mirror of
https://github.com/adulau/aha.git
synced 2025-01-03 22:53:18 +00:00
a0d9c63d36
i2c-algo-bit: Discard the mdelay data struct member The i2c_algo_bit_data structure has an mdelay member, which is not used by the algorithm code (the code has always been ifdef'd out.) Let's discard it to save some code and memory. Signed-off-by: Jean Delvare <khali@linux-fr.org> Acked-by: Mauro Carvalho Chehab <mchehab@brturbo.com.br> Cc: Adrian Bunk <bunk@stusta.de> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
369 lines
7.9 KiB
C
369 lines
7.9 KiB
C
/*
|
|
* linux/drivers/acorn/char/i2c.c
|
|
*
|
|
* Copyright (C) 2000 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* ARM IOC/IOMD i2c driver.
|
|
*
|
|
* On Acorn machines, the following i2c devices are on the bus:
|
|
* - PCF8583 real time clock & static RAM
|
|
*/
|
|
#include <linux/capability.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/time.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/i2c-algo-bit.h>
|
|
#include <linux/fs.h>
|
|
|
|
#include <asm/hardware.h>
|
|
#include <asm/io.h>
|
|
#include <asm/hardware/ioc.h>
|
|
#include <asm/system.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include "pcf8583.h"
|
|
|
|
extern int (*set_rtc)(void);
|
|
|
|
static struct i2c_client *rtc_client;
|
|
static const unsigned char days_in_mon[] =
|
|
{ 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
|
|
#define CMOS_CHECKSUM (63)
|
|
|
|
/*
|
|
* Acorn machines store the year in the static RAM at
|
|
* location 128.
|
|
*/
|
|
#define CMOS_YEAR (64 + 128)
|
|
|
|
static inline int rtc_command(int cmd, void *data)
|
|
{
|
|
int ret = -EIO;
|
|
|
|
if (rtc_client)
|
|
ret = rtc_client->driver->command(rtc_client, cmd, data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Update the century + year bytes in the CMOS RAM, ensuring
|
|
* that the check byte is correctly adjusted for the change.
|
|
*/
|
|
static int rtc_update_year(unsigned int new_year)
|
|
{
|
|
unsigned char yr[2], chk;
|
|
struct mem cmos_year = { CMOS_YEAR, sizeof(yr), yr };
|
|
struct mem cmos_check = { CMOS_CHECKSUM, 1, &chk };
|
|
int ret;
|
|
|
|
ret = rtc_command(MEM_READ, &cmos_check);
|
|
if (ret)
|
|
goto out;
|
|
ret = rtc_command(MEM_READ, &cmos_year);
|
|
if (ret)
|
|
goto out;
|
|
|
|
chk -= yr[1] + yr[0];
|
|
|
|
yr[1] = new_year / 100;
|
|
yr[0] = new_year % 100;
|
|
|
|
chk += yr[1] + yr[0];
|
|
|
|
ret = rtc_command(MEM_WRITE, &cmos_year);
|
|
if (ret == 0)
|
|
ret = rtc_command(MEM_WRITE, &cmos_check);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read the current RTC time and date, and update xtime.
|
|
*/
|
|
static void get_rtc_time(struct rtc_tm *rtctm, unsigned int *year)
|
|
{
|
|
unsigned char ctrl, yr[2];
|
|
struct mem rtcmem = { CMOS_YEAR, sizeof(yr), yr };
|
|
int real_year, year_offset;
|
|
|
|
/*
|
|
* Ensure that the RTC is running.
|
|
*/
|
|
rtc_command(RTC_GETCTRL, &ctrl);
|
|
if (ctrl & 0xc0) {
|
|
unsigned char new_ctrl = ctrl & ~0xc0;
|
|
|
|
printk(KERN_WARNING "RTC: resetting control %02x -> %02x\n",
|
|
ctrl, new_ctrl);
|
|
|
|
rtc_command(RTC_SETCTRL, &new_ctrl);
|
|
}
|
|
|
|
if (rtc_command(RTC_GETDATETIME, rtctm) ||
|
|
rtc_command(MEM_READ, &rtcmem))
|
|
return;
|
|
|
|
real_year = yr[0];
|
|
|
|
/*
|
|
* The RTC year holds the LSB two bits of the current
|
|
* year, which should reflect the LSB two bits of the
|
|
* CMOS copy of the year. Any difference indicates
|
|
* that we have to correct the CMOS version.
|
|
*/
|
|
year_offset = rtctm->year_off - (real_year & 3);
|
|
if (year_offset < 0)
|
|
/*
|
|
* RTC year wrapped. Adjust it appropriately.
|
|
*/
|
|
year_offset += 4;
|
|
|
|
*year = real_year + year_offset + yr[1] * 100;
|
|
}
|
|
|
|
static int set_rtc_time(struct rtc_tm *rtctm, unsigned int year)
|
|
{
|
|
unsigned char leap;
|
|
int ret;
|
|
|
|
leap = (!(year % 4) && (year % 100)) || !(year % 400);
|
|
|
|
if (rtctm->mon > 12 || rtctm->mon == 0 || rtctm->mday == 0)
|
|
return -EINVAL;
|
|
|
|
if (rtctm->mday > (days_in_mon[rtctm->mon] + (rtctm->mon == 2 && leap)))
|
|
return -EINVAL;
|
|
|
|
if (rtctm->hours >= 24 || rtctm->mins >= 60 || rtctm->secs >= 60)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The RTC's own 2-bit year must reflect the least
|
|
* significant two bits of the CMOS year.
|
|
*/
|
|
rtctm->year_off = (year % 100) & 3;
|
|
|
|
ret = rtc_command(RTC_SETDATETIME, rtctm);
|
|
if (ret == 0)
|
|
ret = rtc_update_year(year);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the RTC time only. Note that
|
|
* we do not touch the date.
|
|
*/
|
|
static int k_set_rtc_time(void)
|
|
{
|
|
struct rtc_tm new_rtctm, old_rtctm;
|
|
unsigned long nowtime = xtime.tv_sec;
|
|
|
|
if (rtc_command(RTC_GETDATETIME, &old_rtctm))
|
|
return 0;
|
|
|
|
new_rtctm.cs = xtime.tv_nsec / 10000000;
|
|
new_rtctm.secs = nowtime % 60; nowtime /= 60;
|
|
new_rtctm.mins = nowtime % 60; nowtime /= 60;
|
|
new_rtctm.hours = nowtime % 24;
|
|
|
|
/*
|
|
* avoid writing when we're going to change the day
|
|
* of the month. We will retry in the next minute.
|
|
* This basically means that if the RTC must not drift
|
|
* by more than 1 minute in 11 minutes.
|
|
*
|
|
* [ rtc: 1/1/2000 23:58:00, real 2/1/2000 00:01:00,
|
|
* rtc gets set to 1/1/2000 00:01:00 ]
|
|
*/
|
|
if ((old_rtctm.hours == 23 && old_rtctm.mins == 59) ||
|
|
(new_rtctm.hours == 23 && new_rtctm.mins == 59))
|
|
return 1;
|
|
|
|
return rtc_command(RTC_SETTIME, &new_rtctm);
|
|
}
|
|
|
|
static int rtc_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
unsigned int year;
|
|
struct rtc_time rtctm;
|
|
struct rtc_tm rtc_raw;
|
|
|
|
switch (cmd) {
|
|
case RTC_ALM_READ:
|
|
case RTC_ALM_SET:
|
|
break;
|
|
|
|
case RTC_RD_TIME:
|
|
memset(&rtctm, 0, sizeof(struct rtc_time));
|
|
get_rtc_time(&rtc_raw, &year);
|
|
rtctm.tm_sec = rtc_raw.secs;
|
|
rtctm.tm_min = rtc_raw.mins;
|
|
rtctm.tm_hour = rtc_raw.hours;
|
|
rtctm.tm_mday = rtc_raw.mday;
|
|
rtctm.tm_mon = rtc_raw.mon - 1; /* month starts at 0 */
|
|
rtctm.tm_year = year - 1900; /* starts at 1900 */
|
|
return copy_to_user((void *)arg, &rtctm, sizeof(rtctm))
|
|
? -EFAULT : 0;
|
|
|
|
case RTC_SET_TIME:
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EACCES;
|
|
|
|
if (copy_from_user(&rtctm, (void *)arg, sizeof(rtctm)))
|
|
return -EFAULT;
|
|
rtc_raw.secs = rtctm.tm_sec;
|
|
rtc_raw.mins = rtctm.tm_min;
|
|
rtc_raw.hours = rtctm.tm_hour;
|
|
rtc_raw.mday = rtctm.tm_mday;
|
|
rtc_raw.mon = rtctm.tm_mon + 1;
|
|
year = rtctm.tm_year + 1900;
|
|
return set_rtc_time(&rtc_raw, year);
|
|
break;
|
|
|
|
case RTC_EPOCH_READ:
|
|
return put_user(1900, (unsigned long *)arg);
|
|
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct file_operations rtc_fops = {
|
|
.ioctl = rtc_ioctl,
|
|
};
|
|
|
|
static struct miscdevice rtc_dev = {
|
|
.minor = RTC_MINOR,
|
|
.name = "rtc",
|
|
.fops = &rtc_fops,
|
|
};
|
|
|
|
/* IOC / IOMD i2c driver */
|
|
|
|
#define FORCE_ONES 0xdc
|
|
#define SCL 0x02
|
|
#define SDA 0x01
|
|
|
|
/*
|
|
* We must preserve all non-i2c output bits in IOC_CONTROL.
|
|
* Note also that we need to preserve the value of SCL and
|
|
* SDA outputs as well (which may be different from the
|
|
* values read back from IOC_CONTROL).
|
|
*/
|
|
static u_int force_ones;
|
|
|
|
static void ioc_setscl(void *data, int state)
|
|
{
|
|
u_int ioc_control = ioc_readb(IOC_CONTROL) & ~(SCL | SDA);
|
|
u_int ones = force_ones;
|
|
|
|
if (state)
|
|
ones |= SCL;
|
|
else
|
|
ones &= ~SCL;
|
|
|
|
force_ones = ones;
|
|
|
|
ioc_writeb(ioc_control | ones, IOC_CONTROL);
|
|
}
|
|
|
|
static void ioc_setsda(void *data, int state)
|
|
{
|
|
u_int ioc_control = ioc_readb(IOC_CONTROL) & ~(SCL | SDA);
|
|
u_int ones = force_ones;
|
|
|
|
if (state)
|
|
ones |= SDA;
|
|
else
|
|
ones &= ~SDA;
|
|
|
|
force_ones = ones;
|
|
|
|
ioc_writeb(ioc_control | ones, IOC_CONTROL);
|
|
}
|
|
|
|
static int ioc_getscl(void *data)
|
|
{
|
|
return (ioc_readb(IOC_CONTROL) & SCL) != 0;
|
|
}
|
|
|
|
static int ioc_getsda(void *data)
|
|
{
|
|
return (ioc_readb(IOC_CONTROL) & SDA) != 0;
|
|
}
|
|
|
|
static struct i2c_algo_bit_data ioc_data = {
|
|
.setsda = ioc_setsda,
|
|
.setscl = ioc_setscl,
|
|
.getsda = ioc_getsda,
|
|
.getscl = ioc_getscl,
|
|
.udelay = 80,
|
|
.timeout = 100
|
|
};
|
|
|
|
static int ioc_client_reg(struct i2c_client *client)
|
|
{
|
|
if (client->driver->id == I2C_DRIVERID_PCF8583 &&
|
|
client->addr == 0x50) {
|
|
struct rtc_tm rtctm;
|
|
unsigned int year;
|
|
struct timespec tv;
|
|
|
|
rtc_client = client;
|
|
get_rtc_time(&rtctm, &year);
|
|
|
|
tv.tv_nsec = rtctm.cs * 10000000;
|
|
tv.tv_sec = mktime(year, rtctm.mon, rtctm.mday,
|
|
rtctm.hours, rtctm.mins, rtctm.secs);
|
|
do_settimeofday(&tv);
|
|
set_rtc = k_set_rtc_time;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ioc_client_unreg(struct i2c_client *client)
|
|
{
|
|
if (client == rtc_client) {
|
|
set_rtc = NULL;
|
|
rtc_client = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i2c_adapter ioc_ops = {
|
|
.id = I2C_HW_B_IOC,
|
|
.algo_data = &ioc_data,
|
|
.client_register = ioc_client_reg,
|
|
.client_unregister = ioc_client_unreg,
|
|
};
|
|
|
|
static int __init i2c_ioc_init(void)
|
|
{
|
|
int ret;
|
|
|
|
force_ones = FORCE_ONES | SCL | SDA;
|
|
|
|
ret = i2c_bit_add_bus(&ioc_ops);
|
|
|
|
if (ret >= 0){
|
|
ret = misc_register(&rtc_dev);
|
|
if(ret < 0)
|
|
i2c_bit_del_bus(&ioc_ops);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
__initcall(i2c_ioc_init);
|