aha/fs/jffs2/malloc.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

205 lines
5.5 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001-2003 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: malloc.c,v 1.28 2004/11/16 20:36:11 dwmw2 Exp $
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/jffs2.h>
#include "nodelist.h"
#if 0
#define JFFS2_SLAB_POISON SLAB_POISON
#else
#define JFFS2_SLAB_POISON 0
#endif
// replace this by #define D3 (x) x for cache debugging
#define D3(x)
/* These are initialised to NULL in the kernel startup code.
If you're porting to other operating systems, beware */
static kmem_cache_t *full_dnode_slab;
static kmem_cache_t *raw_dirent_slab;
static kmem_cache_t *raw_inode_slab;
static kmem_cache_t *tmp_dnode_info_slab;
static kmem_cache_t *raw_node_ref_slab;
static kmem_cache_t *node_frag_slab;
static kmem_cache_t *inode_cache_slab;
int __init jffs2_create_slab_caches(void)
{
full_dnode_slab = kmem_cache_create("jffs2_full_dnode",
sizeof(struct jffs2_full_dnode),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (!full_dnode_slab)
goto err;
raw_dirent_slab = kmem_cache_create("jffs2_raw_dirent",
sizeof(struct jffs2_raw_dirent),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (!raw_dirent_slab)
goto err;
raw_inode_slab = kmem_cache_create("jffs2_raw_inode",
sizeof(struct jffs2_raw_inode),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (!raw_inode_slab)
goto err;
tmp_dnode_info_slab = kmem_cache_create("jffs2_tmp_dnode",
sizeof(struct jffs2_tmp_dnode_info),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (!tmp_dnode_info_slab)
goto err;
raw_node_ref_slab = kmem_cache_create("jffs2_raw_node_ref",
sizeof(struct jffs2_raw_node_ref),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (!raw_node_ref_slab)
goto err;
node_frag_slab = kmem_cache_create("jffs2_node_frag",
sizeof(struct jffs2_node_frag),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (!node_frag_slab)
goto err;
inode_cache_slab = kmem_cache_create("jffs2_inode_cache",
sizeof(struct jffs2_inode_cache),
0, JFFS2_SLAB_POISON, NULL, NULL);
if (inode_cache_slab)
return 0;
err:
jffs2_destroy_slab_caches();
return -ENOMEM;
}
void jffs2_destroy_slab_caches(void)
{
if(full_dnode_slab)
kmem_cache_destroy(full_dnode_slab);
if(raw_dirent_slab)
kmem_cache_destroy(raw_dirent_slab);
if(raw_inode_slab)
kmem_cache_destroy(raw_inode_slab);
if(tmp_dnode_info_slab)
kmem_cache_destroy(tmp_dnode_info_slab);
if(raw_node_ref_slab)
kmem_cache_destroy(raw_node_ref_slab);
if(node_frag_slab)
kmem_cache_destroy(node_frag_slab);
if(inode_cache_slab)
kmem_cache_destroy(inode_cache_slab);
}
struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize)
{
return kmalloc(sizeof(struct jffs2_full_dirent) + namesize, GFP_KERNEL);
}
void jffs2_free_full_dirent(struct jffs2_full_dirent *x)
{
kfree(x);
}
struct jffs2_full_dnode *jffs2_alloc_full_dnode(void)
{
struct jffs2_full_dnode *ret = kmem_cache_alloc(full_dnode_slab, GFP_KERNEL);
D3 (printk (KERN_DEBUG "alloc_full_dnode at %p\n", ret));
return ret;
}
void jffs2_free_full_dnode(struct jffs2_full_dnode *x)
{
D3 (printk (KERN_DEBUG "free full_dnode at %p\n", x));
kmem_cache_free(full_dnode_slab, x);
}
struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void)
{
struct jffs2_raw_dirent *ret = kmem_cache_alloc(raw_dirent_slab, GFP_KERNEL);
D3 (printk (KERN_DEBUG "alloc_raw_dirent\n", ret));
return ret;
}
void jffs2_free_raw_dirent(struct jffs2_raw_dirent *x)
{
D3 (printk (KERN_DEBUG "free_raw_dirent at %p\n", x));
kmem_cache_free(raw_dirent_slab, x);
}
struct jffs2_raw_inode *jffs2_alloc_raw_inode(void)
{
struct jffs2_raw_inode *ret = kmem_cache_alloc(raw_inode_slab, GFP_KERNEL);
D3 (printk (KERN_DEBUG "alloc_raw_inode at %p\n", ret));
return ret;
}
void jffs2_free_raw_inode(struct jffs2_raw_inode *x)
{
D3 (printk (KERN_DEBUG "free_raw_inode at %p\n", x));
kmem_cache_free(raw_inode_slab, x);
}
struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void)
{
struct jffs2_tmp_dnode_info *ret = kmem_cache_alloc(tmp_dnode_info_slab, GFP_KERNEL);
D3 (printk (KERN_DEBUG "alloc_tmp_dnode_info at %p\n", ret));
return ret;
}
void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *x)
{
D3 (printk (KERN_DEBUG "free_tmp_dnode_info at %p\n", x));
kmem_cache_free(tmp_dnode_info_slab, x);
}
struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void)
{
struct jffs2_raw_node_ref *ret = kmem_cache_alloc(raw_node_ref_slab, GFP_KERNEL);
D3 (printk (KERN_DEBUG "alloc_raw_node_ref at %p\n", ret));
return ret;
}
void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *x)
{
D3 (printk (KERN_DEBUG "free_raw_node_ref at %p\n", x));
kmem_cache_free(raw_node_ref_slab, x);
}
struct jffs2_node_frag *jffs2_alloc_node_frag(void)
{
struct jffs2_node_frag *ret = kmem_cache_alloc(node_frag_slab, GFP_KERNEL);
D3 (printk (KERN_DEBUG "alloc_node_frag at %p\n", ret));
return ret;
}
void jffs2_free_node_frag(struct jffs2_node_frag *x)
{
D3 (printk (KERN_DEBUG "free_node_frag at %p\n", x));
kmem_cache_free(node_frag_slab, x);
}
struct jffs2_inode_cache *jffs2_alloc_inode_cache(void)
{
struct jffs2_inode_cache *ret = kmem_cache_alloc(inode_cache_slab, GFP_KERNEL);
D3 (printk(KERN_DEBUG "Allocated inocache at %p\n", ret));
return ret;
}
void jffs2_free_inode_cache(struct jffs2_inode_cache *x)
{
D3 (printk(KERN_DEBUG "Freeing inocache at %p\n", x));
kmem_cache_free(inode_cache_slab, x);
}