCF8584_MAX_CHANNELS; i++) {
if (pchild->voltage_mask & chnls_mask[i]) {
j++;
/* Break out when there is a mismatch. */
if (!(chnls_mask[i] & tmp))
break;
}
}
/* Make a wish that hardware will always use the
* first channel for voltage and the second for
* power supply.
*/
if (j == 1)
ret = ENVCTRL_VOLTAGE_BAD;
else
ret = ENVCTRL_POWERSUPPLY_BAD;
}
bufdata[0] = ret;
return 1;
}
/* Function Description: Read a byte from /dev/envctrl. Mapped to user read().
* Return: Number of read bytes. 0 for error.
*/
static ssize_t
envctrl_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
struct i2c_child_t *pchild;
unsigned char data[10];
int ret = 0;
/* Get the type of read as decided in ioctl() call.
* Find the appropriate i2c child.
* Get the data and put back to the user buffer.
*/
switch ((int)(long)file->private_data) {
case ENVCTRL_RD_WARNING_TEMPERATURE:
if (warning_temperature == 0)
return 0;
data[0] = (unsigned char)(warning_temperature);
ret = 1;
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_SHUTDOWN_TEMPERATURE:
if (shutdown_temperature == 0)
return 0;
data[0] = (unsigned char)(shutdown_temperature);
ret = 1;
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_MTHRBD_TEMPERATURE:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_MTHRBDTEMP_MON)))
return 0;
ret = envctrl_read_noncpu_info(pchild, ENVCTRL_MTHRBDTEMP_MON, data);
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_CPU_TEMPERATURE:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON)))
return 0;
ret = envctrl_read_cpu_info(read_cpu, pchild, ENVCTRL_CPUTEMP_MON, data);
/* Reset cpu to the default cpu0. */
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_CPU_VOLTAGE:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUVOLTAGE_MON)))
return 0;
ret = envctrl_read_cpu_info(read_cpu, pchild, ENVCTRL_CPUVOLTAGE_MON, data);
/* Reset cpu to the default cpu0. */
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_SCSI_TEMPERATURE:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_SCSITEMP_MON)))
return 0;
ret = envctrl_read_noncpu_info(pchild, ENVCTRL_SCSITEMP_MON, data);
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_ETHERNET_TEMPERATURE:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_ETHERTEMP_MON)))
return 0;
ret = envctrl_read_noncpu_info(pchild, ENVCTRL_ETHERTEMP_MON, data);
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_FAN_STATUS:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_FANSTAT_MON)))
return 0;
data[0] = envctrl_i2c_read_8574(pchild->addr);
ret = envctrl_i2c_fan_status(pchild,data[0], data);
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_GLOBALADDRESS:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON)))
return 0;
data[0] = envctrl_i2c_read_8574(pchild->addr);
ret = envctrl_i2c_globaladdr(pchild, data[0], data);
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
case ENVCTRL_RD_VOLTAGE_STATUS:
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_VOLTAGESTAT_MON)))
/* If voltage monitor not present, check for CPCI equivalent */
if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON)))
return 0;
data[0] = envctrl_i2c_read_8574(pchild->addr);
ret = envctrl_i2c_voltage_status(pchild, data[0], data);
if (copy_to_user(buf, data, ret))
ret = -EFAULT;
break;
default:
break;
};
return ret;
}
/* Function Description: Command what to read. Mapped to user ioctl().
* Return: Gives 0 for implemented commands, -EINVAL otherwise.
*/
static int
envctrl_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
char __user *infobuf;
switch (cmd) {
case ENVCTRL_RD_WARNING_TEMPERATURE:
case ENVCTRL_RD_SHUTDOWN_TEMPERATURE:
case ENVCTRL_RD_MTHRBD_TEMPERATURE:
case ENVCTRL_RD_FAN_STATUS:
case ENVCTRL_RD_VOLTAGE_STATUS:
case ENVCTRL_RD_ETHERNET_TEMPERATURE:
case ENVCTRL_RD_SCSI_TEMPERATURE:
case ENVCTRL_RD_GLOBALADDRESS:
file->private_data = (void *)(long)cmd;
break;
case ENVCTRL_RD_CPU_TEMPERATURE:
case ENVCTRL_RD_CPU_VOLTAGE:
/* Check to see if application passes in any cpu number,
* the default is cpu0.
*/
infobuf = (char __user *) arg;
if (infobuf == NULL) {
read_cpu = 0;
}else {
get_user(read_cpu, infobuf);
}
/* Save the command for use when reading. */
file->private_data = (void *)(long)cmd;
break;
default:
return -EINVAL;
};
return 0;
}
/* Function Description: open device. Mapped to user open().
* Return: Always 0.
*/
static int
envctrl_open(struct inode *inode, struct file *file)
{
file->private_data = NULL;
return 0;
}
/* Function Description: Open device. Mapped to user close().
* Return: Always 0.
*/
static int
envctrl_release(struct inode *inode, struct file *file)
{
return 0;
}
static struct file_operations envctrl_fops = {
.owner = THIS_MODULE,
.read = envctrl_read,
.ioctl = envctrl_ioctl,
.open = envctrl_open,
.release = envctrl_release,
};
static struct miscdevice envctrl_dev = {
ENVCTRL_MINOR,
"envctrl",
&envctrl_fops
};
/* Function Description: Set monitor type based on firmware description.
* Return: None.
*/
static void envctrl_set_mon(struct i2c_child_t *pchild,
char *chnl_desc,
int chnl_no)
{
/* Firmware only has temperature type. It does not distinguish
* different kinds of temperatures. We use channel description
* to disinguish them.
*/
if (!(strcmp(chnl_desc,"temp,cpu")) ||
!(strcmp(chnl_desc,"temp,cpu0")) ||
!(strcmp(chnl_desc,"temp,cpu1")) ||
!(strcmp(chnl_desc,"temp,cpu2")) ||
!(strcmp(chnl_desc,"temp,cpu3")))
pchild->mon_type[chnl_no] = ENVCTRL_CPUTEMP_MON;
if (!(strcmp(chnl_desc,"vddcore,cpu0")) ||
!(strcmp(chnl_desc,"vddcore,cpu1")) ||
!(strcmp(chnl_desc,"vddcore,cpu2")) ||
!(strcmp(chnl_desc,"vddcore,cpu3")))
pchild->mon_type[chnl_no] = ENVCTRL_CPUVOLTAGE_MON;
if (!(strcmp(chnl_desc,"temp,motherboard")))
pchild->mon_type[chnl_no] = ENVCTRL_MTHRBDTEMP_MON;
if (!(strcmp(chnl_desc,"temp,scsi")))
pchild->mon_type[chnl_no] = ENVCTRL_SCSITEMP_MON;
if (!(strcmp(chnl_desc,"temp,ethernet")))
pchild->mon_type[chnl_no] = ENVCTRL_ETHERTEMP_MON;
}
/* Function Description: Initialize monitor channel with channel desc,
* decoding tables, monitor type, optional properties.
* Return: None.
*/
static void envctrl_init_adc(struct i2c_child_t *pchild, int node)
{
char chnls_desc[CHANNEL_DESC_SZ];
int i = 0, len;
char *pos = chnls_desc;
/* Firmware describe channels into a stream separated by a '\0'. */
len = prom_getproperty(node, "channels-description", chnls_desc,
CHANNEL_DESC_SZ);
chnls_desc[CHANNEL_DESC_SZ - 1] = '\0';
while (len > 0) {
int l = strlen(pos) + 1;
envctrl_set_mon(pchild, pos, i++);
len -= l;
pos += l;
}
/* Get optional properties. */
len = prom_getproperty(node, "warning-temp", (char *)&warning_temperature,
sizeof(warning_temperature));
len = prom_getproperty(node, "shutdown-temp", (char *)&shutdown_temperature,
sizeof(shutdown_temperature));
}
/* Function Description: Initialize child device monitoring fan status.
* Return: None.
*/
static void envctrl_init_fanstat(struct i2c_child_t *pchild)
{
int i;
/* Go through all channels and set up the mask. */
for (i = 0; i < pchild->total_chnls; i++)
pchild->fan_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no];
/* We only need to know if this child has fan status monitored.
* We don't care which channels since we have the mask already.
*/
pchild->mon_type[0] = ENVCTRL_FANSTAT_MON;
}
/* Function Description: Initialize child device for global addressing line.
* Return: None.
*/
static void envctrl_init_globaladdr(struct i2c_child_t *pchild)
{
int i;
/* Voltage/PowerSupply monitoring is piggybacked
* with Global Address on CompactPCI. See comments
* within envctrl_i2c_globaladdr for bit assignments.
*
* The mask is created here by assigning mask bits to each
* bit position that represents PCF8584_VOLTAGE_TYPE data.
* Channel numbers are not consecutive within the globaladdr
* node (why?), so we use the actual counter value as chnls_mask
* index instead of the chnl_array[x].chnl_no value.
*
* NOTE: This loop could be replaced with a constant representing
* a mask of bits 5&6 (ENVCTRL_GLOBALADDR_PSTAT_MASK).
*/
for (i = 0; i < pchild->total_chnls; i++) {
if (PCF8584_VOLTAGE_TYPE == pchild->chnl_array[i].type) {
pchild->voltage_mask |= chnls_mask[i];
}
}
/* We only need to know if this child has global addressing
* line monitored. We don't care which channels since we know
* the mask already (ENVCTRL_GLOBALADDR_ADDR_MASK).
*/
pchild->mon_type[0] = ENVCTRL_GLOBALADDR_MON;
}
/* Initialize child device monitoring voltage status. */
static void envctrl_init_voltage_status(struct i2c_child_t *pchild)
{
int i;
/* Go through all channels and set up the mask. */
for (i = 0; i < pchild->total_chnls; i++)
pchild->voltage_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no];
/* We only need to know if this child has voltage status monitored.
* We don't care which channels since we have the mask already.
*/
pchild->mon_type[0] = ENVCTRL_VOLTAGESTAT_MON;
}
/* Function Description: Initialize i2c child device.
* Return: None.
*/
static void envctrl_init_i2c_child(struct linux_ebus_child *edev_child,
struct i2c_child_t *pchild)
{
int node, len, i, tbls_size = 0;
node = edev_child->prom_node;
/* Get device address. */
len = prom_getproperty(node, "reg",
(char *) &(pchild->addr),
sizeof(pchild->addr));
/* Get tables property. Read firmware temperature tables. */
len = prom_getproperty(node, "translation",
(char *) pchild->tblprop_array,
(PCF8584_MAX_CHANNELS *
sizeof(struct pcf8584_tblprop)));
if (len > 0) {
pchild->total_tbls = len / sizeof(struct pcf8584_tblprop);
for (i = 0; i < pchild->total_tbls; i++) {
if ((pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset) > tbls_size) {
tbls_size = pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset;
}
}
pchild->tables = kmalloc(tbls_size, GFP_KERNEL);
if (pchild->tables == NULL){
printk("envctrl: Failed to allocate table.\n");
return;
}
len = prom_getproperty(node, "tables",
(char *) pchild->tables, tbls_size);
if (len <= 0) {
printk("envctrl: Failed to get table.\n");
return;
}
}
/* SPARCengine ASM Reference Manual (ref. SMI doc 805-7581-04)
* sections 2.5, 3.5, 4.5 state node 0x70 for CP1400/1500 is
* "For Factory Use Only."
*
* We ignore the node on these platforms by assigning the
* 'NULL' monitor type.
*/
if (ENVCTRL_CPCI_IGNORED_NODE == pchild->addr) {
int len;
char prop[56];
len = prom_getproperty(prom_root_node, "name", prop, sizeof(prop));
if (0 < len && (0 == strncmp(prop, "SUNW,UltraSPARC-IIi-cEngine", len)))
{
for (len = 0; len < PCF8584_MAX_CHANNELS; ++len) {
pchild->mon_type[len] = ENVCTRL_NOMON;
}
return;
}
}
/* Get the monitor channels. */
len = prom_getproperty(node, "channels-in-use",
(char *) pchild->chnl_array,
(PCF8584_MAX_CHANNELS *
sizeof(struct pcf8584_channel)));
pchild->total_chnls = len / sizeof(struct pcf8584_channel);
for (i = 0; i < pchild->total_chnls; i++) {
switch (pchild->chnl_array[i].type) {
case PCF8584_TEMP_TYPE:
envctrl_init_adc(pchild, node);
break;
case PCF8584_GLOBALADDR_TYPE:
envctrl_init_globaladdr(pchild);
i = pchild->total_chnls;
break;
case PCF8584_FANSTAT_TYPE:
envctrl_init_fanstat(pchild);
i = pchild->total_chnls;
break;
case PCF8584_VOLTAGE_TYPE:
if (pchild->i2ctype == I2C_ADC) {
envctrl_init_adc(pchild,node);
} else {
envctrl_init_voltage_status(pchild);
}
i = pchild->total_chnls;
break;
default:
break;
};
}
}
/* Function Description: Search the child device list for a device.
* Return : The i2c child if found. NULL otherwise.
*/
static struct i2c_child_t *envctrl_get_i2c_child(unsigned char mon_type)
{
int i, j;
for (i = 0; i < ENVCTRL_MAX_CPU*2; i++) {
for (j = 0; j < PCF8584_MAX_CHANNELS; j++) {
if (i2c_childlist[i].mon_type[j] == mon_type) {
return (struct i2c_child_t *)(&(i2c_childlist[i]));
}
}
}
return NULL;
}
static void envctrl_do_shutdown(void)
{
static int inprog = 0;
static char *envp[] = {
"HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
char *argv[] = {
"/sbin/shutdown", "-h", "now", NULL };
if (inprog != 0)
return;
inprog = 1;
printk(KERN_CRIT "kenvctrld: WARNING: Shutting down the system now.\n");
if (0 > execve("/sbin/shutdown", argv, envp)) {
printk(KERN_CRIT "kenvctrld: WARNING: system shutdown failed!\n");
inprog = 0; /* unlikely to succeed, but we could try again */
}
}
static struct task_struct *kenvctrld_task;
static int kenvctrld(void *__unused)
{
int poll_interval;
int whichcpu;
char tempbuf[10];
struct i2c_child_t *cputemp;
if (NULL == (cputemp = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON))) {
printk(KERN_ERR
"envctrl: kenvctrld unable to monitor CPU temp-- exiting\n");
return -ENODEV;
}
poll_interval = 5000; /* TODO env_mon_interval */
printk(KERN_INFO "envctrl: %s starting...\n", current->comm);
for (;;) {
msleep_interruptible(poll_interval);
if (kthread_should_stop())
break;
for (whichcpu = 0; whichcpu < ENVCTRL_MAX_CPU; ++whichcpu) {
if (0 < envctrl_read_cpu_info(whichcpu, cputemp,
ENVCTRL_CPUTEMP_MON,
tempbuf)) {
if (tempbuf[0] >= shutdown_temperature) {
printk(KERN_CRIT
"%s: WARNING: CPU%i temperature %i C meets or exceeds "\
"shutdown threshold %i C\n",
current->comm, whichcpu,
tempbuf[0], shutdown_temperature);
envctrl_do_shutdown();
}
}
}
}
printk(KERN_INFO "envctrl: %s exiting...\n", current->comm);
return 0;
}
static int __init envctrl_init(void)
{
struct linux_ebus *ebus = NULL;
struct linux_ebus_device *edev = NULL;
struct linux_ebus_child *edev_child = NULL;
int err, i = 0;
for_each_ebus(ebus) {
for_each_ebusdev(edev, ebus) {
if (!strcmp(edev->prom_name, "bbc")) {
/* If we find a boot-bus controller node,
* then this envctrl driver is not for us.
*/
return -ENODEV;
}
}
}
/* Traverse through ebus and ebus device list for i2c device and
* adc and gpio nodes.
*/
for_each_ebus(ebus) {
for_each_ebusdev(edev, ebus) {
if (!strcmp(edev->prom_name, "i2c")) {
i2c = ioremap(edev->resource[0].start, 0x2);
for_each_edevchild(edev, edev_child) {
if (!strcmp("gpio", edev_child->prom_name)) {
i2c_childlist[i].i2ctype = I2C_GPIO;
envctrl_init_i2c_child(edev_child, &(i2c_childlist[i++]));
}
if (!strcmp("adc", edev_child->prom_name)) {
i2c_childlist[i].i2ctype = I2C_ADC;
envctrl_init_i2c_child(edev_child, &(i2c_childlist[i++]));
}
}
goto done;
}
}
}
done:
if (!edev) {
printk("envctrl: I2C device not found.\n");
return -ENODEV;
}
/* Set device address. */
writeb(CONTROL_PIN, i2c + PCF8584_CSR);
writeb(PCF8584_ADDRESS, i2c + PCF8584_DATA);
/* Set system clock and SCL frequencies. */
writeb(CONTROL_PIN | CONTROL_ES1, i2c + PCF8584_CSR);
writeb(CLK_4_43 | BUS_CLK_90, i2c + PCF8584_DATA);
/* Enable serial interface. */
writeb(CONTROL_PIN | CONTROL_ES0 | CONTROL_ACK, i2c + PCF8584_CSR);
udelay(200);
/* Register the device as a minor miscellaneous device. */
err = misc_register(&envctrl_dev);
if (err) {
printk("envctrl: Unable to get misc minor %d\n",
envctrl_dev.minor);
goto out_iounmap;
}
/* Note above traversal routine post-incremented 'i' to accommodate
* a next child device, so we decrement before reverse-traversal of
* child devices.
*/
printk("envctrl: initialized ");
for (--i; i >= 0; --i) {
printk("[%s 0x%lx]%s",
(I2C_ADC == i2c_childlist[i].i2ctype) ? ("adc") :
((I2C_GPIO == i2c_childlist[i].i2ctype) ? ("gpio") : ("unknown")),
i2c_childlist[i].addr, (0 == i) ? ("\n") : (" "));
}
kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
if (IS_ERR(kenvctrld_task)) {
err = PTR_ERR(kenvctrld_task);
goto out_deregister;
}
return 0;
out_deregister:
misc_deregister(&envctrl_dev);
out_iounmap:
iounmap(i2c);
for (i = 0; i < ENVCTRL_MAX_CPU * 2; i++) {
if (i2c_childlist[i].tables)
kfree(i2c_childlist[i].tables);
}
return err;
}
static void __exit envctrl_cleanup(void)
{
int i;
kthread_stop(kenvctrld_task);
iounmap(i2c);
misc_deregister(&envctrl_dev);
for (i = 0; i < ENVCTRL_MAX_CPU * 2; i++) {
if (i2c_childlist[i].tables)
kfree(i2c_childlist[i].tables);
}
}
module_init(envctrl_init);
module_exit(envctrl_cleanup);
MODULE_LICENSE("GPL");