aha/drivers/net/chelsio/espi.c
Adrian Bunk ded78e5e2c [PATCH] chelsio/espi.c:tricn_init(): remove dead code
The Coverity checker spotted these two unused variables.

Please check whether this patch is correct or whether they should be
used.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-03-11 20:32:17 -05:00

336 lines
11 KiB
C

/*****************************************************************************
* *
* File: espi.c *
* $Revision: 1.14 $ *
* $Date: 2005/05/14 00:59:32 $ *
* Description: *
* Ethernet SPI functionality. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include "regs.h"
#include "espi.h"
struct peespi {
adapter_t *adapter;
struct espi_intr_counts intr_cnt;
u32 misc_ctrl;
spinlock_t lock;
};
#define ESPI_INTR_MASK (F_DIP4ERR | F_RXDROP | F_TXDROP | F_RXOVERFLOW | \
F_RAMPARITYERR | F_DIP2PARITYERR)
#define MON_MASK (V_MONITORED_PORT_NUM(3) | F_MONITORED_DIRECTION \
| F_MONITORED_INTERFACE)
#define TRICN_CNFG 14
#define TRICN_CMD_READ 0x11
#define TRICN_CMD_WRITE 0x21
#define TRICN_CMD_ATTEMPTS 10
static int tricn_write(adapter_t *adapter, int bundle_addr, int module_addr,
int ch_addr, int reg_offset, u32 wr_data)
{
int busy, attempts = TRICN_CMD_ATTEMPTS;
writel(V_WRITE_DATA(wr_data) |
V_REGISTER_OFFSET(reg_offset) |
V_CHANNEL_ADDR(ch_addr) | V_MODULE_ADDR(module_addr) |
V_BUNDLE_ADDR(bundle_addr) |
V_SPI4_COMMAND(TRICN_CMD_WRITE),
adapter->regs + A_ESPI_CMD_ADDR);
writel(0, adapter->regs + A_ESPI_GOSTAT);
do {
busy = readl(adapter->regs + A_ESPI_GOSTAT) & F_ESPI_CMD_BUSY;
} while (busy && --attempts);
if (busy)
CH_ERR("%s: TRICN write timed out\n", adapter->name);
return busy;
}
/* 1. Deassert rx_reset_core. */
/* 2. Program TRICN_CNFG registers. */
/* 3. Deassert rx_reset_link */
static int tricn_init(adapter_t *adapter)
{
int i = 0;
int stat = 0;
int timeout = 0;
int is_ready = 0;
/* 1 */
timeout=1000;
do {
stat = readl(adapter->regs + A_ESPI_RX_RESET);
is_ready = (stat & 0x4);
timeout--;
udelay(5);
} while (!is_ready || (timeout==0));
writel(0x2, adapter->regs + A_ESPI_RX_RESET);
if (timeout==0)
{
CH_ERR("ESPI : ERROR : Timeout tricn_init() \n");
t1_fatal_err(adapter);
}
/* 2 */
tricn_write(adapter, 0, 0, 0, TRICN_CNFG, 0x81);
tricn_write(adapter, 0, 1, 0, TRICN_CNFG, 0x81);
tricn_write(adapter, 0, 2, 0, TRICN_CNFG, 0x81);
for (i=1; i<= 8; i++) tricn_write(adapter, 0, 0, i, TRICN_CNFG, 0xf1);
for (i=1; i<= 2; i++) tricn_write(adapter, 0, 1, i, TRICN_CNFG, 0xf1);
for (i=1; i<= 3; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xe1);
for (i=4; i<= 4; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1);
for (i=5; i<= 5; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xe1);
for (i=6; i<= 6; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1);
for (i=7; i<= 7; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0x80);
for (i=8; i<= 8; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1);
/* 3 */
writel(0x3, adapter->regs + A_ESPI_RX_RESET);
return 0;
}
void t1_espi_intr_enable(struct peespi *espi)
{
u32 enable, pl_intr = readl(espi->adapter->regs + A_PL_ENABLE);
/*
* Cannot enable ESPI interrupts on T1B because HW asserts the
* interrupt incorrectly, namely the driver gets ESPI interrupts
* but no data is actually dropped (can verify this reading the ESPI
* drop registers). Also, once the ESPI interrupt is asserted it
* cannot be cleared (HW bug).
*/
enable = t1_is_T1B(espi->adapter) ? 0 : ESPI_INTR_MASK;
writel(enable, espi->adapter->regs + A_ESPI_INTR_ENABLE);
writel(pl_intr | F_PL_INTR_ESPI, espi->adapter->regs + A_PL_ENABLE);
}
void t1_espi_intr_clear(struct peespi *espi)
{
writel(0xffffffff, espi->adapter->regs + A_ESPI_INTR_STATUS);
writel(F_PL_INTR_ESPI, espi->adapter->regs + A_PL_CAUSE);
}
void t1_espi_intr_disable(struct peespi *espi)
{
u32 pl_intr = readl(espi->adapter->regs + A_PL_ENABLE);
writel(0, espi->adapter->regs + A_ESPI_INTR_ENABLE);
writel(pl_intr & ~F_PL_INTR_ESPI, espi->adapter->regs + A_PL_ENABLE);
}
int t1_espi_intr_handler(struct peespi *espi)
{
u32 cnt;
u32 status = readl(espi->adapter->regs + A_ESPI_INTR_STATUS);
if (status & F_DIP4ERR)
espi->intr_cnt.DIP4_err++;
if (status & F_RXDROP)
espi->intr_cnt.rx_drops++;
if (status & F_TXDROP)
espi->intr_cnt.tx_drops++;
if (status & F_RXOVERFLOW)
espi->intr_cnt.rx_ovflw++;
if (status & F_RAMPARITYERR)
espi->intr_cnt.parity_err++;
if (status & F_DIP2PARITYERR) {
espi->intr_cnt.DIP2_parity_err++;
/*
* Must read the error count to clear the interrupt
* that it causes.
*/
cnt = readl(espi->adapter->regs + A_ESPI_DIP2_ERR_COUNT);
}
/*
* For T1B we need to write 1 to clear ESPI interrupts. For T2+ we
* write the status as is.
*/
if (status && t1_is_T1B(espi->adapter))
status = 1;
writel(status, espi->adapter->regs + A_ESPI_INTR_STATUS);
return 0;
}
const struct espi_intr_counts *t1_espi_get_intr_counts(struct peespi *espi)
{
return &espi->intr_cnt;
}
static void espi_setup_for_pm3393(adapter_t *adapter)
{
u32 wmark = t1_is_T1B(adapter) ? 0x4000 : 0x3200;
writel(0x1f4, adapter->regs + A_ESPI_SCH_TOKEN0);
writel(0x1f4, adapter->regs + A_ESPI_SCH_TOKEN1);
writel(0x1f4, adapter->regs + A_ESPI_SCH_TOKEN2);
writel(0x1f4, adapter->regs + A_ESPI_SCH_TOKEN3);
writel(0x100, adapter->regs + A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK);
writel(wmark, adapter->regs + A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK);
writel(3, adapter->regs + A_ESPI_CALENDAR_LENGTH);
writel(0x08000008, adapter->regs + A_ESPI_TRAIN);
writel(V_RX_NPORTS(1) | V_TX_NPORTS(1), adapter->regs + A_PORT_CONFIG);
}
/* T2 Init part -- */
/* 1. Set T_ESPI_MISCCTRL_ADDR */
/* 2. Init ESPI registers. */
/* 3. Init TriCN Hard Macro */
int t1_espi_init(struct peespi *espi, int mac_type, int nports)
{
u32 cnt;
u32 status_enable_extra = 0;
adapter_t *adapter = espi->adapter;
u32 status, burstval = 0x800100;
/* Disable ESPI training. MACs that can handle it enable it below. */
writel(0, adapter->regs + A_ESPI_TRAIN);
if (is_T2(adapter)) {
writel(V_OUT_OF_SYNC_COUNT(4) |
V_DIP2_PARITY_ERR_THRES(3) |
V_DIP4_THRES(1), adapter->regs + A_ESPI_MISC_CONTROL);
if (nports == 4) {
/* T204: maxburst1 = 0x40, maxburst2 = 0x20 */
burstval = 0x200040;
}
}
writel(burstval, adapter->regs + A_ESPI_MAXBURST1_MAXBURST2);
switch (mac_type) {
case CHBT_MAC_PM3393:
espi_setup_for_pm3393(adapter);
break;
default:
return -1;
}
/*
* Make sure any pending interrupts from the SPI are
* Cleared before enabling the interrupt.
*/
writel(ESPI_INTR_MASK, espi->adapter->regs + A_ESPI_INTR_ENABLE);
status = readl(espi->adapter->regs + A_ESPI_INTR_STATUS);
if (status & F_DIP2PARITYERR) {
cnt = readl(espi->adapter->regs + A_ESPI_DIP2_ERR_COUNT);
}
/*
* For T1B we need to write 1 to clear ESPI interrupts. For T2+ we
* write the status as is.
*/
if (status && t1_is_T1B(espi->adapter))
status = 1;
writel(status, espi->adapter->regs + A_ESPI_INTR_STATUS);
writel(status_enable_extra | F_RXSTATUSENABLE,
adapter->regs + A_ESPI_FIFO_STATUS_ENABLE);
if (is_T2(adapter)) {
tricn_init(adapter);
/*
* Always position the control at the 1st port egress IN
* (sop,eop) counter to reduce PIOs for T/N210 workaround.
*/
espi->misc_ctrl = (readl(adapter->regs + A_ESPI_MISC_CONTROL)
& ~MON_MASK) | (F_MONITORED_DIRECTION
| F_MONITORED_INTERFACE);
writel(espi->misc_ctrl, adapter->regs + A_ESPI_MISC_CONTROL);
spin_lock_init(&espi->lock);
}
return 0;
}
void t1_espi_destroy(struct peespi *espi)
{
kfree(espi);
}
struct peespi *t1_espi_create(adapter_t *adapter)
{
struct peespi *espi = kzalloc(sizeof(*espi), GFP_KERNEL);
if (espi)
espi->adapter = adapter;
return espi;
}
void t1_espi_set_misc_ctrl(adapter_t *adapter, u32 val)
{
struct peespi *espi = adapter->espi;
if (!is_T2(adapter))
return;
spin_lock(&espi->lock);
espi->misc_ctrl = (val & ~MON_MASK) |
(espi->misc_ctrl & MON_MASK);
writel(espi->misc_ctrl, adapter->regs + A_ESPI_MISC_CONTROL);
spin_unlock(&espi->lock);
}
u32 t1_espi_get_mon(adapter_t *adapter, u32 addr, u8 wait)
{
u32 sel;
struct peespi *espi = adapter->espi;
if (!is_T2(adapter))
return 0;
sel = V_MONITORED_PORT_NUM((addr & 0x3c) >> 2);
if (!wait) {
if (!spin_trylock(&espi->lock))
return 0;
}
else
spin_lock(&espi->lock);
if ((sel != (espi->misc_ctrl & MON_MASK))) {
writel(((espi->misc_ctrl & ~MON_MASK) | sel),
adapter->regs + A_ESPI_MISC_CONTROL);
sel = readl(adapter->regs + A_ESPI_SCH_TOKEN3);
writel(espi->misc_ctrl, adapter->regs + A_ESPI_MISC_CONTROL);
}
else
sel = readl(adapter->regs + A_ESPI_SCH_TOKEN3);
spin_unlock(&espi->lock);
return sel;
}