mirror of
https://github.com/adulau/aha.git
synced 2024-12-31 21:26:18 +00:00
9e1b32caa5
mm: Pass virtual address to [__]p{te,ud,md}_free_tlb() Upcoming paches to support the new 64-bit "BookE" powerpc architecture will need to have the virtual address corresponding to PTE page when freeing it, due to the way the HW table walker works. Basically, the TLB can be loaded with "large" pages that cover the whole virtual space (well, sort-of, half of it actually) represented by a PTE page, and which contain an "indirect" bit indicating that this TLB entry RPN points to an array of PTEs from which the TLB can then create direct entries. Thus, in order to invalidate those when PTE pages are deleted, we need the virtual address to pass to tlbilx or tlbivax instructions. The old trick of sticking it somewhere in the PTE page struct page sucks too much, the address is almost readily available in all call sites and almost everybody implemets these as macros, so we may as well add the argument everywhere. I added it to the pmd and pud variants for consistency. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: David Howells <dhowells@redhat.com> [MN10300 & FRV] Acked-by: Nick Piggin <npiggin@suse.de> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3352 lines
91 KiB
C
3352 lines
91 KiB
C
/*
|
|
* linux/mm/memory.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* demand-loading started 01.12.91 - seems it is high on the list of
|
|
* things wanted, and it should be easy to implement. - Linus
|
|
*/
|
|
|
|
/*
|
|
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
|
|
* pages started 02.12.91, seems to work. - Linus.
|
|
*
|
|
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
|
|
* would have taken more than the 6M I have free, but it worked well as
|
|
* far as I could see.
|
|
*
|
|
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
|
|
*/
|
|
|
|
/*
|
|
* Real VM (paging to/from disk) started 18.12.91. Much more work and
|
|
* thought has to go into this. Oh, well..
|
|
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
|
|
* Found it. Everything seems to work now.
|
|
* 20.12.91 - Ok, making the swap-device changeable like the root.
|
|
*/
|
|
|
|
/*
|
|
* 05.04.94 - Multi-page memory management added for v1.1.
|
|
* Idea by Alex Bligh (alex@cconcepts.co.uk)
|
|
*
|
|
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
|
|
* (Gerhard.Wichert@pdb.siemens.de)
|
|
*
|
|
* Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
|
|
*/
|
|
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delayacct.h>
|
|
#include <linux/init.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/elf.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
/* use the per-pgdat data instead for discontigmem - mbligh */
|
|
unsigned long max_mapnr;
|
|
struct page *mem_map;
|
|
|
|
EXPORT_SYMBOL(max_mapnr);
|
|
EXPORT_SYMBOL(mem_map);
|
|
#endif
|
|
|
|
unsigned long num_physpages;
|
|
/*
|
|
* A number of key systems in x86 including ioremap() rely on the assumption
|
|
* that high_memory defines the upper bound on direct map memory, then end
|
|
* of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
|
|
* highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
|
|
* and ZONE_HIGHMEM.
|
|
*/
|
|
void * high_memory;
|
|
|
|
EXPORT_SYMBOL(num_physpages);
|
|
EXPORT_SYMBOL(high_memory);
|
|
|
|
/*
|
|
* Randomize the address space (stacks, mmaps, brk, etc.).
|
|
*
|
|
* ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
|
|
* as ancient (libc5 based) binaries can segfault. )
|
|
*/
|
|
int randomize_va_space __read_mostly =
|
|
#ifdef CONFIG_COMPAT_BRK
|
|
1;
|
|
#else
|
|
2;
|
|
#endif
|
|
|
|
static int __init disable_randmaps(char *s)
|
|
{
|
|
randomize_va_space = 0;
|
|
return 1;
|
|
}
|
|
__setup("norandmaps", disable_randmaps);
|
|
|
|
|
|
/*
|
|
* If a p?d_bad entry is found while walking page tables, report
|
|
* the error, before resetting entry to p?d_none. Usually (but
|
|
* very seldom) called out from the p?d_none_or_clear_bad macros.
|
|
*/
|
|
|
|
void pgd_clear_bad(pgd_t *pgd)
|
|
{
|
|
pgd_ERROR(*pgd);
|
|
pgd_clear(pgd);
|
|
}
|
|
|
|
void pud_clear_bad(pud_t *pud)
|
|
{
|
|
pud_ERROR(*pud);
|
|
pud_clear(pud);
|
|
}
|
|
|
|
void pmd_clear_bad(pmd_t *pmd)
|
|
{
|
|
pmd_ERROR(*pmd);
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
/*
|
|
* Note: this doesn't free the actual pages themselves. That
|
|
* has been handled earlier when unmapping all the memory regions.
|
|
*/
|
|
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
|
|
unsigned long addr)
|
|
{
|
|
pgtable_t token = pmd_pgtable(*pmd);
|
|
pmd_clear(pmd);
|
|
pte_free_tlb(tlb, token, addr);
|
|
tlb->mm->nr_ptes--;
|
|
}
|
|
|
|
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
free_pte_range(tlb, pmd, addr);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
start &= PUD_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PUD_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, start);
|
|
pud_clear(pud);
|
|
pmd_free_tlb(tlb, pmd, start);
|
|
}
|
|
|
|
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
start &= PGDIR_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PGDIR_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pud = pud_offset(pgd, start);
|
|
pgd_clear(pgd);
|
|
pud_free_tlb(tlb, pud, start);
|
|
}
|
|
|
|
/*
|
|
* This function frees user-level page tables of a process.
|
|
*
|
|
* Must be called with pagetable lock held.
|
|
*/
|
|
void free_pgd_range(struct mmu_gather *tlb,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
/*
|
|
* The next few lines have given us lots of grief...
|
|
*
|
|
* Why are we testing PMD* at this top level? Because often
|
|
* there will be no work to do at all, and we'd prefer not to
|
|
* go all the way down to the bottom just to discover that.
|
|
*
|
|
* Why all these "- 1"s? Because 0 represents both the bottom
|
|
* of the address space and the top of it (using -1 for the
|
|
* top wouldn't help much: the masks would do the wrong thing).
|
|
* The rule is that addr 0 and floor 0 refer to the bottom of
|
|
* the address space, but end 0 and ceiling 0 refer to the top
|
|
* Comparisons need to use "end - 1" and "ceiling - 1" (though
|
|
* that end 0 case should be mythical).
|
|
*
|
|
* Wherever addr is brought up or ceiling brought down, we must
|
|
* be careful to reject "the opposite 0" before it confuses the
|
|
* subsequent tests. But what about where end is brought down
|
|
* by PMD_SIZE below? no, end can't go down to 0 there.
|
|
*
|
|
* Whereas we round start (addr) and ceiling down, by different
|
|
* masks at different levels, in order to test whether a table
|
|
* now has no other vmas using it, so can be freed, we don't
|
|
* bother to round floor or end up - the tests don't need that.
|
|
*/
|
|
|
|
addr &= PMD_MASK;
|
|
if (addr < floor) {
|
|
addr += PMD_SIZE;
|
|
if (!addr)
|
|
return;
|
|
}
|
|
if (ceiling) {
|
|
ceiling &= PMD_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
end -= PMD_SIZE;
|
|
if (addr > end - 1)
|
|
return;
|
|
|
|
start = addr;
|
|
pgd = pgd_offset(tlb->mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
while (vma) {
|
|
struct vm_area_struct *next = vma->vm_next;
|
|
unsigned long addr = vma->vm_start;
|
|
|
|
/*
|
|
* Hide vma from rmap and vmtruncate before freeing pgtables
|
|
*/
|
|
anon_vma_unlink(vma);
|
|
unlink_file_vma(vma);
|
|
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
|
|
floor, next? next->vm_start: ceiling);
|
|
} else {
|
|
/*
|
|
* Optimization: gather nearby vmas into one call down
|
|
*/
|
|
while (next && next->vm_start <= vma->vm_end + PMD_SIZE
|
|
&& !is_vm_hugetlb_page(next)) {
|
|
vma = next;
|
|
next = vma->vm_next;
|
|
anon_vma_unlink(vma);
|
|
unlink_file_vma(vma);
|
|
}
|
|
free_pgd_range(tlb, addr, vma->vm_end,
|
|
floor, next? next->vm_start: ceiling);
|
|
}
|
|
vma = next;
|
|
}
|
|
}
|
|
|
|
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
|
|
{
|
|
pgtable_t new = pte_alloc_one(mm, address);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Ensure all pte setup (eg. pte page lock and page clearing) are
|
|
* visible before the pte is made visible to other CPUs by being
|
|
* put into page tables.
|
|
*
|
|
* The other side of the story is the pointer chasing in the page
|
|
* table walking code (when walking the page table without locking;
|
|
* ie. most of the time). Fortunately, these data accesses consist
|
|
* of a chain of data-dependent loads, meaning most CPUs (alpha
|
|
* being the notable exception) will already guarantee loads are
|
|
* seen in-order. See the alpha page table accessors for the
|
|
* smp_read_barrier_depends() barriers in page table walking code.
|
|
*/
|
|
smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (!pmd_present(*pmd)) { /* Has another populated it ? */
|
|
mm->nr_ptes++;
|
|
pmd_populate(mm, pmd, new);
|
|
new = NULL;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
if (new)
|
|
pte_free(mm, new);
|
|
return 0;
|
|
}
|
|
|
|
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
|
|
{
|
|
pte_t *new = pte_alloc_one_kernel(&init_mm, address);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
smp_wmb(); /* See comment in __pte_alloc */
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
if (!pmd_present(*pmd)) { /* Has another populated it ? */
|
|
pmd_populate_kernel(&init_mm, pmd, new);
|
|
new = NULL;
|
|
}
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
if (new)
|
|
pte_free_kernel(&init_mm, new);
|
|
return 0;
|
|
}
|
|
|
|
static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
|
|
{
|
|
if (file_rss)
|
|
add_mm_counter(mm, file_rss, file_rss);
|
|
if (anon_rss)
|
|
add_mm_counter(mm, anon_rss, anon_rss);
|
|
}
|
|
|
|
/*
|
|
* This function is called to print an error when a bad pte
|
|
* is found. For example, we might have a PFN-mapped pte in
|
|
* a region that doesn't allow it.
|
|
*
|
|
* The calling function must still handle the error.
|
|
*/
|
|
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte, struct page *page)
|
|
{
|
|
pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
|
|
pud_t *pud = pud_offset(pgd, addr);
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
struct address_space *mapping;
|
|
pgoff_t index;
|
|
static unsigned long resume;
|
|
static unsigned long nr_shown;
|
|
static unsigned long nr_unshown;
|
|
|
|
/*
|
|
* Allow a burst of 60 reports, then keep quiet for that minute;
|
|
* or allow a steady drip of one report per second.
|
|
*/
|
|
if (nr_shown == 60) {
|
|
if (time_before(jiffies, resume)) {
|
|
nr_unshown++;
|
|
return;
|
|
}
|
|
if (nr_unshown) {
|
|
printk(KERN_ALERT
|
|
"BUG: Bad page map: %lu messages suppressed\n",
|
|
nr_unshown);
|
|
nr_unshown = 0;
|
|
}
|
|
nr_shown = 0;
|
|
}
|
|
if (nr_shown++ == 0)
|
|
resume = jiffies + 60 * HZ;
|
|
|
|
mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
|
|
index = linear_page_index(vma, addr);
|
|
|
|
printk(KERN_ALERT
|
|
"BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
|
|
current->comm,
|
|
(long long)pte_val(pte), (long long)pmd_val(*pmd));
|
|
if (page) {
|
|
printk(KERN_ALERT
|
|
"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
|
|
page, (void *)page->flags, page_count(page),
|
|
page_mapcount(page), page->mapping, page->index);
|
|
}
|
|
printk(KERN_ALERT
|
|
"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
|
|
(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
|
|
/*
|
|
* Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
|
|
*/
|
|
if (vma->vm_ops)
|
|
print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
|
|
(unsigned long)vma->vm_ops->fault);
|
|
if (vma->vm_file && vma->vm_file->f_op)
|
|
print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
|
|
(unsigned long)vma->vm_file->f_op->mmap);
|
|
dump_stack();
|
|
add_taint(TAINT_BAD_PAGE);
|
|
}
|
|
|
|
static inline int is_cow_mapping(unsigned int flags)
|
|
{
|
|
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
|
}
|
|
|
|
/*
|
|
* vm_normal_page -- This function gets the "struct page" associated with a pte.
|
|
*
|
|
* "Special" mappings do not wish to be associated with a "struct page" (either
|
|
* it doesn't exist, or it exists but they don't want to touch it). In this
|
|
* case, NULL is returned here. "Normal" mappings do have a struct page.
|
|
*
|
|
* There are 2 broad cases. Firstly, an architecture may define a pte_special()
|
|
* pte bit, in which case this function is trivial. Secondly, an architecture
|
|
* may not have a spare pte bit, which requires a more complicated scheme,
|
|
* described below.
|
|
*
|
|
* A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
|
|
* special mapping (even if there are underlying and valid "struct pages").
|
|
* COWed pages of a VM_PFNMAP are always normal.
|
|
*
|
|
* The way we recognize COWed pages within VM_PFNMAP mappings is through the
|
|
* rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
|
|
* set, and the vm_pgoff will point to the first PFN mapped: thus every special
|
|
* mapping will always honor the rule
|
|
*
|
|
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
|
|
*
|
|
* And for normal mappings this is false.
|
|
*
|
|
* This restricts such mappings to be a linear translation from virtual address
|
|
* to pfn. To get around this restriction, we allow arbitrary mappings so long
|
|
* as the vma is not a COW mapping; in that case, we know that all ptes are
|
|
* special (because none can have been COWed).
|
|
*
|
|
*
|
|
* In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
|
|
*
|
|
* VM_MIXEDMAP mappings can likewise contain memory with or without "struct
|
|
* page" backing, however the difference is that _all_ pages with a struct
|
|
* page (that is, those where pfn_valid is true) are refcounted and considered
|
|
* normal pages by the VM. The disadvantage is that pages are refcounted
|
|
* (which can be slower and simply not an option for some PFNMAP users). The
|
|
* advantage is that we don't have to follow the strict linearity rule of
|
|
* PFNMAP mappings in order to support COWable mappings.
|
|
*
|
|
*/
|
|
#ifdef __HAVE_ARCH_PTE_SPECIAL
|
|
# define HAVE_PTE_SPECIAL 1
|
|
#else
|
|
# define HAVE_PTE_SPECIAL 0
|
|
#endif
|
|
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte)
|
|
{
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
if (HAVE_PTE_SPECIAL) {
|
|
if (likely(!pte_special(pte)))
|
|
goto check_pfn;
|
|
if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
|
|
print_bad_pte(vma, addr, pte, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
/* !HAVE_PTE_SPECIAL case follows: */
|
|
|
|
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
|
|
if (vma->vm_flags & VM_MIXEDMAP) {
|
|
if (!pfn_valid(pfn))
|
|
return NULL;
|
|
goto out;
|
|
} else {
|
|
unsigned long off;
|
|
off = (addr - vma->vm_start) >> PAGE_SHIFT;
|
|
if (pfn == vma->vm_pgoff + off)
|
|
return NULL;
|
|
if (!is_cow_mapping(vma->vm_flags))
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
check_pfn:
|
|
if (unlikely(pfn > highest_memmap_pfn)) {
|
|
print_bad_pte(vma, addr, pte, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* NOTE! We still have PageReserved() pages in the page tables.
|
|
* eg. VDSO mappings can cause them to exist.
|
|
*/
|
|
out:
|
|
return pfn_to_page(pfn);
|
|
}
|
|
|
|
/*
|
|
* copy one vm_area from one task to the other. Assumes the page tables
|
|
* already present in the new task to be cleared in the whole range
|
|
* covered by this vma.
|
|
*/
|
|
|
|
static inline void
|
|
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
|
|
unsigned long addr, int *rss)
|
|
{
|
|
unsigned long vm_flags = vma->vm_flags;
|
|
pte_t pte = *src_pte;
|
|
struct page *page;
|
|
|
|
/* pte contains position in swap or file, so copy. */
|
|
if (unlikely(!pte_present(pte))) {
|
|
if (!pte_file(pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
|
|
|
swap_duplicate(entry);
|
|
/* make sure dst_mm is on swapoff's mmlist. */
|
|
if (unlikely(list_empty(&dst_mm->mmlist))) {
|
|
spin_lock(&mmlist_lock);
|
|
if (list_empty(&dst_mm->mmlist))
|
|
list_add(&dst_mm->mmlist,
|
|
&src_mm->mmlist);
|
|
spin_unlock(&mmlist_lock);
|
|
}
|
|
if (is_write_migration_entry(entry) &&
|
|
is_cow_mapping(vm_flags)) {
|
|
/*
|
|
* COW mappings require pages in both parent
|
|
* and child to be set to read.
|
|
*/
|
|
make_migration_entry_read(&entry);
|
|
pte = swp_entry_to_pte(entry);
|
|
set_pte_at(src_mm, addr, src_pte, pte);
|
|
}
|
|
}
|
|
goto out_set_pte;
|
|
}
|
|
|
|
/*
|
|
* If it's a COW mapping, write protect it both
|
|
* in the parent and the child
|
|
*/
|
|
if (is_cow_mapping(vm_flags)) {
|
|
ptep_set_wrprotect(src_mm, addr, src_pte);
|
|
pte = pte_wrprotect(pte);
|
|
}
|
|
|
|
/*
|
|
* If it's a shared mapping, mark it clean in
|
|
* the child
|
|
*/
|
|
if (vm_flags & VM_SHARED)
|
|
pte = pte_mkclean(pte);
|
|
pte = pte_mkold(pte);
|
|
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (page) {
|
|
get_page(page);
|
|
page_dup_rmap(page, vma, addr);
|
|
rss[!!PageAnon(page)]++;
|
|
}
|
|
|
|
out_set_pte:
|
|
set_pte_at(dst_mm, addr, dst_pte, pte);
|
|
}
|
|
|
|
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
pte_t *src_pte, *dst_pte;
|
|
spinlock_t *src_ptl, *dst_ptl;
|
|
int progress = 0;
|
|
int rss[2];
|
|
|
|
again:
|
|
rss[1] = rss[0] = 0;
|
|
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
|
|
if (!dst_pte)
|
|
return -ENOMEM;
|
|
src_pte = pte_offset_map_nested(src_pmd, addr);
|
|
src_ptl = pte_lockptr(src_mm, src_pmd);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
arch_enter_lazy_mmu_mode();
|
|
|
|
do {
|
|
/*
|
|
* We are holding two locks at this point - either of them
|
|
* could generate latencies in another task on another CPU.
|
|
*/
|
|
if (progress >= 32) {
|
|
progress = 0;
|
|
if (need_resched() ||
|
|
spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
|
|
break;
|
|
}
|
|
if (pte_none(*src_pte)) {
|
|
progress++;
|
|
continue;
|
|
}
|
|
copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
|
|
progress += 8;
|
|
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
arch_leave_lazy_mmu_mode();
|
|
spin_unlock(src_ptl);
|
|
pte_unmap_nested(src_pte - 1);
|
|
add_mm_rss(dst_mm, rss[0], rss[1]);
|
|
pte_unmap_unlock(dst_pte - 1, dst_ptl);
|
|
cond_resched();
|
|
if (addr != end)
|
|
goto again;
|
|
return 0;
|
|
}
|
|
|
|
static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
pmd_t *src_pmd, *dst_pmd;
|
|
unsigned long next;
|
|
|
|
dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
|
|
if (!dst_pmd)
|
|
return -ENOMEM;
|
|
src_pmd = pmd_offset(src_pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_clear_bad(src_pmd))
|
|
continue;
|
|
if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
|
|
vma, addr, next))
|
|
return -ENOMEM;
|
|
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
pud_t *src_pud, *dst_pud;
|
|
unsigned long next;
|
|
|
|
dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
|
|
if (!dst_pud)
|
|
return -ENOMEM;
|
|
src_pud = pud_offset(src_pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(src_pud))
|
|
continue;
|
|
if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
|
|
vma, addr, next))
|
|
return -ENOMEM;
|
|
} while (dst_pud++, src_pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
pgd_t *src_pgd, *dst_pgd;
|
|
unsigned long next;
|
|
unsigned long addr = vma->vm_start;
|
|
unsigned long end = vma->vm_end;
|
|
int ret;
|
|
|
|
/*
|
|
* Don't copy ptes where a page fault will fill them correctly.
|
|
* Fork becomes much lighter when there are big shared or private
|
|
* readonly mappings. The tradeoff is that copy_page_range is more
|
|
* efficient than faulting.
|
|
*/
|
|
if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
|
|
if (!vma->anon_vma)
|
|
return 0;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
return copy_hugetlb_page_range(dst_mm, src_mm, vma);
|
|
|
|
if (unlikely(is_pfn_mapping(vma))) {
|
|
/*
|
|
* We do not free on error cases below as remove_vma
|
|
* gets called on error from higher level routine
|
|
*/
|
|
ret = track_pfn_vma_copy(vma);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We need to invalidate the secondary MMU mappings only when
|
|
* there could be a permission downgrade on the ptes of the
|
|
* parent mm. And a permission downgrade will only happen if
|
|
* is_cow_mapping() returns true.
|
|
*/
|
|
if (is_cow_mapping(vma->vm_flags))
|
|
mmu_notifier_invalidate_range_start(src_mm, addr, end);
|
|
|
|
ret = 0;
|
|
dst_pgd = pgd_offset(dst_mm, addr);
|
|
src_pgd = pgd_offset(src_mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(src_pgd))
|
|
continue;
|
|
if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
|
|
vma, addr, next))) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
|
|
|
|
if (is_cow_mapping(vma->vm_flags))
|
|
mmu_notifier_invalidate_range_end(src_mm,
|
|
vma->vm_start, end);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long zap_pte_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
long *zap_work, struct zap_details *details)
|
|
{
|
|
struct mm_struct *mm = tlb->mm;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
int file_rss = 0;
|
|
int anon_rss = 0;
|
|
|
|
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
|
arch_enter_lazy_mmu_mode();
|
|
do {
|
|
pte_t ptent = *pte;
|
|
if (pte_none(ptent)) {
|
|
(*zap_work)--;
|
|
continue;
|
|
}
|
|
|
|
(*zap_work) -= PAGE_SIZE;
|
|
|
|
if (pte_present(ptent)) {
|
|
struct page *page;
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (unlikely(details) && page) {
|
|
/*
|
|
* unmap_shared_mapping_pages() wants to
|
|
* invalidate cache without truncating:
|
|
* unmap shared but keep private pages.
|
|
*/
|
|
if (details->check_mapping &&
|
|
details->check_mapping != page->mapping)
|
|
continue;
|
|
/*
|
|
* Each page->index must be checked when
|
|
* invalidating or truncating nonlinear.
|
|
*/
|
|
if (details->nonlinear_vma &&
|
|
(page->index < details->first_index ||
|
|
page->index > details->last_index))
|
|
continue;
|
|
}
|
|
ptent = ptep_get_and_clear_full(mm, addr, pte,
|
|
tlb->fullmm);
|
|
tlb_remove_tlb_entry(tlb, pte, addr);
|
|
if (unlikely(!page))
|
|
continue;
|
|
if (unlikely(details) && details->nonlinear_vma
|
|
&& linear_page_index(details->nonlinear_vma,
|
|
addr) != page->index)
|
|
set_pte_at(mm, addr, pte,
|
|
pgoff_to_pte(page->index));
|
|
if (PageAnon(page))
|
|
anon_rss--;
|
|
else {
|
|
if (pte_dirty(ptent))
|
|
set_page_dirty(page);
|
|
if (pte_young(ptent) &&
|
|
likely(!VM_SequentialReadHint(vma)))
|
|
mark_page_accessed(page);
|
|
file_rss--;
|
|
}
|
|
page_remove_rmap(page);
|
|
if (unlikely(page_mapcount(page) < 0))
|
|
print_bad_pte(vma, addr, ptent, page);
|
|
tlb_remove_page(tlb, page);
|
|
continue;
|
|
}
|
|
/*
|
|
* If details->check_mapping, we leave swap entries;
|
|
* if details->nonlinear_vma, we leave file entries.
|
|
*/
|
|
if (unlikely(details))
|
|
continue;
|
|
if (pte_file(ptent)) {
|
|
if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
|
|
print_bad_pte(vma, addr, ptent, NULL);
|
|
} else if
|
|
(unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
|
|
print_bad_pte(vma, addr, ptent, NULL);
|
|
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
|
|
} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
|
|
|
|
add_mm_rss(mm, file_rss, anon_rss);
|
|
arch_leave_lazy_mmu_mode();
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
long *zap_work, struct zap_details *details)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_clear_bad(pmd)) {
|
|
(*zap_work)--;
|
|
continue;
|
|
}
|
|
next = zap_pte_range(tlb, vma, pmd, addr, next,
|
|
zap_work, details);
|
|
} while (pmd++, addr = next, (addr != end && *zap_work > 0));
|
|
|
|
return addr;
|
|
}
|
|
|
|
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
long *zap_work, struct zap_details *details)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(pud)) {
|
|
(*zap_work)--;
|
|
continue;
|
|
}
|
|
next = zap_pmd_range(tlb, vma, pud, addr, next,
|
|
zap_work, details);
|
|
} while (pud++, addr = next, (addr != end && *zap_work > 0));
|
|
|
|
return addr;
|
|
}
|
|
|
|
static unsigned long unmap_page_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end,
|
|
long *zap_work, struct zap_details *details)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
if (details && !details->check_mapping && !details->nonlinear_vma)
|
|
details = NULL;
|
|
|
|
BUG_ON(addr >= end);
|
|
tlb_start_vma(tlb, vma);
|
|
pgd = pgd_offset(vma->vm_mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd)) {
|
|
(*zap_work)--;
|
|
continue;
|
|
}
|
|
next = zap_pud_range(tlb, vma, pgd, addr, next,
|
|
zap_work, details);
|
|
} while (pgd++, addr = next, (addr != end && *zap_work > 0));
|
|
tlb_end_vma(tlb, vma);
|
|
|
|
return addr;
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
|
|
#else
|
|
/* No preempt: go for improved straight-line efficiency */
|
|
# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
|
|
#endif
|
|
|
|
/**
|
|
* unmap_vmas - unmap a range of memory covered by a list of vma's
|
|
* @tlbp: address of the caller's struct mmu_gather
|
|
* @vma: the starting vma
|
|
* @start_addr: virtual address at which to start unmapping
|
|
* @end_addr: virtual address at which to end unmapping
|
|
* @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
|
|
* @details: details of nonlinear truncation or shared cache invalidation
|
|
*
|
|
* Returns the end address of the unmapping (restart addr if interrupted).
|
|
*
|
|
* Unmap all pages in the vma list.
|
|
*
|
|
* We aim to not hold locks for too long (for scheduling latency reasons).
|
|
* So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
|
|
* return the ending mmu_gather to the caller.
|
|
*
|
|
* Only addresses between `start' and `end' will be unmapped.
|
|
*
|
|
* The VMA list must be sorted in ascending virtual address order.
|
|
*
|
|
* unmap_vmas() assumes that the caller will flush the whole unmapped address
|
|
* range after unmap_vmas() returns. So the only responsibility here is to
|
|
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
|
|
* drops the lock and schedules.
|
|
*/
|
|
unsigned long unmap_vmas(struct mmu_gather **tlbp,
|
|
struct vm_area_struct *vma, unsigned long start_addr,
|
|
unsigned long end_addr, unsigned long *nr_accounted,
|
|
struct zap_details *details)
|
|
{
|
|
long zap_work = ZAP_BLOCK_SIZE;
|
|
unsigned long tlb_start = 0; /* For tlb_finish_mmu */
|
|
int tlb_start_valid = 0;
|
|
unsigned long start = start_addr;
|
|
spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
|
|
int fullmm = (*tlbp)->fullmm;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
|
|
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
|
|
unsigned long end;
|
|
|
|
start = max(vma->vm_start, start_addr);
|
|
if (start >= vma->vm_end)
|
|
continue;
|
|
end = min(vma->vm_end, end_addr);
|
|
if (end <= vma->vm_start)
|
|
continue;
|
|
|
|
if (vma->vm_flags & VM_ACCOUNT)
|
|
*nr_accounted += (end - start) >> PAGE_SHIFT;
|
|
|
|
if (unlikely(is_pfn_mapping(vma)))
|
|
untrack_pfn_vma(vma, 0, 0);
|
|
|
|
while (start != end) {
|
|
if (!tlb_start_valid) {
|
|
tlb_start = start;
|
|
tlb_start_valid = 1;
|
|
}
|
|
|
|
if (unlikely(is_vm_hugetlb_page(vma))) {
|
|
/*
|
|
* It is undesirable to test vma->vm_file as it
|
|
* should be non-null for valid hugetlb area.
|
|
* However, vm_file will be NULL in the error
|
|
* cleanup path of do_mmap_pgoff. When
|
|
* hugetlbfs ->mmap method fails,
|
|
* do_mmap_pgoff() nullifies vma->vm_file
|
|
* before calling this function to clean up.
|
|
* Since no pte has actually been setup, it is
|
|
* safe to do nothing in this case.
|
|
*/
|
|
if (vma->vm_file) {
|
|
unmap_hugepage_range(vma, start, end, NULL);
|
|
zap_work -= (end - start) /
|
|
pages_per_huge_page(hstate_vma(vma));
|
|
}
|
|
|
|
start = end;
|
|
} else
|
|
start = unmap_page_range(*tlbp, vma,
|
|
start, end, &zap_work, details);
|
|
|
|
if (zap_work > 0) {
|
|
BUG_ON(start != end);
|
|
break;
|
|
}
|
|
|
|
tlb_finish_mmu(*tlbp, tlb_start, start);
|
|
|
|
if (need_resched() ||
|
|
(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
|
|
if (i_mmap_lock) {
|
|
*tlbp = NULL;
|
|
goto out;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
|
|
tlb_start_valid = 0;
|
|
zap_work = ZAP_BLOCK_SIZE;
|
|
}
|
|
}
|
|
out:
|
|
mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
|
|
return start; /* which is now the end (or restart) address */
|
|
}
|
|
|
|
/**
|
|
* zap_page_range - remove user pages in a given range
|
|
* @vma: vm_area_struct holding the applicable pages
|
|
* @address: starting address of pages to zap
|
|
* @size: number of bytes to zap
|
|
* @details: details of nonlinear truncation or shared cache invalidation
|
|
*/
|
|
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size, struct zap_details *details)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct mmu_gather *tlb;
|
|
unsigned long end = address + size;
|
|
unsigned long nr_accounted = 0;
|
|
|
|
lru_add_drain();
|
|
tlb = tlb_gather_mmu(mm, 0);
|
|
update_hiwater_rss(mm);
|
|
end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
|
|
if (tlb)
|
|
tlb_finish_mmu(tlb, address, end);
|
|
return end;
|
|
}
|
|
|
|
/**
|
|
* zap_vma_ptes - remove ptes mapping the vma
|
|
* @vma: vm_area_struct holding ptes to be zapped
|
|
* @address: starting address of pages to zap
|
|
* @size: number of bytes to zap
|
|
*
|
|
* This function only unmaps ptes assigned to VM_PFNMAP vmas.
|
|
*
|
|
* The entire address range must be fully contained within the vma.
|
|
*
|
|
* Returns 0 if successful.
|
|
*/
|
|
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size)
|
|
{
|
|
if (address < vma->vm_start || address + size > vma->vm_end ||
|
|
!(vma->vm_flags & VM_PFNMAP))
|
|
return -1;
|
|
zap_page_range(vma, address, size, NULL);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(zap_vma_ptes);
|
|
|
|
/*
|
|
* Do a quick page-table lookup for a single page.
|
|
*/
|
|
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int flags)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
|
|
if (!IS_ERR(page)) {
|
|
BUG_ON(flags & FOLL_GET);
|
|
goto out;
|
|
}
|
|
|
|
page = NULL;
|
|
pgd = pgd_offset(mm, address);
|
|
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
|
|
goto no_page_table;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud))
|
|
goto no_page_table;
|
|
if (pud_huge(*pud)) {
|
|
BUG_ON(flags & FOLL_GET);
|
|
page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
|
|
goto out;
|
|
}
|
|
if (unlikely(pud_bad(*pud)))
|
|
goto no_page_table;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd))
|
|
goto no_page_table;
|
|
if (pmd_huge(*pmd)) {
|
|
BUG_ON(flags & FOLL_GET);
|
|
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
|
|
goto out;
|
|
}
|
|
if (unlikely(pmd_bad(*pmd)))
|
|
goto no_page_table;
|
|
|
|
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
|
|
pte = *ptep;
|
|
if (!pte_present(pte))
|
|
goto no_page;
|
|
if ((flags & FOLL_WRITE) && !pte_write(pte))
|
|
goto unlock;
|
|
page = vm_normal_page(vma, address, pte);
|
|
if (unlikely(!page))
|
|
goto bad_page;
|
|
|
|
if (flags & FOLL_GET)
|
|
get_page(page);
|
|
if (flags & FOLL_TOUCH) {
|
|
if ((flags & FOLL_WRITE) &&
|
|
!pte_dirty(pte) && !PageDirty(page))
|
|
set_page_dirty(page);
|
|
/*
|
|
* pte_mkyoung() would be more correct here, but atomic care
|
|
* is needed to avoid losing the dirty bit: it is easier to use
|
|
* mark_page_accessed().
|
|
*/
|
|
mark_page_accessed(page);
|
|
}
|
|
unlock:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
out:
|
|
return page;
|
|
|
|
bad_page:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
no_page:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
if (!pte_none(pte))
|
|
return page;
|
|
/* Fall through to ZERO_PAGE handling */
|
|
no_page_table:
|
|
/*
|
|
* When core dumping an enormous anonymous area that nobody
|
|
* has touched so far, we don't want to allocate page tables.
|
|
*/
|
|
if (flags & FOLL_ANON) {
|
|
page = ZERO_PAGE(0);
|
|
if (flags & FOLL_GET)
|
|
get_page(page);
|
|
BUG_ON(flags & FOLL_WRITE);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/* Can we do the FOLL_ANON optimization? */
|
|
static inline int use_zero_page(struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* We don't want to optimize FOLL_ANON for make_pages_present()
|
|
* when it tries to page in a VM_LOCKED region. As to VM_SHARED,
|
|
* we want to get the page from the page tables to make sure
|
|
* that we serialize and update with any other user of that
|
|
* mapping.
|
|
*/
|
|
if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
|
|
return 0;
|
|
/*
|
|
* And if we have a fault routine, it's not an anonymous region.
|
|
*/
|
|
return !vma->vm_ops || !vma->vm_ops->fault;
|
|
}
|
|
|
|
|
|
|
|
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, int nr_pages, int flags,
|
|
struct page **pages, struct vm_area_struct **vmas)
|
|
{
|
|
int i;
|
|
unsigned int vm_flags = 0;
|
|
int write = !!(flags & GUP_FLAGS_WRITE);
|
|
int force = !!(flags & GUP_FLAGS_FORCE);
|
|
int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
|
|
int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
|
|
|
|
if (nr_pages <= 0)
|
|
return 0;
|
|
/*
|
|
* Require read or write permissions.
|
|
* If 'force' is set, we only require the "MAY" flags.
|
|
*/
|
|
vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
|
|
vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
|
|
i = 0;
|
|
|
|
do {
|
|
struct vm_area_struct *vma;
|
|
unsigned int foll_flags;
|
|
|
|
vma = find_extend_vma(mm, start);
|
|
if (!vma && in_gate_area(tsk, start)) {
|
|
unsigned long pg = start & PAGE_MASK;
|
|
struct vm_area_struct *gate_vma = get_gate_vma(tsk);
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
/* user gate pages are read-only */
|
|
if (!ignore && write)
|
|
return i ? : -EFAULT;
|
|
if (pg > TASK_SIZE)
|
|
pgd = pgd_offset_k(pg);
|
|
else
|
|
pgd = pgd_offset_gate(mm, pg);
|
|
BUG_ON(pgd_none(*pgd));
|
|
pud = pud_offset(pgd, pg);
|
|
BUG_ON(pud_none(*pud));
|
|
pmd = pmd_offset(pud, pg);
|
|
if (pmd_none(*pmd))
|
|
return i ? : -EFAULT;
|
|
pte = pte_offset_map(pmd, pg);
|
|
if (pte_none(*pte)) {
|
|
pte_unmap(pte);
|
|
return i ? : -EFAULT;
|
|
}
|
|
if (pages) {
|
|
struct page *page = vm_normal_page(gate_vma, start, *pte);
|
|
pages[i] = page;
|
|
if (page)
|
|
get_page(page);
|
|
}
|
|
pte_unmap(pte);
|
|
if (vmas)
|
|
vmas[i] = gate_vma;
|
|
i++;
|
|
start += PAGE_SIZE;
|
|
nr_pages--;
|
|
continue;
|
|
}
|
|
|
|
if (!vma ||
|
|
(vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
|
|
(!ignore && !(vm_flags & vma->vm_flags)))
|
|
return i ? : -EFAULT;
|
|
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
i = follow_hugetlb_page(mm, vma, pages, vmas,
|
|
&start, &nr_pages, i, write);
|
|
continue;
|
|
}
|
|
|
|
foll_flags = FOLL_TOUCH;
|
|
if (pages)
|
|
foll_flags |= FOLL_GET;
|
|
if (!write && use_zero_page(vma))
|
|
foll_flags |= FOLL_ANON;
|
|
|
|
do {
|
|
struct page *page;
|
|
|
|
/*
|
|
* If we have a pending SIGKILL, don't keep faulting
|
|
* pages and potentially allocating memory, unless
|
|
* current is handling munlock--e.g., on exit. In
|
|
* that case, we are not allocating memory. Rather,
|
|
* we're only unlocking already resident/mapped pages.
|
|
*/
|
|
if (unlikely(!ignore_sigkill &&
|
|
fatal_signal_pending(current)))
|
|
return i ? i : -ERESTARTSYS;
|
|
|
|
if (write)
|
|
foll_flags |= FOLL_WRITE;
|
|
|
|
cond_resched();
|
|
while (!(page = follow_page(vma, start, foll_flags))) {
|
|
int ret;
|
|
|
|
ret = handle_mm_fault(mm, vma, start,
|
|
(foll_flags & FOLL_WRITE) ?
|
|
FAULT_FLAG_WRITE : 0);
|
|
|
|
if (ret & VM_FAULT_ERROR) {
|
|
if (ret & VM_FAULT_OOM)
|
|
return i ? i : -ENOMEM;
|
|
else if (ret & VM_FAULT_SIGBUS)
|
|
return i ? i : -EFAULT;
|
|
BUG();
|
|
}
|
|
if (ret & VM_FAULT_MAJOR)
|
|
tsk->maj_flt++;
|
|
else
|
|
tsk->min_flt++;
|
|
|
|
/*
|
|
* The VM_FAULT_WRITE bit tells us that
|
|
* do_wp_page has broken COW when necessary,
|
|
* even if maybe_mkwrite decided not to set
|
|
* pte_write. We can thus safely do subsequent
|
|
* page lookups as if they were reads. But only
|
|
* do so when looping for pte_write is futile:
|
|
* in some cases userspace may also be wanting
|
|
* to write to the gotten user page, which a
|
|
* read fault here might prevent (a readonly
|
|
* page might get reCOWed by userspace write).
|
|
*/
|
|
if ((ret & VM_FAULT_WRITE) &&
|
|
!(vma->vm_flags & VM_WRITE))
|
|
foll_flags &= ~FOLL_WRITE;
|
|
|
|
cond_resched();
|
|
}
|
|
if (IS_ERR(page))
|
|
return i ? i : PTR_ERR(page);
|
|
if (pages) {
|
|
pages[i] = page;
|
|
|
|
flush_anon_page(vma, page, start);
|
|
flush_dcache_page(page);
|
|
}
|
|
if (vmas)
|
|
vmas[i] = vma;
|
|
i++;
|
|
start += PAGE_SIZE;
|
|
nr_pages--;
|
|
} while (nr_pages && start < vma->vm_end);
|
|
} while (nr_pages);
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* get_user_pages() - pin user pages in memory
|
|
* @tsk: task_struct of target task
|
|
* @mm: mm_struct of target mm
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @write: whether pages will be written to by the caller
|
|
* @force: whether to force write access even if user mapping is
|
|
* readonly. This will result in the page being COWed even
|
|
* in MAP_SHARED mappings. You do not want this.
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long. Or NULL, if caller
|
|
* only intends to ensure the pages are faulted in.
|
|
* @vmas: array of pointers to vmas corresponding to each page.
|
|
* Or NULL if the caller does not require them.
|
|
*
|
|
* Returns number of pages pinned. This may be fewer than the number
|
|
* requested. If nr_pages is 0 or negative, returns 0. If no pages
|
|
* were pinned, returns -errno. Each page returned must be released
|
|
* with a put_page() call when it is finished with. vmas will only
|
|
* remain valid while mmap_sem is held.
|
|
*
|
|
* Must be called with mmap_sem held for read or write.
|
|
*
|
|
* get_user_pages walks a process's page tables and takes a reference to
|
|
* each struct page that each user address corresponds to at a given
|
|
* instant. That is, it takes the page that would be accessed if a user
|
|
* thread accesses the given user virtual address at that instant.
|
|
*
|
|
* This does not guarantee that the page exists in the user mappings when
|
|
* get_user_pages returns, and there may even be a completely different
|
|
* page there in some cases (eg. if mmapped pagecache has been invalidated
|
|
* and subsequently re faulted). However it does guarantee that the page
|
|
* won't be freed completely. And mostly callers simply care that the page
|
|
* contains data that was valid *at some point in time*. Typically, an IO
|
|
* or similar operation cannot guarantee anything stronger anyway because
|
|
* locks can't be held over the syscall boundary.
|
|
*
|
|
* If write=0, the page must not be written to. If the page is written to,
|
|
* set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
|
|
* after the page is finished with, and before put_page is called.
|
|
*
|
|
* get_user_pages is typically used for fewer-copy IO operations, to get a
|
|
* handle on the memory by some means other than accesses via the user virtual
|
|
* addresses. The pages may be submitted for DMA to devices or accessed via
|
|
* their kernel linear mapping (via the kmap APIs). Care should be taken to
|
|
* use the correct cache flushing APIs.
|
|
*
|
|
* See also get_user_pages_fast, for performance critical applications.
|
|
*/
|
|
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, int nr_pages, int write, int force,
|
|
struct page **pages, struct vm_area_struct **vmas)
|
|
{
|
|
int flags = 0;
|
|
|
|
if (write)
|
|
flags |= GUP_FLAGS_WRITE;
|
|
if (force)
|
|
flags |= GUP_FLAGS_FORCE;
|
|
|
|
return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
|
|
}
|
|
|
|
EXPORT_SYMBOL(get_user_pages);
|
|
|
|
pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
|
|
spinlock_t **ptl)
|
|
{
|
|
pgd_t * pgd = pgd_offset(mm, addr);
|
|
pud_t * pud = pud_alloc(mm, pgd, addr);
|
|
if (pud) {
|
|
pmd_t * pmd = pmd_alloc(mm, pud, addr);
|
|
if (pmd)
|
|
return pte_alloc_map_lock(mm, pmd, addr, ptl);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This is the old fallback for page remapping.
|
|
*
|
|
* For historical reasons, it only allows reserved pages. Only
|
|
* old drivers should use this, and they needed to mark their
|
|
* pages reserved for the old functions anyway.
|
|
*/
|
|
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
|
|
struct page *page, pgprot_t prot)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int retval;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
retval = -EINVAL;
|
|
if (PageAnon(page))
|
|
goto out;
|
|
retval = -ENOMEM;
|
|
flush_dcache_page(page);
|
|
pte = get_locked_pte(mm, addr, &ptl);
|
|
if (!pte)
|
|
goto out;
|
|
retval = -EBUSY;
|
|
if (!pte_none(*pte))
|
|
goto out_unlock;
|
|
|
|
/* Ok, finally just insert the thing.. */
|
|
get_page(page);
|
|
inc_mm_counter(mm, file_rss);
|
|
page_add_file_rmap(page);
|
|
set_pte_at(mm, addr, pte, mk_pte(page, prot));
|
|
|
|
retval = 0;
|
|
pte_unmap_unlock(pte, ptl);
|
|
return retval;
|
|
out_unlock:
|
|
pte_unmap_unlock(pte, ptl);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* vm_insert_page - insert single page into user vma
|
|
* @vma: user vma to map to
|
|
* @addr: target user address of this page
|
|
* @page: source kernel page
|
|
*
|
|
* This allows drivers to insert individual pages they've allocated
|
|
* into a user vma.
|
|
*
|
|
* The page has to be a nice clean _individual_ kernel allocation.
|
|
* If you allocate a compound page, you need to have marked it as
|
|
* such (__GFP_COMP), or manually just split the page up yourself
|
|
* (see split_page()).
|
|
*
|
|
* NOTE! Traditionally this was done with "remap_pfn_range()" which
|
|
* took an arbitrary page protection parameter. This doesn't allow
|
|
* that. Your vma protection will have to be set up correctly, which
|
|
* means that if you want a shared writable mapping, you'd better
|
|
* ask for a shared writable mapping!
|
|
*
|
|
* The page does not need to be reserved.
|
|
*/
|
|
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
|
|
struct page *page)
|
|
{
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return -EFAULT;
|
|
if (!page_count(page))
|
|
return -EINVAL;
|
|
vma->vm_flags |= VM_INSERTPAGE;
|
|
return insert_page(vma, addr, page, vma->vm_page_prot);
|
|
}
|
|
EXPORT_SYMBOL(vm_insert_page);
|
|
|
|
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int retval;
|
|
pte_t *pte, entry;
|
|
spinlock_t *ptl;
|
|
|
|
retval = -ENOMEM;
|
|
pte = get_locked_pte(mm, addr, &ptl);
|
|
if (!pte)
|
|
goto out;
|
|
retval = -EBUSY;
|
|
if (!pte_none(*pte))
|
|
goto out_unlock;
|
|
|
|
/* Ok, finally just insert the thing.. */
|
|
entry = pte_mkspecial(pfn_pte(pfn, prot));
|
|
set_pte_at(mm, addr, pte, entry);
|
|
update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
|
|
|
|
retval = 0;
|
|
out_unlock:
|
|
pte_unmap_unlock(pte, ptl);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* vm_insert_pfn - insert single pfn into user vma
|
|
* @vma: user vma to map to
|
|
* @addr: target user address of this page
|
|
* @pfn: source kernel pfn
|
|
*
|
|
* Similar to vm_inert_page, this allows drivers to insert individual pages
|
|
* they've allocated into a user vma. Same comments apply.
|
|
*
|
|
* This function should only be called from a vm_ops->fault handler, and
|
|
* in that case the handler should return NULL.
|
|
*
|
|
* vma cannot be a COW mapping.
|
|
*
|
|
* As this is called only for pages that do not currently exist, we
|
|
* do not need to flush old virtual caches or the TLB.
|
|
*/
|
|
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn)
|
|
{
|
|
int ret;
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
/*
|
|
* Technically, architectures with pte_special can avoid all these
|
|
* restrictions (same for remap_pfn_range). However we would like
|
|
* consistency in testing and feature parity among all, so we should
|
|
* try to keep these invariants in place for everybody.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return -EFAULT;
|
|
if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
ret = insert_pfn(vma, addr, pfn, pgprot);
|
|
|
|
if (ret)
|
|
untrack_pfn_vma(vma, pfn, PAGE_SIZE);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vm_insert_pfn);
|
|
|
|
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn)
|
|
{
|
|
BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If we don't have pte special, then we have to use the pfn_valid()
|
|
* based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
|
|
* refcount the page if pfn_valid is true (hence insert_page rather
|
|
* than insert_pfn).
|
|
*/
|
|
if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
|
|
struct page *page;
|
|
|
|
page = pfn_to_page(pfn);
|
|
return insert_page(vma, addr, page, vma->vm_page_prot);
|
|
}
|
|
return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
|
|
}
|
|
EXPORT_SYMBOL(vm_insert_mixed);
|
|
|
|
/*
|
|
* maps a range of physical memory into the requested pages. the old
|
|
* mappings are removed. any references to nonexistent pages results
|
|
* in null mappings (currently treated as "copy-on-access")
|
|
*/
|
|
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
arch_enter_lazy_mmu_mode();
|
|
do {
|
|
BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
|
|
pfn++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
arch_leave_lazy_mmu_mode();
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
return 0;
|
|
}
|
|
|
|
static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pfn -= addr >> PAGE_SHIFT;
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (remap_pte_range(mm, pmd, addr, next,
|
|
pfn + (addr >> PAGE_SHIFT), prot))
|
|
return -ENOMEM;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pfn -= addr >> PAGE_SHIFT;
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (remap_pmd_range(mm, pud, addr, next,
|
|
pfn + (addr >> PAGE_SHIFT), prot))
|
|
return -ENOMEM;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* remap_pfn_range - remap kernel memory to userspace
|
|
* @vma: user vma to map to
|
|
* @addr: target user address to start at
|
|
* @pfn: physical address of kernel memory
|
|
* @size: size of map area
|
|
* @prot: page protection flags for this mapping
|
|
*
|
|
* Note: this is only safe if the mm semaphore is held when called.
|
|
*/
|
|
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t prot)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long end = addr + PAGE_ALIGN(size);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int err;
|
|
|
|
/*
|
|
* Physically remapped pages are special. Tell the
|
|
* rest of the world about it:
|
|
* VM_IO tells people not to look at these pages
|
|
* (accesses can have side effects).
|
|
* VM_RESERVED is specified all over the place, because
|
|
* in 2.4 it kept swapout's vma scan off this vma; but
|
|
* in 2.6 the LRU scan won't even find its pages, so this
|
|
* flag means no more than count its pages in reserved_vm,
|
|
* and omit it from core dump, even when VM_IO turned off.
|
|
* VM_PFNMAP tells the core MM that the base pages are just
|
|
* raw PFN mappings, and do not have a "struct page" associated
|
|
* with them.
|
|
*
|
|
* There's a horrible special case to handle copy-on-write
|
|
* behaviour that some programs depend on. We mark the "original"
|
|
* un-COW'ed pages by matching them up with "vma->vm_pgoff".
|
|
*/
|
|
if (addr == vma->vm_start && end == vma->vm_end) {
|
|
vma->vm_pgoff = pfn;
|
|
vma->vm_flags |= VM_PFN_AT_MMAP;
|
|
} else if (is_cow_mapping(vma->vm_flags))
|
|
return -EINVAL;
|
|
|
|
vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
|
|
|
|
err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
|
|
if (err) {
|
|
/*
|
|
* To indicate that track_pfn related cleanup is not
|
|
* needed from higher level routine calling unmap_vmas
|
|
*/
|
|
vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
|
|
vma->vm_flags &= ~VM_PFN_AT_MMAP;
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUG_ON(addr >= end);
|
|
pfn -= addr >> PAGE_SHIFT;
|
|
pgd = pgd_offset(mm, addr);
|
|
flush_cache_range(vma, addr, end);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
err = remap_pud_range(mm, pgd, addr, next,
|
|
pfn + (addr >> PAGE_SHIFT), prot);
|
|
if (err)
|
|
break;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
if (err)
|
|
untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(remap_pfn_range);
|
|
|
|
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
pte_fn_t fn, void *data)
|
|
{
|
|
pte_t *pte;
|
|
int err;
|
|
pgtable_t token;
|
|
spinlock_t *uninitialized_var(ptl);
|
|
|
|
pte = (mm == &init_mm) ?
|
|
pte_alloc_kernel(pmd, addr) :
|
|
pte_alloc_map_lock(mm, pmd, addr, &ptl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
BUG_ON(pmd_huge(*pmd));
|
|
|
|
arch_enter_lazy_mmu_mode();
|
|
|
|
token = pmd_pgtable(*pmd);
|
|
|
|
do {
|
|
err = fn(pte, token, addr, data);
|
|
if (err)
|
|
break;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
arch_leave_lazy_mmu_mode();
|
|
|
|
if (mm != &init_mm)
|
|
pte_unmap_unlock(pte-1, ptl);
|
|
return err;
|
|
}
|
|
|
|
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
pte_fn_t fn, void *data)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
int err;
|
|
|
|
BUG_ON(pud_huge(*pud));
|
|
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
|
|
if (err)
|
|
break;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return err;
|
|
}
|
|
|
|
static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
pte_fn_t fn, void *data)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
int err;
|
|
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
|
|
if (err)
|
|
break;
|
|
} while (pud++, addr = next, addr != end);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Scan a region of virtual memory, filling in page tables as necessary
|
|
* and calling a provided function on each leaf page table.
|
|
*/
|
|
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long size, pte_fn_t fn, void *data)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long start = addr, end = addr + size;
|
|
int err;
|
|
|
|
BUG_ON(addr >= end);
|
|
mmu_notifier_invalidate_range_start(mm, start, end);
|
|
pgd = pgd_offset(mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
|
|
if (err)
|
|
break;
|
|
} while (pgd++, addr = next, addr != end);
|
|
mmu_notifier_invalidate_range_end(mm, start, end);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(apply_to_page_range);
|
|
|
|
/*
|
|
* handle_pte_fault chooses page fault handler according to an entry
|
|
* which was read non-atomically. Before making any commitment, on
|
|
* those architectures or configurations (e.g. i386 with PAE) which
|
|
* might give a mix of unmatched parts, do_swap_page and do_file_page
|
|
* must check under lock before unmapping the pte and proceeding
|
|
* (but do_wp_page is only called after already making such a check;
|
|
* and do_anonymous_page and do_no_page can safely check later on).
|
|
*/
|
|
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
|
|
pte_t *page_table, pte_t orig_pte)
|
|
{
|
|
int same = 1;
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
|
|
if (sizeof(pte_t) > sizeof(unsigned long)) {
|
|
spinlock_t *ptl = pte_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
same = pte_same(*page_table, orig_pte);
|
|
spin_unlock(ptl);
|
|
}
|
|
#endif
|
|
pte_unmap(page_table);
|
|
return same;
|
|
}
|
|
|
|
/*
|
|
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
|
|
* servicing faults for write access. In the normal case, do always want
|
|
* pte_mkwrite. But get_user_pages can cause write faults for mappings
|
|
* that do not have writing enabled, when used by access_process_vm.
|
|
*/
|
|
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pte = pte_mkwrite(pte);
|
|
return pte;
|
|
}
|
|
|
|
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* If the source page was a PFN mapping, we don't have
|
|
* a "struct page" for it. We do a best-effort copy by
|
|
* just copying from the original user address. If that
|
|
* fails, we just zero-fill it. Live with it.
|
|
*/
|
|
if (unlikely(!src)) {
|
|
void *kaddr = kmap_atomic(dst, KM_USER0);
|
|
void __user *uaddr = (void __user *)(va & PAGE_MASK);
|
|
|
|
/*
|
|
* This really shouldn't fail, because the page is there
|
|
* in the page tables. But it might just be unreadable,
|
|
* in which case we just give up and fill the result with
|
|
* zeroes.
|
|
*/
|
|
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
|
|
memset(kaddr, 0, PAGE_SIZE);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
flush_dcache_page(dst);
|
|
} else
|
|
copy_user_highpage(dst, src, va, vma);
|
|
}
|
|
|
|
/*
|
|
* This routine handles present pages, when users try to write
|
|
* to a shared page. It is done by copying the page to a new address
|
|
* and decrementing the shared-page counter for the old page.
|
|
*
|
|
* Note that this routine assumes that the protection checks have been
|
|
* done by the caller (the low-level page fault routine in most cases).
|
|
* Thus we can safely just mark it writable once we've done any necessary
|
|
* COW.
|
|
*
|
|
* We also mark the page dirty at this point even though the page will
|
|
* change only once the write actually happens. This avoids a few races,
|
|
* and potentially makes it more efficient.
|
|
*
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
|
* but allow concurrent faults), with pte both mapped and locked.
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
|
*/
|
|
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
|
spinlock_t *ptl, pte_t orig_pte)
|
|
{
|
|
struct page *old_page, *new_page;
|
|
pte_t entry;
|
|
int reuse = 0, ret = 0;
|
|
int page_mkwrite = 0;
|
|
struct page *dirty_page = NULL;
|
|
|
|
old_page = vm_normal_page(vma, address, orig_pte);
|
|
if (!old_page) {
|
|
/*
|
|
* VM_MIXEDMAP !pfn_valid() case
|
|
*
|
|
* We should not cow pages in a shared writeable mapping.
|
|
* Just mark the pages writable as we can't do any dirty
|
|
* accounting on raw pfn maps.
|
|
*/
|
|
if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
|
|
(VM_WRITE|VM_SHARED))
|
|
goto reuse;
|
|
goto gotten;
|
|
}
|
|
|
|
/*
|
|
* Take out anonymous pages first, anonymous shared vmas are
|
|
* not dirty accountable.
|
|
*/
|
|
if (PageAnon(old_page)) {
|
|
if (!trylock_page(old_page)) {
|
|
page_cache_get(old_page);
|
|
pte_unmap_unlock(page_table, ptl);
|
|
lock_page(old_page);
|
|
page_table = pte_offset_map_lock(mm, pmd, address,
|
|
&ptl);
|
|
if (!pte_same(*page_table, orig_pte)) {
|
|
unlock_page(old_page);
|
|
page_cache_release(old_page);
|
|
goto unlock;
|
|
}
|
|
page_cache_release(old_page);
|
|
}
|
|
reuse = reuse_swap_page(old_page);
|
|
unlock_page(old_page);
|
|
} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
|
|
(VM_WRITE|VM_SHARED))) {
|
|
/*
|
|
* Only catch write-faults on shared writable pages,
|
|
* read-only shared pages can get COWed by
|
|
* get_user_pages(.write=1, .force=1).
|
|
*/
|
|
if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
|
|
struct vm_fault vmf;
|
|
int tmp;
|
|
|
|
vmf.virtual_address = (void __user *)(address &
|
|
PAGE_MASK);
|
|
vmf.pgoff = old_page->index;
|
|
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
|
|
vmf.page = old_page;
|
|
|
|
/*
|
|
* Notify the address space that the page is about to
|
|
* become writable so that it can prohibit this or wait
|
|
* for the page to get into an appropriate state.
|
|
*
|
|
* We do this without the lock held, so that it can
|
|
* sleep if it needs to.
|
|
*/
|
|
page_cache_get(old_page);
|
|
pte_unmap_unlock(page_table, ptl);
|
|
|
|
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
|
|
if (unlikely(tmp &
|
|
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
|
|
ret = tmp;
|
|
goto unwritable_page;
|
|
}
|
|
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
|
|
lock_page(old_page);
|
|
if (!old_page->mapping) {
|
|
ret = 0; /* retry the fault */
|
|
unlock_page(old_page);
|
|
goto unwritable_page;
|
|
}
|
|
} else
|
|
VM_BUG_ON(!PageLocked(old_page));
|
|
|
|
/*
|
|
* Since we dropped the lock we need to revalidate
|
|
* the PTE as someone else may have changed it. If
|
|
* they did, we just return, as we can count on the
|
|
* MMU to tell us if they didn't also make it writable.
|
|
*/
|
|
page_table = pte_offset_map_lock(mm, pmd, address,
|
|
&ptl);
|
|
if (!pte_same(*page_table, orig_pte)) {
|
|
unlock_page(old_page);
|
|
page_cache_release(old_page);
|
|
goto unlock;
|
|
}
|
|
|
|
page_mkwrite = 1;
|
|
}
|
|
dirty_page = old_page;
|
|
get_page(dirty_page);
|
|
reuse = 1;
|
|
}
|
|
|
|
if (reuse) {
|
|
reuse:
|
|
flush_cache_page(vma, address, pte_pfn(orig_pte));
|
|
entry = pte_mkyoung(orig_pte);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
if (ptep_set_access_flags(vma, address, page_table, entry,1))
|
|
update_mmu_cache(vma, address, entry);
|
|
ret |= VM_FAULT_WRITE;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Ok, we need to copy. Oh, well..
|
|
*/
|
|
page_cache_get(old_page);
|
|
gotten:
|
|
pte_unmap_unlock(page_table, ptl);
|
|
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
goto oom;
|
|
VM_BUG_ON(old_page == ZERO_PAGE(0));
|
|
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
|
|
if (!new_page)
|
|
goto oom;
|
|
/*
|
|
* Don't let another task, with possibly unlocked vma,
|
|
* keep the mlocked page.
|
|
*/
|
|
if ((vma->vm_flags & VM_LOCKED) && old_page) {
|
|
lock_page(old_page); /* for LRU manipulation */
|
|
clear_page_mlock(old_page);
|
|
unlock_page(old_page);
|
|
}
|
|
cow_user_page(new_page, old_page, address, vma);
|
|
__SetPageUptodate(new_page);
|
|
|
|
if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
|
|
goto oom_free_new;
|
|
|
|
/*
|
|
* Re-check the pte - we dropped the lock
|
|
*/
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
if (likely(pte_same(*page_table, orig_pte))) {
|
|
if (old_page) {
|
|
if (!PageAnon(old_page)) {
|
|
dec_mm_counter(mm, file_rss);
|
|
inc_mm_counter(mm, anon_rss);
|
|
}
|
|
} else
|
|
inc_mm_counter(mm, anon_rss);
|
|
flush_cache_page(vma, address, pte_pfn(orig_pte));
|
|
entry = mk_pte(new_page, vma->vm_page_prot);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
/*
|
|
* Clear the pte entry and flush it first, before updating the
|
|
* pte with the new entry. This will avoid a race condition
|
|
* seen in the presence of one thread doing SMC and another
|
|
* thread doing COW.
|
|
*/
|
|
ptep_clear_flush_notify(vma, address, page_table);
|
|
page_add_new_anon_rmap(new_page, vma, address);
|
|
set_pte_at(mm, address, page_table, entry);
|
|
update_mmu_cache(vma, address, entry);
|
|
if (old_page) {
|
|
/*
|
|
* Only after switching the pte to the new page may
|
|
* we remove the mapcount here. Otherwise another
|
|
* process may come and find the rmap count decremented
|
|
* before the pte is switched to the new page, and
|
|
* "reuse" the old page writing into it while our pte
|
|
* here still points into it and can be read by other
|
|
* threads.
|
|
*
|
|
* The critical issue is to order this
|
|
* page_remove_rmap with the ptp_clear_flush above.
|
|
* Those stores are ordered by (if nothing else,)
|
|
* the barrier present in the atomic_add_negative
|
|
* in page_remove_rmap.
|
|
*
|
|
* Then the TLB flush in ptep_clear_flush ensures that
|
|
* no process can access the old page before the
|
|
* decremented mapcount is visible. And the old page
|
|
* cannot be reused until after the decremented
|
|
* mapcount is visible. So transitively, TLBs to
|
|
* old page will be flushed before it can be reused.
|
|
*/
|
|
page_remove_rmap(old_page);
|
|
}
|
|
|
|
/* Free the old page.. */
|
|
new_page = old_page;
|
|
ret |= VM_FAULT_WRITE;
|
|
} else
|
|
mem_cgroup_uncharge_page(new_page);
|
|
|
|
if (new_page)
|
|
page_cache_release(new_page);
|
|
if (old_page)
|
|
page_cache_release(old_page);
|
|
unlock:
|
|
pte_unmap_unlock(page_table, ptl);
|
|
if (dirty_page) {
|
|
/*
|
|
* Yes, Virginia, this is actually required to prevent a race
|
|
* with clear_page_dirty_for_io() from clearing the page dirty
|
|
* bit after it clear all dirty ptes, but before a racing
|
|
* do_wp_page installs a dirty pte.
|
|
*
|
|
* do_no_page is protected similarly.
|
|
*/
|
|
if (!page_mkwrite) {
|
|
wait_on_page_locked(dirty_page);
|
|
set_page_dirty_balance(dirty_page, page_mkwrite);
|
|
}
|
|
put_page(dirty_page);
|
|
if (page_mkwrite) {
|
|
struct address_space *mapping = dirty_page->mapping;
|
|
|
|
set_page_dirty(dirty_page);
|
|
unlock_page(dirty_page);
|
|
page_cache_release(dirty_page);
|
|
if (mapping) {
|
|
/*
|
|
* Some device drivers do not set page.mapping
|
|
* but still dirty their pages
|
|
*/
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
}
|
|
}
|
|
|
|
/* file_update_time outside page_lock */
|
|
if (vma->vm_file)
|
|
file_update_time(vma->vm_file);
|
|
}
|
|
return ret;
|
|
oom_free_new:
|
|
page_cache_release(new_page);
|
|
oom:
|
|
if (old_page) {
|
|
if (page_mkwrite) {
|
|
unlock_page(old_page);
|
|
page_cache_release(old_page);
|
|
}
|
|
page_cache_release(old_page);
|
|
}
|
|
return VM_FAULT_OOM;
|
|
|
|
unwritable_page:
|
|
page_cache_release(old_page);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Helper functions for unmap_mapping_range().
|
|
*
|
|
* __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
|
|
*
|
|
* We have to restart searching the prio_tree whenever we drop the lock,
|
|
* since the iterator is only valid while the lock is held, and anyway
|
|
* a later vma might be split and reinserted earlier while lock dropped.
|
|
*
|
|
* The list of nonlinear vmas could be handled more efficiently, using
|
|
* a placeholder, but handle it in the same way until a need is shown.
|
|
* It is important to search the prio_tree before nonlinear list: a vma
|
|
* may become nonlinear and be shifted from prio_tree to nonlinear list
|
|
* while the lock is dropped; but never shifted from list to prio_tree.
|
|
*
|
|
* In order to make forward progress despite restarting the search,
|
|
* vm_truncate_count is used to mark a vma as now dealt with, so we can
|
|
* quickly skip it next time around. Since the prio_tree search only
|
|
* shows us those vmas affected by unmapping the range in question, we
|
|
* can't efficiently keep all vmas in step with mapping->truncate_count:
|
|
* so instead reset them all whenever it wraps back to 0 (then go to 1).
|
|
* mapping->truncate_count and vma->vm_truncate_count are protected by
|
|
* i_mmap_lock.
|
|
*
|
|
* In order to make forward progress despite repeatedly restarting some
|
|
* large vma, note the restart_addr from unmap_vmas when it breaks out:
|
|
* and restart from that address when we reach that vma again. It might
|
|
* have been split or merged, shrunk or extended, but never shifted: so
|
|
* restart_addr remains valid so long as it remains in the vma's range.
|
|
* unmap_mapping_range forces truncate_count to leap over page-aligned
|
|
* values so we can save vma's restart_addr in its truncate_count field.
|
|
*/
|
|
#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
|
|
|
|
static void reset_vma_truncate_counts(struct address_space *mapping)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct prio_tree_iter iter;
|
|
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
|
|
vma->vm_truncate_count = 0;
|
|
list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
|
|
vma->vm_truncate_count = 0;
|
|
}
|
|
|
|
static int unmap_mapping_range_vma(struct vm_area_struct *vma,
|
|
unsigned long start_addr, unsigned long end_addr,
|
|
struct zap_details *details)
|
|
{
|
|
unsigned long restart_addr;
|
|
int need_break;
|
|
|
|
/*
|
|
* files that support invalidating or truncating portions of the
|
|
* file from under mmaped areas must have their ->fault function
|
|
* return a locked page (and set VM_FAULT_LOCKED in the return).
|
|
* This provides synchronisation against concurrent unmapping here.
|
|
*/
|
|
|
|
again:
|
|
restart_addr = vma->vm_truncate_count;
|
|
if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
|
|
start_addr = restart_addr;
|
|
if (start_addr >= end_addr) {
|
|
/* Top of vma has been split off since last time */
|
|
vma->vm_truncate_count = details->truncate_count;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
restart_addr = zap_page_range(vma, start_addr,
|
|
end_addr - start_addr, details);
|
|
need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
|
|
|
|
if (restart_addr >= end_addr) {
|
|
/* We have now completed this vma: mark it so */
|
|
vma->vm_truncate_count = details->truncate_count;
|
|
if (!need_break)
|
|
return 0;
|
|
} else {
|
|
/* Note restart_addr in vma's truncate_count field */
|
|
vma->vm_truncate_count = restart_addr;
|
|
if (!need_break)
|
|
goto again;
|
|
}
|
|
|
|
spin_unlock(details->i_mmap_lock);
|
|
cond_resched();
|
|
spin_lock(details->i_mmap_lock);
|
|
return -EINTR;
|
|
}
|
|
|
|
static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
|
|
struct zap_details *details)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct prio_tree_iter iter;
|
|
pgoff_t vba, vea, zba, zea;
|
|
|
|
restart:
|
|
vma_prio_tree_foreach(vma, &iter, root,
|
|
details->first_index, details->last_index) {
|
|
/* Skip quickly over those we have already dealt with */
|
|
if (vma->vm_truncate_count == details->truncate_count)
|
|
continue;
|
|
|
|
vba = vma->vm_pgoff;
|
|
vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
|
|
/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
|
|
zba = details->first_index;
|
|
if (zba < vba)
|
|
zba = vba;
|
|
zea = details->last_index;
|
|
if (zea > vea)
|
|
zea = vea;
|
|
|
|
if (unmap_mapping_range_vma(vma,
|
|
((zba - vba) << PAGE_SHIFT) + vma->vm_start,
|
|
((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
|
|
details) < 0)
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
static inline void unmap_mapping_range_list(struct list_head *head,
|
|
struct zap_details *details)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* In nonlinear VMAs there is no correspondence between virtual address
|
|
* offset and file offset. So we must perform an exhaustive search
|
|
* across *all* the pages in each nonlinear VMA, not just the pages
|
|
* whose virtual address lies outside the file truncation point.
|
|
*/
|
|
restart:
|
|
list_for_each_entry(vma, head, shared.vm_set.list) {
|
|
/* Skip quickly over those we have already dealt with */
|
|
if (vma->vm_truncate_count == details->truncate_count)
|
|
continue;
|
|
details->nonlinear_vma = vma;
|
|
if (unmap_mapping_range_vma(vma, vma->vm_start,
|
|
vma->vm_end, details) < 0)
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
|
|
* @mapping: the address space containing mmaps to be unmapped.
|
|
* @holebegin: byte in first page to unmap, relative to the start of
|
|
* the underlying file. This will be rounded down to a PAGE_SIZE
|
|
* boundary. Note that this is different from vmtruncate(), which
|
|
* must keep the partial page. In contrast, we must get rid of
|
|
* partial pages.
|
|
* @holelen: size of prospective hole in bytes. This will be rounded
|
|
* up to a PAGE_SIZE boundary. A holelen of zero truncates to the
|
|
* end of the file.
|
|
* @even_cows: 1 when truncating a file, unmap even private COWed pages;
|
|
* but 0 when invalidating pagecache, don't throw away private data.
|
|
*/
|
|
void unmap_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen, int even_cows)
|
|
{
|
|
struct zap_details details;
|
|
pgoff_t hba = holebegin >> PAGE_SHIFT;
|
|
pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
|
|
/* Check for overflow. */
|
|
if (sizeof(holelen) > sizeof(hlen)) {
|
|
long long holeend =
|
|
(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (holeend & ~(long long)ULONG_MAX)
|
|
hlen = ULONG_MAX - hba + 1;
|
|
}
|
|
|
|
details.check_mapping = even_cows? NULL: mapping;
|
|
details.nonlinear_vma = NULL;
|
|
details.first_index = hba;
|
|
details.last_index = hba + hlen - 1;
|
|
if (details.last_index < details.first_index)
|
|
details.last_index = ULONG_MAX;
|
|
details.i_mmap_lock = &mapping->i_mmap_lock;
|
|
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
|
|
/* Protect against endless unmapping loops */
|
|
mapping->truncate_count++;
|
|
if (unlikely(is_restart_addr(mapping->truncate_count))) {
|
|
if (mapping->truncate_count == 0)
|
|
reset_vma_truncate_counts(mapping);
|
|
mapping->truncate_count++;
|
|
}
|
|
details.truncate_count = mapping->truncate_count;
|
|
|
|
if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
|
|
unmap_mapping_range_tree(&mapping->i_mmap, &details);
|
|
if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
|
|
unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
}
|
|
EXPORT_SYMBOL(unmap_mapping_range);
|
|
|
|
/**
|
|
* vmtruncate - unmap mappings "freed" by truncate() syscall
|
|
* @inode: inode of the file used
|
|
* @offset: file offset to start truncating
|
|
*
|
|
* NOTE! We have to be ready to update the memory sharing
|
|
* between the file and the memory map for a potential last
|
|
* incomplete page. Ugly, but necessary.
|
|
*/
|
|
int vmtruncate(struct inode * inode, loff_t offset)
|
|
{
|
|
if (inode->i_size < offset) {
|
|
unsigned long limit;
|
|
|
|
limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
|
|
if (limit != RLIM_INFINITY && offset > limit)
|
|
goto out_sig;
|
|
if (offset > inode->i_sb->s_maxbytes)
|
|
goto out_big;
|
|
i_size_write(inode, offset);
|
|
} else {
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
/*
|
|
* truncation of in-use swapfiles is disallowed - it would
|
|
* cause subsequent swapout to scribble on the now-freed
|
|
* blocks.
|
|
*/
|
|
if (IS_SWAPFILE(inode))
|
|
return -ETXTBSY;
|
|
i_size_write(inode, offset);
|
|
|
|
/*
|
|
* unmap_mapping_range is called twice, first simply for
|
|
* efficiency so that truncate_inode_pages does fewer
|
|
* single-page unmaps. However after this first call, and
|
|
* before truncate_inode_pages finishes, it is possible for
|
|
* private pages to be COWed, which remain after
|
|
* truncate_inode_pages finishes, hence the second
|
|
* unmap_mapping_range call must be made for correctness.
|
|
*/
|
|
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
|
|
truncate_inode_pages(mapping, offset);
|
|
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
|
|
}
|
|
|
|
if (inode->i_op->truncate)
|
|
inode->i_op->truncate(inode);
|
|
return 0;
|
|
|
|
out_sig:
|
|
send_sig(SIGXFSZ, current, 0);
|
|
out_big:
|
|
return -EFBIG;
|
|
}
|
|
EXPORT_SYMBOL(vmtruncate);
|
|
|
|
int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
/*
|
|
* If the underlying filesystem is not going to provide
|
|
* a way to truncate a range of blocks (punch a hole) -
|
|
* we should return failure right now.
|
|
*/
|
|
if (!inode->i_op->truncate_range)
|
|
return -ENOSYS;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
down_write(&inode->i_alloc_sem);
|
|
unmap_mapping_range(mapping, offset, (end - offset), 1);
|
|
truncate_inode_pages_range(mapping, offset, end);
|
|
unmap_mapping_range(mapping, offset, (end - offset), 1);
|
|
inode->i_op->truncate_range(inode, offset, end);
|
|
up_write(&inode->i_alloc_sem);
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
|
*/
|
|
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
|
unsigned int flags, pte_t orig_pte)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
swp_entry_t entry;
|
|
pte_t pte;
|
|
struct mem_cgroup *ptr = NULL;
|
|
int ret = 0;
|
|
|
|
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
|
|
goto out;
|
|
|
|
entry = pte_to_swp_entry(orig_pte);
|
|
if (is_migration_entry(entry)) {
|
|
migration_entry_wait(mm, pmd, address);
|
|
goto out;
|
|
}
|
|
delayacct_set_flag(DELAYACCT_PF_SWAPIN);
|
|
page = lookup_swap_cache(entry);
|
|
if (!page) {
|
|
grab_swap_token(mm); /* Contend for token _before_ read-in */
|
|
page = swapin_readahead(entry,
|
|
GFP_HIGHUSER_MOVABLE, vma, address);
|
|
if (!page) {
|
|
/*
|
|
* Back out if somebody else faulted in this pte
|
|
* while we released the pte lock.
|
|
*/
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
if (likely(pte_same(*page_table, orig_pte)))
|
|
ret = VM_FAULT_OOM;
|
|
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
|
|
goto unlock;
|
|
}
|
|
|
|
/* Had to read the page from swap area: Major fault */
|
|
ret = VM_FAULT_MAJOR;
|
|
count_vm_event(PGMAJFAULT);
|
|
}
|
|
|
|
lock_page(page);
|
|
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
|
|
|
|
if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
|
|
ret = VM_FAULT_OOM;
|
|
goto out_page;
|
|
}
|
|
|
|
/*
|
|
* Back out if somebody else already faulted in this pte.
|
|
*/
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
if (unlikely(!pte_same(*page_table, orig_pte)))
|
|
goto out_nomap;
|
|
|
|
if (unlikely(!PageUptodate(page))) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out_nomap;
|
|
}
|
|
|
|
/*
|
|
* The page isn't present yet, go ahead with the fault.
|
|
*
|
|
* Be careful about the sequence of operations here.
|
|
* To get its accounting right, reuse_swap_page() must be called
|
|
* while the page is counted on swap but not yet in mapcount i.e.
|
|
* before page_add_anon_rmap() and swap_free(); try_to_free_swap()
|
|
* must be called after the swap_free(), or it will never succeed.
|
|
* Because delete_from_swap_page() may be called by reuse_swap_page(),
|
|
* mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
|
|
* in page->private. In this case, a record in swap_cgroup is silently
|
|
* discarded at swap_free().
|
|
*/
|
|
|
|
inc_mm_counter(mm, anon_rss);
|
|
pte = mk_pte(page, vma->vm_page_prot);
|
|
if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
|
|
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
|
|
flags &= ~FAULT_FLAG_WRITE;
|
|
}
|
|
flush_icache_page(vma, page);
|
|
set_pte_at(mm, address, page_table, pte);
|
|
page_add_anon_rmap(page, vma, address);
|
|
/* It's better to call commit-charge after rmap is established */
|
|
mem_cgroup_commit_charge_swapin(page, ptr);
|
|
|
|
swap_free(entry);
|
|
if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
|
|
try_to_free_swap(page);
|
|
unlock_page(page);
|
|
|
|
if (flags & FAULT_FLAG_WRITE) {
|
|
ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
|
|
if (ret & VM_FAULT_ERROR)
|
|
ret &= VM_FAULT_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(vma, address, pte);
|
|
unlock:
|
|
pte_unmap_unlock(page_table, ptl);
|
|
out:
|
|
return ret;
|
|
out_nomap:
|
|
mem_cgroup_cancel_charge_swapin(ptr);
|
|
pte_unmap_unlock(page_table, ptl);
|
|
out_page:
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
|
*/
|
|
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
struct page *page;
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
|
|
/* Allocate our own private page. */
|
|
pte_unmap(page_table);
|
|
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
goto oom;
|
|
page = alloc_zeroed_user_highpage_movable(vma, address);
|
|
if (!page)
|
|
goto oom;
|
|
__SetPageUptodate(page);
|
|
|
|
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
|
|
goto oom_free_page;
|
|
|
|
entry = mk_pte(page, vma->vm_page_prot);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
if (!pte_none(*page_table))
|
|
goto release;
|
|
inc_mm_counter(mm, anon_rss);
|
|
page_add_new_anon_rmap(page, vma, address);
|
|
set_pte_at(mm, address, page_table, entry);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(vma, address, entry);
|
|
unlock:
|
|
pte_unmap_unlock(page_table, ptl);
|
|
return 0;
|
|
release:
|
|
mem_cgroup_uncharge_page(page);
|
|
page_cache_release(page);
|
|
goto unlock;
|
|
oom_free_page:
|
|
page_cache_release(page);
|
|
oom:
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
/*
|
|
* __do_fault() tries to create a new page mapping. It aggressively
|
|
* tries to share with existing pages, but makes a separate copy if
|
|
* the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
|
|
* the next page fault.
|
|
*
|
|
* As this is called only for pages that do not currently exist, we
|
|
* do not need to flush old virtual caches or the TLB.
|
|
*
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
|
* but allow concurrent faults), and pte neither mapped nor locked.
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
|
*/
|
|
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd,
|
|
pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
|
|
{
|
|
pte_t *page_table;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
pte_t entry;
|
|
int anon = 0;
|
|
int charged = 0;
|
|
struct page *dirty_page = NULL;
|
|
struct vm_fault vmf;
|
|
int ret;
|
|
int page_mkwrite = 0;
|
|
|
|
vmf.virtual_address = (void __user *)(address & PAGE_MASK);
|
|
vmf.pgoff = pgoff;
|
|
vmf.flags = flags;
|
|
vmf.page = NULL;
|
|
|
|
ret = vma->vm_ops->fault(vma, &vmf);
|
|
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
|
|
return ret;
|
|
|
|
/*
|
|
* For consistency in subsequent calls, make the faulted page always
|
|
* locked.
|
|
*/
|
|
if (unlikely(!(ret & VM_FAULT_LOCKED)))
|
|
lock_page(vmf.page);
|
|
else
|
|
VM_BUG_ON(!PageLocked(vmf.page));
|
|
|
|
/*
|
|
* Should we do an early C-O-W break?
|
|
*/
|
|
page = vmf.page;
|
|
if (flags & FAULT_FLAG_WRITE) {
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
|
anon = 1;
|
|
if (unlikely(anon_vma_prepare(vma))) {
|
|
ret = VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
|
|
vma, address);
|
|
if (!page) {
|
|
ret = VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
|
|
ret = VM_FAULT_OOM;
|
|
page_cache_release(page);
|
|
goto out;
|
|
}
|
|
charged = 1;
|
|
/*
|
|
* Don't let another task, with possibly unlocked vma,
|
|
* keep the mlocked page.
|
|
*/
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
clear_page_mlock(vmf.page);
|
|
copy_user_highpage(page, vmf.page, address, vma);
|
|
__SetPageUptodate(page);
|
|
} else {
|
|
/*
|
|
* If the page will be shareable, see if the backing
|
|
* address space wants to know that the page is about
|
|
* to become writable
|
|
*/
|
|
if (vma->vm_ops->page_mkwrite) {
|
|
int tmp;
|
|
|
|
unlock_page(page);
|
|
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
|
|
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
|
|
if (unlikely(tmp &
|
|
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
|
|
ret = tmp;
|
|
goto unwritable_page;
|
|
}
|
|
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
|
|
lock_page(page);
|
|
if (!page->mapping) {
|
|
ret = 0; /* retry the fault */
|
|
unlock_page(page);
|
|
goto unwritable_page;
|
|
}
|
|
} else
|
|
VM_BUG_ON(!PageLocked(page));
|
|
page_mkwrite = 1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
|
|
/*
|
|
* This silly early PAGE_DIRTY setting removes a race
|
|
* due to the bad i386 page protection. But it's valid
|
|
* for other architectures too.
|
|
*
|
|
* Note that if FAULT_FLAG_WRITE is set, we either now have
|
|
* an exclusive copy of the page, or this is a shared mapping,
|
|
* so we can make it writable and dirty to avoid having to
|
|
* handle that later.
|
|
*/
|
|
/* Only go through if we didn't race with anybody else... */
|
|
if (likely(pte_same(*page_table, orig_pte))) {
|
|
flush_icache_page(vma, page);
|
|
entry = mk_pte(page, vma->vm_page_prot);
|
|
if (flags & FAULT_FLAG_WRITE)
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
if (anon) {
|
|
inc_mm_counter(mm, anon_rss);
|
|
page_add_new_anon_rmap(page, vma, address);
|
|
} else {
|
|
inc_mm_counter(mm, file_rss);
|
|
page_add_file_rmap(page);
|
|
if (flags & FAULT_FLAG_WRITE) {
|
|
dirty_page = page;
|
|
get_page(dirty_page);
|
|
}
|
|
}
|
|
set_pte_at(mm, address, page_table, entry);
|
|
|
|
/* no need to invalidate: a not-present page won't be cached */
|
|
update_mmu_cache(vma, address, entry);
|
|
} else {
|
|
if (charged)
|
|
mem_cgroup_uncharge_page(page);
|
|
if (anon)
|
|
page_cache_release(page);
|
|
else
|
|
anon = 1; /* no anon but release faulted_page */
|
|
}
|
|
|
|
pte_unmap_unlock(page_table, ptl);
|
|
|
|
out:
|
|
if (dirty_page) {
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
if (set_page_dirty(dirty_page))
|
|
page_mkwrite = 1;
|
|
unlock_page(dirty_page);
|
|
put_page(dirty_page);
|
|
if (page_mkwrite && mapping) {
|
|
/*
|
|
* Some device drivers do not set page.mapping but still
|
|
* dirty their pages
|
|
*/
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
}
|
|
|
|
/* file_update_time outside page_lock */
|
|
if (vma->vm_file)
|
|
file_update_time(vma->vm_file);
|
|
} else {
|
|
unlock_page(vmf.page);
|
|
if (anon)
|
|
page_cache_release(vmf.page);
|
|
}
|
|
|
|
return ret;
|
|
|
|
unwritable_page:
|
|
page_cache_release(page);
|
|
return ret;
|
|
}
|
|
|
|
static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
|
unsigned int flags, pte_t orig_pte)
|
|
{
|
|
pgoff_t pgoff = (((address & PAGE_MASK)
|
|
- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
|
|
|
|
pte_unmap(page_table);
|
|
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
|
|
}
|
|
|
|
/*
|
|
* Fault of a previously existing named mapping. Repopulate the pte
|
|
* from the encoded file_pte if possible. This enables swappable
|
|
* nonlinear vmas.
|
|
*
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
|
*/
|
|
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *page_table, pmd_t *pmd,
|
|
unsigned int flags, pte_t orig_pte)
|
|
{
|
|
pgoff_t pgoff;
|
|
|
|
flags |= FAULT_FLAG_NONLINEAR;
|
|
|
|
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
|
|
return 0;
|
|
|
|
if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
|
|
/*
|
|
* Page table corrupted: show pte and kill process.
|
|
*/
|
|
print_bad_pte(vma, address, orig_pte, NULL);
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
pgoff = pte_to_pgoff(orig_pte);
|
|
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
|
|
}
|
|
|
|
/*
|
|
* These routines also need to handle stuff like marking pages dirty
|
|
* and/or accessed for architectures that don't do it in hardware (most
|
|
* RISC architectures). The early dirtying is also good on the i386.
|
|
*
|
|
* There is also a hook called "update_mmu_cache()" that architectures
|
|
* with external mmu caches can use to update those (ie the Sparc or
|
|
* PowerPC hashed page tables that act as extended TLBs).
|
|
*
|
|
* We enter with non-exclusive mmap_sem (to exclude vma changes,
|
|
* but allow concurrent faults), and pte mapped but not yet locked.
|
|
* We return with mmap_sem still held, but pte unmapped and unlocked.
|
|
*/
|
|
static inline int handle_pte_fault(struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
pte_t *pte, pmd_t *pmd, unsigned int flags)
|
|
{
|
|
pte_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
entry = *pte;
|
|
if (!pte_present(entry)) {
|
|
if (pte_none(entry)) {
|
|
if (vma->vm_ops) {
|
|
if (likely(vma->vm_ops->fault))
|
|
return do_linear_fault(mm, vma, address,
|
|
pte, pmd, flags, entry);
|
|
}
|
|
return do_anonymous_page(mm, vma, address,
|
|
pte, pmd, flags);
|
|
}
|
|
if (pte_file(entry))
|
|
return do_nonlinear_fault(mm, vma, address,
|
|
pte, pmd, flags, entry);
|
|
return do_swap_page(mm, vma, address,
|
|
pte, pmd, flags, entry);
|
|
}
|
|
|
|
ptl = pte_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
if (unlikely(!pte_same(*pte, entry)))
|
|
goto unlock;
|
|
if (flags & FAULT_FLAG_WRITE) {
|
|
if (!pte_write(entry))
|
|
return do_wp_page(mm, vma, address,
|
|
pte, pmd, ptl, entry);
|
|
entry = pte_mkdirty(entry);
|
|
}
|
|
entry = pte_mkyoung(entry);
|
|
if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
|
|
update_mmu_cache(vma, address, entry);
|
|
} else {
|
|
/*
|
|
* This is needed only for protection faults but the arch code
|
|
* is not yet telling us if this is a protection fault or not.
|
|
* This still avoids useless tlb flushes for .text page faults
|
|
* with threads.
|
|
*/
|
|
if (flags & FAULT_FLAG_WRITE)
|
|
flush_tlb_page(vma, address);
|
|
}
|
|
unlock:
|
|
pte_unmap_unlock(pte, ptl);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* By the time we get here, we already hold the mm semaphore
|
|
*/
|
|
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
count_vm_event(PGFAULT);
|
|
|
|
if (unlikely(is_vm_hugetlb_page(vma)))
|
|
return hugetlb_fault(mm, vma, address, flags);
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
pud = pud_alloc(mm, pgd, address);
|
|
if (!pud)
|
|
return VM_FAULT_OOM;
|
|
pmd = pmd_alloc(mm, pud, address);
|
|
if (!pmd)
|
|
return VM_FAULT_OOM;
|
|
pte = pte_alloc_map(mm, pmd, address);
|
|
if (!pte)
|
|
return VM_FAULT_OOM;
|
|
|
|
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
|
|
}
|
|
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
/*
|
|
* Allocate page upper directory.
|
|
* We've already handled the fast-path in-line.
|
|
*/
|
|
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
|
{
|
|
pud_t *new = pud_alloc_one(mm, address);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
smp_wmb(); /* See comment in __pte_alloc */
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (pgd_present(*pgd)) /* Another has populated it */
|
|
pud_free(mm, new);
|
|
else
|
|
pgd_populate(mm, pgd, new);
|
|
spin_unlock(&mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
#endif /* __PAGETABLE_PUD_FOLDED */
|
|
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
/*
|
|
* Allocate page middle directory.
|
|
* We've already handled the fast-path in-line.
|
|
*/
|
|
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
|
{
|
|
pmd_t *new = pmd_alloc_one(mm, address);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
smp_wmb(); /* See comment in __pte_alloc */
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
#ifndef __ARCH_HAS_4LEVEL_HACK
|
|
if (pud_present(*pud)) /* Another has populated it */
|
|
pmd_free(mm, new);
|
|
else
|
|
pud_populate(mm, pud, new);
|
|
#else
|
|
if (pgd_present(*pud)) /* Another has populated it */
|
|
pmd_free(mm, new);
|
|
else
|
|
pgd_populate(mm, pud, new);
|
|
#endif /* __ARCH_HAS_4LEVEL_HACK */
|
|
spin_unlock(&mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
#endif /* __PAGETABLE_PMD_FOLDED */
|
|
|
|
int make_pages_present(unsigned long addr, unsigned long end)
|
|
{
|
|
int ret, len, write;
|
|
struct vm_area_struct * vma;
|
|
|
|
vma = find_vma(current->mm, addr);
|
|
if (!vma)
|
|
return -ENOMEM;
|
|
write = (vma->vm_flags & VM_WRITE) != 0;
|
|
BUG_ON(addr >= end);
|
|
BUG_ON(end > vma->vm_end);
|
|
len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
|
|
ret = get_user_pages(current, current->mm, addr,
|
|
len, write, 0, NULL, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
return ret == len ? 0 : -EFAULT;
|
|
}
|
|
|
|
#if !defined(__HAVE_ARCH_GATE_AREA)
|
|
|
|
#if defined(AT_SYSINFO_EHDR)
|
|
static struct vm_area_struct gate_vma;
|
|
|
|
static int __init gate_vma_init(void)
|
|
{
|
|
gate_vma.vm_mm = NULL;
|
|
gate_vma.vm_start = FIXADDR_USER_START;
|
|
gate_vma.vm_end = FIXADDR_USER_END;
|
|
gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
|
|
gate_vma.vm_page_prot = __P101;
|
|
/*
|
|
* Make sure the vDSO gets into every core dump.
|
|
* Dumping its contents makes post-mortem fully interpretable later
|
|
* without matching up the same kernel and hardware config to see
|
|
* what PC values meant.
|
|
*/
|
|
gate_vma.vm_flags |= VM_ALWAYSDUMP;
|
|
return 0;
|
|
}
|
|
__initcall(gate_vma_init);
|
|
#endif
|
|
|
|
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
|
|
{
|
|
#ifdef AT_SYSINFO_EHDR
|
|
return &gate_vma;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
int in_gate_area_no_task(unsigned long addr)
|
|
{
|
|
#ifdef AT_SYSINFO_EHDR
|
|
if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __HAVE_ARCH_GATE_AREA */
|
|
|
|
static int follow_pte(struct mm_struct *mm, unsigned long address,
|
|
pte_t **ptepp, spinlock_t **ptlp)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep;
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
|
|
goto out;
|
|
|
|
/* We cannot handle huge page PFN maps. Luckily they don't exist. */
|
|
if (pmd_huge(*pmd))
|
|
goto out;
|
|
|
|
ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
|
|
if (!ptep)
|
|
goto out;
|
|
if (!pte_present(*ptep))
|
|
goto unlock;
|
|
*ptepp = ptep;
|
|
return 0;
|
|
unlock:
|
|
pte_unmap_unlock(ptep, *ptlp);
|
|
out:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* follow_pfn - look up PFN at a user virtual address
|
|
* @vma: memory mapping
|
|
* @address: user virtual address
|
|
* @pfn: location to store found PFN
|
|
*
|
|
* Only IO mappings and raw PFN mappings are allowed.
|
|
*
|
|
* Returns zero and the pfn at @pfn on success, -ve otherwise.
|
|
*/
|
|
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long *pfn)
|
|
{
|
|
int ret = -EINVAL;
|
|
spinlock_t *ptl;
|
|
pte_t *ptep;
|
|
|
|
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
|
|
return ret;
|
|
|
|
ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
|
|
if (ret)
|
|
return ret;
|
|
*pfn = pte_pfn(*ptep);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(follow_pfn);
|
|
|
|
#ifdef CONFIG_HAVE_IOREMAP_PROT
|
|
int follow_phys(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags,
|
|
unsigned long *prot, resource_size_t *phys)
|
|
{
|
|
int ret = -EINVAL;
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
|
|
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
|
|
goto out;
|
|
|
|
if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
|
|
goto out;
|
|
pte = *ptep;
|
|
|
|
if ((flags & FOLL_WRITE) && !pte_write(pte))
|
|
goto unlock;
|
|
|
|
*prot = pgprot_val(pte_pgprot(pte));
|
|
*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
|
|
|
|
ret = 0;
|
|
unlock:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write)
|
|
{
|
|
resource_size_t phys_addr;
|
|
unsigned long prot = 0;
|
|
void __iomem *maddr;
|
|
int offset = addr & (PAGE_SIZE-1);
|
|
|
|
if (follow_phys(vma, addr, write, &prot, &phys_addr))
|
|
return -EINVAL;
|
|
|
|
maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
|
|
if (write)
|
|
memcpy_toio(maddr + offset, buf, len);
|
|
else
|
|
memcpy_fromio(buf, maddr + offset, len);
|
|
iounmap(maddr);
|
|
|
|
return len;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Access another process' address space.
|
|
* Source/target buffer must be kernel space,
|
|
* Do not walk the page table directly, use get_user_pages
|
|
*/
|
|
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
|
|
{
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
void *old_buf = buf;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return 0;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
/* ignore errors, just check how much was successfully transferred */
|
|
while (len) {
|
|
int bytes, ret, offset;
|
|
void *maddr;
|
|
struct page *page = NULL;
|
|
|
|
ret = get_user_pages(tsk, mm, addr, 1,
|
|
write, 1, &page, &vma);
|
|
if (ret <= 0) {
|
|
/*
|
|
* Check if this is a VM_IO | VM_PFNMAP VMA, which
|
|
* we can access using slightly different code.
|
|
*/
|
|
#ifdef CONFIG_HAVE_IOREMAP_PROT
|
|
vma = find_vma(mm, addr);
|
|
if (!vma)
|
|
break;
|
|
if (vma->vm_ops && vma->vm_ops->access)
|
|
ret = vma->vm_ops->access(vma, addr, buf,
|
|
len, write);
|
|
if (ret <= 0)
|
|
#endif
|
|
break;
|
|
bytes = ret;
|
|
} else {
|
|
bytes = len;
|
|
offset = addr & (PAGE_SIZE-1);
|
|
if (bytes > PAGE_SIZE-offset)
|
|
bytes = PAGE_SIZE-offset;
|
|
|
|
maddr = kmap(page);
|
|
if (write) {
|
|
copy_to_user_page(vma, page, addr,
|
|
maddr + offset, buf, bytes);
|
|
set_page_dirty_lock(page);
|
|
} else {
|
|
copy_from_user_page(vma, page, addr,
|
|
buf, maddr + offset, bytes);
|
|
}
|
|
kunmap(page);
|
|
page_cache_release(page);
|
|
}
|
|
len -= bytes;
|
|
buf += bytes;
|
|
addr += bytes;
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
|
|
return buf - old_buf;
|
|
}
|
|
|
|
/*
|
|
* Print the name of a VMA.
|
|
*/
|
|
void print_vma_addr(char *prefix, unsigned long ip)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* Do not print if we are in atomic
|
|
* contexts (in exception stacks, etc.):
|
|
*/
|
|
if (preempt_count())
|
|
return;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma(mm, ip);
|
|
if (vma && vma->vm_file) {
|
|
struct file *f = vma->vm_file;
|
|
char *buf = (char *)__get_free_page(GFP_KERNEL);
|
|
if (buf) {
|
|
char *p, *s;
|
|
|
|
p = d_path(&f->f_path, buf, PAGE_SIZE);
|
|
if (IS_ERR(p))
|
|
p = "?";
|
|
s = strrchr(p, '/');
|
|
if (s)
|
|
p = s+1;
|
|
printk("%s%s[%lx+%lx]", prefix, p,
|
|
vma->vm_start,
|
|
vma->vm_end - vma->vm_start);
|
|
free_page((unsigned long)buf);
|
|
}
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
void might_fault(void)
|
|
{
|
|
/*
|
|
* Some code (nfs/sunrpc) uses socket ops on kernel memory while
|
|
* holding the mmap_sem, this is safe because kernel memory doesn't
|
|
* get paged out, therefore we'll never actually fault, and the
|
|
* below annotations will generate false positives.
|
|
*/
|
|
if (segment_eq(get_fs(), KERNEL_DS))
|
|
return;
|
|
|
|
might_sleep();
|
|
/*
|
|
* it would be nicer only to annotate paths which are not under
|
|
* pagefault_disable, however that requires a larger audit and
|
|
* providing helpers like get_user_atomic.
|
|
*/
|
|
if (!in_atomic() && current->mm)
|
|
might_lock_read(¤t->mm->mmap_sem);
|
|
}
|
|
EXPORT_SYMBOL(might_fault);
|
|
#endif
|