mirror of
https://github.com/adulau/aha.git
synced 2025-01-04 07:03:38 +00:00
================================================================================ README for USB8388 (c) Copyright © 2003-2006, Marvell International Ltd. All Rights Reserved This software file (the "File") is distributed by Marvell International Ltd. under the terms of the GNU General Public License Version 2, June 1991 (the "License"). You may use, redistribute and/or modify this File in accordance with the terms and conditions of the License, a copy of which is available along with the File in the license.txt file or by writing to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 or on the worldwide web at http://www.gnu.org/licenses/gpl.txt. THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. The License provides additional details about this warranty disclaimer. ================================================================================ ===================== DRIVER LOADING ===================== o. Copy the firmware image (e.g. usb8388.bin) to /lib/firmware/ o. Load driver by using the following command: insmod usb8388.ko [fw_name=usb8388.bin] ===================== IWPRIV COMMAND ===================== NAME This manual describes the usage of private commands used in Marvell WLAN Linux Driver. All the commands available in Wlanconfig will not be available in the iwpriv. SYNOPSIS iwpriv <ethX> <command> [sub-command] ... iwpriv ethX version iwpriv ethX scantype [sub-command] iwpriv ethX getSNR <n> iwpriv ethX getNF <n> iwpriv ethX getRSSI <n> iwpriv ethX setrxant <n> iwpriv ethX getrxant iwpriv ethX settxant <n> iwpriv ethX gettxant iwpriv ethX authalgs <n> iwpriv ethX pre-TBTT <n> iwpriv ethX 8021xauthalgs <n> iwpriv ethX encryptionmode <n> iwpriv ethX setregioncode <n> iwpriv ethX getregioncode iwpriv ethX setbcnavg <n> iwpriv ethX getbcnavg iwpriv ethX setdataavg <n> iwpriv ethX setlisteninter <n> iwpriv ethX getlisteninter iwpriv ethX setmultipledtim <n> iwpriv ethX getmultipledtim iwpriv ethX atimwindow <n> iwpriv ethX deauth iwpriv ethX adhocstop iwpriv ethX radioon iwpriv ethX radiooff iwpriv ethX reasso-on iwpriv ethX reasso-off iwpriv ethX scanmode [sub-command] iwpriv ethX setwpaie <n> iwpriv ethX wlanidle-off iwpriv ethX wlanidle-on iwpriv ethX getcis iwpriv ethX getlog iwpriv ethX getadhocstatus iwpriv ethX adhocgrate <n> Version 4 Command: iwpriv ethX inactvityto <n> iwpriv ethX sleeppd <n> iwpriv ethX enable11d <n> iwpriv ethX tpccfg <n> iwpriv ethX powercfg <n> iwpriv ethX setafc <n> iwpriv ethX getafc Version 5 Command: iwpriv ethX ledgpio <n> iwpriv ethX scanprobes <n> iwpriv ethX lolisteninter <n> iwpriv ethX rateadapt <n> <m> iwpriv ethX txcontrol <n> iwpriv ethX psnullinterval <n> iwpriv ethX prescan <n> iwpriv ethX getrxinfo iwpriv ethX gettxrate iwpriv ethX beaconinterval BT Commands: The blinding table (BT) contains a list of mac addresses that should be ignored by the firmware. It is primarily used for debugging and testing networks. It can be edited and inspected with the following commands: iwpriv ethX bt_reset iwpriv ethX bt_add <mac_address> iwpriv ethX bt_del <mac_address> iwpriv ethX bt_list <id> FWT Commands: The forwarding table (FWT) is a feature used to manage mesh network routing in the firmware. The FWT is essentially a routing table that associates a destination mac address (da) with a next hop receiver address (ra). The FWT can be inspected and edited with the following iwpriv commands, which are described in greater detail below. Eventually, the table will be automatically maintained by a custom routing protocol. NOTE: FWT commands replace the previous DFT commands. What were the DFT commands?, you might ask. They were an earlier API to the firmware that implemented a simple MAC-layer forwarding mechanism. In the unlikely event that you were using these commands, you must migrate to the new FWT commands which can be used to achieve the same functionality. iwpriv ethX fwt_add [parameters] iwpriv ethX fwt_del [parameters] iwpriv ethX fwt_lookup [parameters] iwpriv ethX fwt_list [parameters] iwpriv ethX fwt_list_route [parameters] iwpriv ethX fwt_list_neigh [parameters] iwpriv ethX fwt_reset [parameters] iwpriv ethX fwt_cleanup iwpriv ethX fwt_time MESH Commands: The MESH commands are used to configure various features of the mesh routing protocol. The following commands are supported: iwpriv ethX mesh_get_ttl iwpriv ethX mesh_set_ttl ttl DESCRIPTION Those commands are used to send additional commands to the Marvell WLAN card via the Linux device driver. The ethX parameter specifies the network device that is to be used to perform this command on. it could be eth0, eth1 etc. version This is used to get the current version of the driver and the firmware. scantype This command is used to set the scan type to be used by the driver in the scan command. This setting will not be used while performing a scan for a specific SSID, as it is always done with scan type being active. where the sub-commands are: - active -- to set the scan type to active passive -- to set the scan type to passive get -- to get the scan type set in the driver getSNR This command gets the average and non average value of Signal to Noise Ratio of Beacon and Data. where value is:- 0 -- Beacon non-average. 1 -- Beacon average. 2 -- Data non-average. 3 -- Data average. If no value is given, all four values are returned in the order mentioned above. Note: This command is available only when STA is connected. getRSSI This command gets the average and non average value os Receive Signal Strength of Beacon and Data. where value is:- 0 -- Beacon non-average. 1 -- Beacon average. 2 -- Data non-average. 3 -- Data average. Note: This command is available only when STA is connected. getNF This command gets the average and non average value of Noise Floor of Beacon and Data. where value is:- 0 -- Beacon non-average. 1 -- Beacon average. 2 -- Data non-average. 3 -- Data average. Note: This command is available only when STA is connected. setrxant This command is used to set the mode for Rx antenna. The options that can be sent are:- 1 -- Antenna 1. 2 -- Antenna 2. 0xFFFF -- Diversity. Usage: iwpriv ethX setrxant 0x01: select Antenna 1. getrxant This command is used to get the mode for Rx antenna. settxant This command is used to set the mode for Tx antenna. The options that can be sent are:- 1 -- Antenna 1. 2 -- Antenna 2. 0xFFFF -- Diversity. Usage: iwpriv ethX settxant 0x01: select Antenna 1. gettxant This command is used to get the mode for Tx antenna. authalgs This command is used by the WPA supplicant to set the authentication algorithms in the station. 8021xauthalgs This command is used by the WPA supplicant to set the 8021.x authentication algorithm type station. where values can be:- 1 -- None 2 -- LEAP 4 -- TLS 8 -- TTLs 16 -- MD5 encryptionmode This command is used by the WPA supplicant to set the encryption algorithm. where values can be:- 0 -- NONE 1 -- WEP40 2 -- TKIP 3 -- CCMP 4 -- WEP104 pre-TBTT This command is used to set pre-TBTT time period where value is in microseconds. setregioncode This command is used to set the region code in the station. where value is 'region code' for various regions like USA FCC, Canada IC, Spain, France, Europe ETSI, Japan ... Usage: iwpriv ethX setregioncode 0x10: set region code to USA (0x10). getregioncode This command is used to get the region code information set in the station. setbcnavg Set the weighting factor for calculating RSSI. getbcnavg Get weighting factor for calculating RSSI. setdataavg Set the weighting factor for calculating SNR. setlisteninter This command is used to set the listen interval in the station. where the value ranges between 1 - 255 getlisteninter This command is used to get the listen interval value set in the station. setmultipledtim This command is used to set the multiple dtim value in the station. where the value is 1,2,3,4,5,0xfffe 0xfffe means the firmware will use listen interval in association command for waking up getmultipledtim This command is used to get the multiple dtim value set in the station. atimwindow This command is used to set the atim value in the station. where the value ranges between 0 - 50 deauth This command is used to send the de-authentication to the AP with which the station is associated. This command is valid only when station is in Infrastructure mode. Note: This command is available only when STA is connected. adhocstop This command is used to stop beacon transmission from the station and go into idle state in ad-hoc mode. Note: This command is available only when STA is connected. radioon This command is used to turn on the RF antenna. radiooff This command is sued to turn off the RF antenna. scanmode This command is used to set the station to scan for either IBSS networks or BSS networks or both BSS and IBSS networks. This command can be used with sub commands, where the value for bss -- Scan All the BSS networks. ibss -- Scan All the IBSS networks. any -- Scan both BSS and IBSS networks. setwpaie This command is used by WPA supplicant to send the WPA-IE to the driver. wlanidle-off This command is used to get into idle state. Note: This command is available only when STA is connected. wlanidle-on This command is used to get off the idle state. Note: This command is available only when STA is connected. getlog This command is used to get the 802.11 statistics available in the station. Note: This command is available only when STA is connected. getadhocstatus This command is used to get the ad-hoc Network Status. The various status codes are: AdhocStarted AdhocJoined AdhocIdle InfraMode AutoUnknownMode Note: This command is available only when STA is connected. adhocgrate This command is used to enable(1) g_rate, Disable(0) g_rate and request(2) the status which g_rate is disabled/enabled, for Ad-hoc creator. where value is:- 0 -- Disabled 1 -- Enabled 2 -- Get ledgpio This command is used to set/get LEDs. iwpriv ethX ledgpio <LEDs> will set the corresponding LED for the GPIO Line. iwpriv ethX ledgpio will give u which LEDs are Enabled. Usage: iwpriv eth1 ledgpio 1 0 2 1 3 4 will enable LED 1 -> GPIO 0 LED 2 -> GPIO 1 LED 3 -> GPIO 4 iwpriv eth1 ledgpio shows LED information in the format as mentioned above. Note: LED0 is invalid Note: Maximum Number of LEDs are 16. inactivityto This command is used by the host to set/get the inactivity timeout value, which specifies when WLAN device is put to sleep. Usage: iwpriv ethX inactivityto [<timeout>] where the parameter are: timeout: timeout value in milliseconds. Example: iwpriv eth1 inactivityto "get the timeout value" iwpriv eth1 inactivityto X "set timeout value to X ms" sleeppd This command is used to configure the sleep period of the WLAN device. Usage: iwpriv ethX sleeppd [<sleep period>] where the parameter are: Period: sleep period in milliseconds. Range 10~60. Example: iwpriv eth1 sleeppd 10 "set period as 10 ms" iwpriv eth1 sleeppd "get the sleep period configuration" enable11d This command is used to control 11d where value is:- 1 -- Enabled 0 -- Disabled 2 -- Get tpccfg Enables or disables automatic transmit power control. The first parameter turns this feature on (1) or off (0). When turning on, the user must also supply four more parameters in the following order: -UseSNR (Use SNR (in addition to PER) for TPC algorithm), -P0 (P0 power level for TPC), -P1 (P1 power level for TPC), -P2 (P2 power level for TPC). Usage: iwpriv ethX tpccfg: Get current configuration iwpriv ethX tpccfg 0: disable auto TPC iwpriv ethX tpccfg 0x01 0x00 0x05 0x0a 0x0d: enable auto TPC; do not use SNR; P0=0x05; P1=0x0a; P2=0x0d; iwpriv ethX tpccfg 0x01 0x01 0x05 0x0a 0x0d: enable auto TPC; use SNR; P0=0x05; P1=0x0a; P2=0x0d. powercfg Enables or disables power adaptation. The first parameter turns this feature on (1) or off (0). When turning on, the user must also supply three more parameters in the following order: -P0 (P0 power level for Power Adaptation), -P1 (P1 power level for Power Adaptation), -P2 (P2 power level for Power Adaptation). Usage: iwpriv ethX powercfg: Get current configuration iwpriv ethX powercfg 0: disable power adaptation iwpriv ethX powercfg 1 0x0d 0x0f 0x12: enable power adaptation; P0=0x0d; P1=0x0f; P2=0x12. getafc This command returns automatic frequency control parameters. It returns three integers: -P0: automatic is on (1), or off (0), -P1: current timing offset in PPM (part per million), and -P2: current frequency offset in PPM. setafc Set automatic frequency control options. The first parameter turns automatic on (1) or off (0). The user must supply two more parameters in either case, in the following order: When auto is on: -P0 (automatic adjustment frequency threshold in PPM), -P1 (automatic adjustment period in beacon period), When auto is off: -P0 (manual adjustment timing offset in PPM), and -P1 (manual adjustment frequency offset in PPM). Usage: iwpriv ethX setafc 0 10 10: manual adjustment, both timing and frequcncy offset are 10 PPM. iwpriv ethX setafc 1 10 10 enable afc, automatic adjustment, frequency threshold 10 PPM, for every 10 beacon periods. scanprobes This command sets number of probe requests per channel. Usage: iwpriv ethX scanprobes 3 (set scan probes to 3) iwpriv ethX scanprobes (get scan probes) lolisteninter This command sets the value of listen interval. Usage: iwpriv ethX lolisteninter 234 (set the lolisteninter to 234) iwpriv ethX lolisteninter (get the lolisteninter value) rateadapt This command sets the data rates bitmap. Where <n> 0: Disable auto rate adapt 1: Enable auto rate adapt <m> data rate bitmap Bit Data rate 0 1 Mbps 1 2 Mbps 2 5.5 Mbps 3 11 Mbps 4 Reserved 5 6 Mbps 6 9 Mbps 7 12 Mbps 8 18 Mbps 9 24 Mbps 10 36 Mbps 11 48 Mbps 12 54 Mbps 12-15 Reserved Usage: iwpriv ethX rateadapt read the currect data rate setting iwpriv ethX rateadapt 1 0x07 enable auto data rate adapt and data rates are 1Mbps, 2Mbsp and 5.5Mbps txcontrol This command is used to set the Tx rate, ack policy, and retry limit on a per packet basis. Where value <n> is: if bit[4] == 1: bit[3:0] -- 0 1 2 3 4 5 6 7 8 9 10 11 12 13-16 Data Rate(Mbps) -- 1 2 5.5 11 Rsv 6 9 12 18 24 36 48 54 Rsv bit[12:8] if bit[12] == 1, bit[11:8] specifies the Tx retry limit. bit[14:13] specifies per packet ack policy: bit[14:13] 1 0 use immediate ack policy for this packet 1 1 use no ack policy for this packet 0 x use the per-packet ack policy setting Usage: iwpriv ethX txcontrol 0x7513 Use no-ack policy, 5 retires for Tx, 11Mbps rate psnullinterval This command is used to set/request NULL package interval for Power Save under infrastructure mode. where value is:- -1 -- Disabled n>0 -- Set interval as n (seconds) prescan This command is used to enable (1)/disable(0) auto prescan before assoicate to the ap where value is:- 0 -- Disabled 1 -- Enabled 2 -- Get getrxinfo This command gets non average value of Signal to Noise Ratio of Data and rate index. The following table shows RateIndex and Rate RateIndex Data rate 0 1 Mbps 1 2 Mbps 2 5.5 Mbps 3 11 Mbps 4 Reserved 5 6 Mbps 6 9 Mbps 7 12 Mbps 8 18 Mbps 9 24 Mbps 10 36 Mbps 11 48 Mbps 12 54 Mbps 13-15 Reserved gettxrate This command gets current Tx rate index of the first packet associated with Rate Adaptation. The following table shows RateIndex and Rate RateIndex Data rate 0 1 Mbps 1 2 Mbps 2 5.5 Mbps 3 11 Mbps 4 Reserved 5 6 Mbps 6 9 Mbps 7 12 Mbps 8 18 Mbps 9 24 Mbps 10 36 Mbps 11 48 Mbps 12 54 Mbps 13-15 Reserved bcninterval This command is used to sets beacon interval in adhoc mode when an argument is given, and gets current adhoc beacon interval when no argument is given. The valid beacon interval is between 20 - 1000, default beacon interval is 100. Usage: iwpriv ethX bcninterval 100 (set adhoc beacon interval to 100) iwpriv ethX bcninterval (get adhoc beacon interval) fwt_add This command is used to insert an entry into the FWT table. The list of parameters must follow the following structure: iwpriv ethX fwt_add da ra [metric dir ssn dsn hopcount ttl expiration sleepmode snr] The parameters between brackets are optional, but they must appear in the order specified. For example, if you want to specify the metric, you must also specify the dir, ssn, and dsn but you need not specify the hopcount, expiration, sleepmode, or snr. Any unspecified parameters will be assigned the defaults specified below. The different parameters are:- da -- DA MAC address in the form 00:11:22:33:44:55 ra -- RA MAC address in the form 00:11:22:33:44:55 metric -- route metric (cost: smaller-metric routes are preferred, default is 0) dir -- direction (1 for direct, 0 for reverse, default is 1) ssn -- Source Sequence Number (time at the RA for reverse routes. Default is 0) dsn -- Destination Sequence Number (time at the DA for direct routes. Default is 0) hopcount -- hop count (currently unused, default is 0) ttl -- TTL (Only used in reverse entries) expiration -- entry expiration (in ticks, where a tick is 1024us, or ~ 1ms. Use 0 for an indefinite entry, default is 0) sleepmode -- RA's sleep mode (currently unused, default is 0) snr -- SNR in the link to RA (currently unused, default is 0) The command does not return anything. fwt_del This command is used to remove an entry to the FWT table. The list of parameters must follow the following structure: iwpriv ethX fwt_del da ra [dir] where the different parameters are:- da -- DA MAC address (in the form "00:11:22:33:44:55") ra -- RA MAC address (in the form "00:11:22:33:44:55") dir -- direction (1 for direct, 0 for reverse, default is 1) The command does not return anything. fwt_lookup This command is used to get the best route in the FWT table to a given host. The only parameter is the MAC address of the host that is being looked for. iwpriv ethX fwt_lookup da where:- da -- DA MAC address (in the form "00:11:22:33:44:55") The command returns an output string identical to the one returned by fwt_list described below. fwt_list This command is used to list a route from the FWT table. The only parameter is the index into the table. If you want to list all the routes in a table, start with index=0, and keep listing until you get a "(null)" string. Note that the indicies may change as the fwt is updated. It is expected that most users will not use fwt_list directly, but that a utility similar to the traditional route command will be used to invoke fwt_list over and over. iwpriv ethX fwt_list index The output is a string of the following form: da ra metric dir ssn dsn hopcount ttl expiration sleepmode snr where the different fields are:- da -- DA MAC address (in the form "00:11:22:33:44:55") ra -- RA MAC address (in the form "00:11:22:33:44:55") metric -- route metric (cost: smaller-metric routes are preferred) dir -- direction (1 for direct, 0 for reverse) ssn -- Source Sequence Number (time at the RA for reverse routes) dsn -- Destination Sequence Number (time at the DA for direct routes) hopcount -- hop count (currently unused) ttl -- TTL (only used in reverse entries) expiration -- entry expiration (in ticks, where a tick is 1024us, or ~ 1ms. Use 0 for an indefinite entry) sleepmode -- RA's sleep mode (currently unused) snr -- SNR in the link to RA (currently unused) fwt_list_route This command is used to list a route from the FWT table. The only parameter is the route ID. If you want to list all the routes in a table, start with rid=0, and keep incrementing rid until you get a "(null)" string. This function is similar to fwt_list. The only difference is the output format. Also note that this command is meant for debugging. It is expected that users will use fwt_lookup and fwt_list. One important reason for this is that the route id may change as the route table is altered. iwpriv ethX fwt_list_route rid The output is a string of the following form: da metric dir nid ssn dsn hopcount ttl expiration where the different fields are:- da -- DA MAC address (in the form "00:11:22:33:44:55") metric -- route metric (cost: smaller-metric routes are preferred) dir -- direction (1 for direct, 0 for reverse) nid -- Next-hop (neighbor) host ID (nid) ssn -- Source Sequence Number (time at the RA for reverse routes) dsn -- Destination Sequence Number (time at the DA for direct routes) hopcount -- hop count (currently unused) ttl -- TTL count (only used in reverse entries) expiration -- entry expiration (in ticks, where a tick is 1024us, or ~ 1ms. Use 0 for an indefinite entry) fwt_list_neigh This command is used to list a neighbor from the FWT table. The only parameter is the neighbor ID. If you want to list all the neighbors in a table, start with nid=0, and keep incrementing nid until you get a "(null)" string. Note that the nid from a fwt_list_route command can be used as an input to this command. Also note that this command is meant mostly for debugging. It is expected that users will use fwt_lookup. One important reason for this is that the neighbor id may change as the neighbor table is altered. iwpriv ethX fwt_list_neigh nid The output is a string of the following form: ra sleepmode snr references where the different fields are:- ra -- RA MAC address (in the form "00:11:22:33:44:55") sleepmode -- RA's sleep mode (currently unused) snr -- SNR in the link to RA (currently unused) references -- RA's reference counter fwt_reset This command is used to reset the FWT table, getting rid of all the entries. There are no input parameters. iwpriv ethX fwt_reset The command does not return anything. fwt_cleanup This command is used to perform user-based garbage recollection. The FWT table is checked, and all the entries that are expired or invalid are cleaned. Note that this is exported to the driver for debugging purposes, as garbage collection is also fired by the firmware when in space problems. There are no input parameters. iwpriv ethX fwt_cleanup The command does returns the number of invalid/expired routes deleted. fwt_time This command returns a card's internal time representation. It is this time that is used to represent the expiration times of FWT entries. The number is not consistent from card to card; it is simply a timer count. The fwt_time command is used to inspect the timer so that expiration times reported by fwt_list can be properly interpreted. iwpriv ethX fwt_time mesh_get_ttl The mesh ttl is the number of hops a mesh packet can traverse before it is dropped. This parameter is used to prevent infinite loops in the mesh network. The value returned by this function is the ttl assigned to all mesh packets. Currently there is no way to control the ttl on a per packet or per socket basis. iwpriv ethX mesh_get_ttl mesh_set_ttl ttl Set the ttl. The argument must be between 0 and 255. iwpriv ethX mesh_set_ttl <ttl> ========================= ETHTOOL ========================= Use the -i option to retrieve version information from the driver. # ethtool -i eth0 driver: libertas version: COMM-USB8388-318.p4 firmware-version: 5.110.7 bus-info: Use the -e option to read the EEPROM contents of the card. Usage: ethtool -e ethX [raw on|off] [offset N] [length N] -e retrieves and prints an EEPROM dump for the specified ethernet device. When raw is enabled, then it dumps the raw EEPROM data to stdout. The length and offset parameters allow dumping cer- tain portions of the EEPROM. Default is to dump the entire EEP- ROM. # ethtool -e eth0 offset 0 length 16 Offset Values ------ ------ 0x0000 38 33 30 58 00 00 34 f4 00 00 10 00 00 c4 17 00 ======================== DEBUGFS COMMANDS ======================== those commands are used via debugfs interface =========== rdmac rdbbp rdrf These commands are used to read the MAC, BBP and RF registers from the card. These commands take one parameter that specifies the offset location that is to be read. This parameter must be specified in hexadecimal (its possible to preceed preceding the number with a "0x"). Path: /debugfs/libertas_wireless/ethX/registers/ Usage: echo "0xa123" > rdmac ; cat rdmac echo "0xa123" > rdbbp ; cat rdbbp echo "0xa123" > rdrf ; cat rdrf wrmac wrbbp wrrf These commands are used to write the MAC, BBP and RF registers in the card. These commands take two parameters that specify the offset location and the value that is to be written. This parameters must be specified in hexadecimal (its possible to preceed the number with a "0x"). Usage: echo "0xa123 0xaa" > wrmac echo "0xa123 0xaa" > wrbbp echo "0xa123 0xaa" > wrrf sleepparams This command is used to set the sleepclock configurations Path: /debugfs/libertas_wireless/ethX/ Usage: cat sleepparams: reads the current sleepclock configuration echo "p1 p2 p3 p4 p5 p6" > sleepparams: writes the sleepclock configuration. where: p1 is Sleep clock error in ppm (0-65535) p2 is Wakeup offset in usec (0-65535) p3 is Clock stabilization time in usec (0-65535) p4 is Control periodic calibration (0-2) p5 is Control the use of external sleep clock (0-2) p6 is reserved for debug (0-65535) subscribed_events The subscribed_events directory contains the interface for the subscribed events API. Path: /debugfs/libertas_wireless/ethX/subscribed_events/ Each event is represented by a filename. Each filename consists of the following three fields: Value Frequency Subscribed To read the current values for a given event, do: cat event To set the current values, do: echo "60 2 1" > event Frequency field specifies the reporting frequency for this event. If it is set to 0, then the event is reported only once, and then automatically unsubscribed. If it is set to 1, then the event is reported every time it occurs. If it is set to N, then the event is reported every Nth time it occurs. beacon_missed Value field specifies the number of consecutive missing beacons which triggers the LINK_LOSS event. This event is generated only once after which the firmware resets its state. At initialization, the LINK_LOSS event is subscribed by default. The default value of MissedBeacons is 60. failure_count Value field specifies the consecutive failure count threshold which triggers the generation of the MAX_FAIL event. Once this event is generated, the consecutive failure count is reset to 0. At initialization, the MAX_FAIL event is NOT subscribed by default. high_rssi This event is generated when the average received RSSI in beacons goes above a threshold, specified by Value. low_rssi This event is generated when the average received RSSI in beacons goes below a threshold, specified by Value. high_snr This event is generated when the average received SNR in beacons goes above a threshold, specified by Value. low_snr This event is generated when the average received SNR in beacons goes below a threshold, specified by Value. extscan This command is used to do a specific scan. Path: /debugfs/libertas_wireless/ethX/ Usage: echo "SSID" > extscan Example: echo "LINKSYS-AP" > extscan To see the results of use getscantable command. getscantable Display the current contents of the driver scan table (ie. get the scan results). Path: /debugfs/libertas_wireless/ethX/ Usage: cat getscantable setuserscan Initiate a customized scan and retrieve the results Path: /debugfs/libertas_wireless/ethX/ Usage: echo "[ARGS]" > setuserscan where [ARGS]: chan=[chan#][band][mode] where band is [a,b,g] and mode is blank for active or 'p' for passive bssid=xx:xx:xx:xx:xx:xx specify a BSSID filter for the scan ssid="[SSID]" specify a SSID filter for the scan keep=[0 or 1] keep the previous scan results (1), discard (0) dur=[scan time] time to scan for each channel in milliseconds probes=[#] number of probe requests to send on each chan type=[1,2,3] BSS type: 1 (Infra), 2(Adhoc), 3(Any) Any combination of the above arguments can be supplied on the command line. If the chan token is absent, a full channel scan will be completed by the driver. If the dur or probes tokens are absent, the driver default setting will be used. The bssid and ssid fields, if blank, will produce an unfiltered scan. The type field will default to 3 (Any) and the keep field will default to 0 (Discard). Examples: 1) Perform an active scan on channels 1, 6, and 11 in the 'g' band: echo "chan=1g,6g,11g" > setuserscan 2) Perform a passive scan on channel 11 for 20 ms: echo "chan=11gp dur=20" > setuserscan 3) Perform an active scan on channels 1, 6, and 11; and a passive scan on channel 36 in the 'a' band: echo "chan=1g,6g,11g,36ap" > setuserscan 4) Perform an active scan on channel 6 and 36 for a specific SSID: echo "chan=6g,36a ssid="TestAP"" > setuserscan 5) Scan all available channels (B/G, A bands) for a specific BSSID, keep the current scan table intact, update existing or append new scan data: echo "bssid=00:50:43:20:12:82 keep=1" > setuserscan 6) Scan channel 6, for all infrastructure networks, sending two probe requests. Keep the previous scan table intact. Update any duplicate BSSID/SSID matches with the new scan data: echo "chan=6g type=1 probes=2 keep=1" > setuserscan All entries in the scan table (not just the new scan data when keep=1) will be displayed upon completion by use of the getscantable ioctl. ==============================================================================