mirror of
https://github.com/adulau/aha.git
synced 2025-01-01 13:46:24 +00:00
84e1e99f11
During delayed allocation extent conversion or unwritten extent conversion, we need to reserve some blocks for transactions reservations. We need to reserve these blocks in case a btree split occurs and we need to allocate some blocks. Unfortunately, we've only ever reserved the number of data blocks we are allocating, so in both the unwritten and delalloc case we can get ENOSPC to the transaction reservation. This is bad because in both cases we cannot report the failure to the writing application. The fix is two-fold: 1 - leverage the reserved block infrastructure XFS already has to reserve a small pool of blocks by default to allow specially marked transactions to dip into when we are at ENOSPC. Default setting is min(5%, 1024 blocks). 2 - convert critical transaction reservations to be allowed to dip into this pool. Spots changed are delalloc conversion, unwritten extent conversion and growing a filesystem at ENOSPC. This also allows growing the filesytsem to succeed at ENOSPC. SGI-PV: 964468 SGI-Modid: xfs-linux-melb:xfs-kern:28865a Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2433 lines
63 KiB
C
2433 lines
63 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_rw.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_fsops.h"
|
|
|
|
STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t);
|
|
STATIC int xfs_uuid_mount(xfs_mount_t *);
|
|
STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
|
|
STATIC void xfs_unmountfs_wait(xfs_mount_t *);
|
|
|
|
|
|
#ifdef HAVE_PERCPU_SB
|
|
STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
|
|
STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
|
|
int, int);
|
|
STATIC void xfs_icsb_sync_counters(xfs_mount_t *);
|
|
STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
|
|
int64_t, int);
|
|
STATIC int xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
|
|
|
|
#else
|
|
|
|
#define xfs_icsb_destroy_counters(mp) do { } while (0)
|
|
#define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0)
|
|
#define xfs_icsb_sync_counters(mp) do { } while (0)
|
|
#define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
|
|
|
|
#endif
|
|
|
|
static const struct {
|
|
short offset;
|
|
short type; /* 0 = integer
|
|
* 1 = binary / string (no translation)
|
|
*/
|
|
} xfs_sb_info[] = {
|
|
{ offsetof(xfs_sb_t, sb_magicnum), 0 },
|
|
{ offsetof(xfs_sb_t, sb_blocksize), 0 },
|
|
{ offsetof(xfs_sb_t, sb_dblocks), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rblocks), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rextents), 0 },
|
|
{ offsetof(xfs_sb_t, sb_uuid), 1 },
|
|
{ offsetof(xfs_sb_t, sb_logstart), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rootino), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rbmino), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rsumino), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rextsize), 0 },
|
|
{ offsetof(xfs_sb_t, sb_agblocks), 0 },
|
|
{ offsetof(xfs_sb_t, sb_agcount), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rbmblocks), 0 },
|
|
{ offsetof(xfs_sb_t, sb_logblocks), 0 },
|
|
{ offsetof(xfs_sb_t, sb_versionnum), 0 },
|
|
{ offsetof(xfs_sb_t, sb_sectsize), 0 },
|
|
{ offsetof(xfs_sb_t, sb_inodesize), 0 },
|
|
{ offsetof(xfs_sb_t, sb_inopblock), 0 },
|
|
{ offsetof(xfs_sb_t, sb_fname[0]), 1 },
|
|
{ offsetof(xfs_sb_t, sb_blocklog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_sectlog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_inodelog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_inopblog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_agblklog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_rextslog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_inprogress), 0 },
|
|
{ offsetof(xfs_sb_t, sb_imax_pct), 0 },
|
|
{ offsetof(xfs_sb_t, sb_icount), 0 },
|
|
{ offsetof(xfs_sb_t, sb_ifree), 0 },
|
|
{ offsetof(xfs_sb_t, sb_fdblocks), 0 },
|
|
{ offsetof(xfs_sb_t, sb_frextents), 0 },
|
|
{ offsetof(xfs_sb_t, sb_uquotino), 0 },
|
|
{ offsetof(xfs_sb_t, sb_gquotino), 0 },
|
|
{ offsetof(xfs_sb_t, sb_qflags), 0 },
|
|
{ offsetof(xfs_sb_t, sb_flags), 0 },
|
|
{ offsetof(xfs_sb_t, sb_shared_vn), 0 },
|
|
{ offsetof(xfs_sb_t, sb_inoalignmt), 0 },
|
|
{ offsetof(xfs_sb_t, sb_unit), 0 },
|
|
{ offsetof(xfs_sb_t, sb_width), 0 },
|
|
{ offsetof(xfs_sb_t, sb_dirblklog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_logsectlog), 0 },
|
|
{ offsetof(xfs_sb_t, sb_logsectsize),0 },
|
|
{ offsetof(xfs_sb_t, sb_logsunit), 0 },
|
|
{ offsetof(xfs_sb_t, sb_features2), 0 },
|
|
{ sizeof(xfs_sb_t), 0 }
|
|
};
|
|
|
|
/*
|
|
* Return a pointer to an initialized xfs_mount structure.
|
|
*/
|
|
xfs_mount_t *
|
|
xfs_mount_init(void)
|
|
{
|
|
xfs_mount_t *mp;
|
|
|
|
mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
|
|
|
|
if (xfs_icsb_init_counters(mp)) {
|
|
mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
|
|
}
|
|
|
|
AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail");
|
|
spinlock_init(&mp->m_sb_lock, "xfs_sb");
|
|
mutex_init(&mp->m_ilock);
|
|
initnsema(&mp->m_growlock, 1, "xfs_grow");
|
|
/*
|
|
* Initialize the AIL.
|
|
*/
|
|
xfs_trans_ail_init(mp);
|
|
|
|
atomic_set(&mp->m_active_trans, 0);
|
|
|
|
return mp;
|
|
}
|
|
|
|
/*
|
|
* Free up the resources associated with a mount structure. Assume that
|
|
* the structure was initially zeroed, so we can tell which fields got
|
|
* initialized.
|
|
*/
|
|
void
|
|
xfs_mount_free(
|
|
xfs_mount_t *mp,
|
|
int remove_bhv)
|
|
{
|
|
if (mp->m_ihash)
|
|
xfs_ihash_free(mp);
|
|
if (mp->m_chash)
|
|
xfs_chash_free(mp);
|
|
|
|
if (mp->m_perag) {
|
|
int agno;
|
|
|
|
for (agno = 0; agno < mp->m_maxagi; agno++)
|
|
if (mp->m_perag[agno].pagb_list)
|
|
kmem_free(mp->m_perag[agno].pagb_list,
|
|
sizeof(xfs_perag_busy_t) *
|
|
XFS_PAGB_NUM_SLOTS);
|
|
kmem_free(mp->m_perag,
|
|
sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
|
|
}
|
|
|
|
AIL_LOCK_DESTROY(&mp->m_ail_lock);
|
|
spinlock_destroy(&mp->m_sb_lock);
|
|
mutex_destroy(&mp->m_ilock);
|
|
freesema(&mp->m_growlock);
|
|
if (mp->m_quotainfo)
|
|
XFS_QM_DONE(mp);
|
|
|
|
if (mp->m_fsname != NULL)
|
|
kmem_free(mp->m_fsname, mp->m_fsname_len);
|
|
if (mp->m_rtname != NULL)
|
|
kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
|
|
if (mp->m_logname != NULL)
|
|
kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
|
|
|
|
if (remove_bhv) {
|
|
struct bhv_vfs *vfsp = XFS_MTOVFS(mp);
|
|
|
|
bhv_remove_all_vfsops(vfsp, 0);
|
|
VFS_REMOVEBHV(vfsp, &mp->m_bhv);
|
|
}
|
|
|
|
xfs_icsb_destroy_counters(mp);
|
|
kmem_free(mp, sizeof(xfs_mount_t));
|
|
}
|
|
|
|
/*
|
|
* Check size of device based on the (data/realtime) block count.
|
|
* Note: this check is used by the growfs code as well as mount.
|
|
*/
|
|
int
|
|
xfs_sb_validate_fsb_count(
|
|
xfs_sb_t *sbp,
|
|
__uint64_t nblocks)
|
|
{
|
|
ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
|
|
ASSERT(sbp->sb_blocklog >= BBSHIFT);
|
|
|
|
#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
|
|
if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
|
|
return E2BIG;
|
|
#else /* Limited by UINT_MAX of sectors */
|
|
if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
|
|
return E2BIG;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the SB found.
|
|
*/
|
|
STATIC int
|
|
xfs_mount_validate_sb(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_t *sbp,
|
|
int flags)
|
|
{
|
|
/*
|
|
* If the log device and data device have the
|
|
* same device number, the log is internal.
|
|
* Consequently, the sb_logstart should be non-zero. If
|
|
* we have a zero sb_logstart in this case, we may be trying to mount
|
|
* a volume filesystem in a non-volume manner.
|
|
*/
|
|
if (sbp->sb_magicnum != XFS_SB_MAGIC) {
|
|
xfs_fs_mount_cmn_err(flags, "bad magic number");
|
|
return XFS_ERROR(EWRONGFS);
|
|
}
|
|
|
|
if (!XFS_SB_GOOD_VERSION(sbp)) {
|
|
xfs_fs_mount_cmn_err(flags, "bad version");
|
|
return XFS_ERROR(EWRONGFS);
|
|
}
|
|
|
|
if (unlikely(
|
|
sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"filesystem is marked as having an external log; "
|
|
"specify logdev on the\nmount command line.");
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
|
|
if (unlikely(
|
|
sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"filesystem is marked as having an internal log; "
|
|
"do not specify logdev on\nthe mount command line.");
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
|
|
/*
|
|
* More sanity checking. These were stolen directly from
|
|
* xfs_repair.
|
|
*/
|
|
if (unlikely(
|
|
sbp->sb_agcount <= 0 ||
|
|
sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
|
|
sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
|
|
sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
|
|
sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
|
|
sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
|
|
sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
|
|
sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
|
|
sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
|
|
sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
|
|
sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
|
|
sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
|
|
sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
|
|
(sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
|
|
(sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
|
|
(sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
|
|
(sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
|
|
xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
|
|
/*
|
|
* Sanity check AG count, size fields against data size field
|
|
*/
|
|
if (unlikely(
|
|
sbp->sb_dblocks == 0 ||
|
|
sbp->sb_dblocks >
|
|
(xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
|
|
sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
|
|
sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
|
|
xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
|
|
if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
|
|
xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"file system too large to be mounted on this system.");
|
|
return XFS_ERROR(E2BIG);
|
|
}
|
|
|
|
if (unlikely(sbp->sb_inprogress)) {
|
|
xfs_fs_mount_cmn_err(flags, "file system busy");
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
|
|
/*
|
|
* Version 1 directory format has never worked on Linux.
|
|
*/
|
|
if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) {
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"file system using version 1 directory format");
|
|
return XFS_ERROR(ENOSYS);
|
|
}
|
|
|
|
/*
|
|
* Until this is fixed only page-sized or smaller data blocks work.
|
|
*/
|
|
if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"file system with blocksize %d bytes",
|
|
sbp->sb_blocksize);
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"only pagesize (%ld) or less will currently work.",
|
|
PAGE_SIZE);
|
|
return XFS_ERROR(ENOSYS);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
xfs_agnumber_t
|
|
xfs_initialize_perag(
|
|
bhv_vfs_t *vfs,
|
|
xfs_mount_t *mp,
|
|
xfs_agnumber_t agcount)
|
|
{
|
|
xfs_agnumber_t index, max_metadata;
|
|
xfs_perag_t *pag;
|
|
xfs_agino_t agino;
|
|
xfs_ino_t ino;
|
|
xfs_sb_t *sbp = &mp->m_sb;
|
|
xfs_ino_t max_inum = XFS_MAXINUMBER_32;
|
|
|
|
/* Check to see if the filesystem can overflow 32 bit inodes */
|
|
agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
|
|
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
|
|
|
|
/* Clear the mount flag if no inode can overflow 32 bits
|
|
* on this filesystem, or if specifically requested..
|
|
*/
|
|
if ((vfs->vfs_flag & VFS_32BITINODES) && ino > max_inum) {
|
|
mp->m_flags |= XFS_MOUNT_32BITINODES;
|
|
} else {
|
|
mp->m_flags &= ~XFS_MOUNT_32BITINODES;
|
|
}
|
|
|
|
/* If we can overflow then setup the ag headers accordingly */
|
|
if (mp->m_flags & XFS_MOUNT_32BITINODES) {
|
|
/* Calculate how much should be reserved for inodes to
|
|
* meet the max inode percentage.
|
|
*/
|
|
if (mp->m_maxicount) {
|
|
__uint64_t icount;
|
|
|
|
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
|
|
do_div(icount, 100);
|
|
icount += sbp->sb_agblocks - 1;
|
|
do_div(icount, sbp->sb_agblocks);
|
|
max_metadata = icount;
|
|
} else {
|
|
max_metadata = agcount;
|
|
}
|
|
for (index = 0; index < agcount; index++) {
|
|
ino = XFS_AGINO_TO_INO(mp, index, agino);
|
|
if (ino > max_inum) {
|
|
index++;
|
|
break;
|
|
}
|
|
|
|
/* This ag is preferred for inodes */
|
|
pag = &mp->m_perag[index];
|
|
pag->pagi_inodeok = 1;
|
|
if (index < max_metadata)
|
|
pag->pagf_metadata = 1;
|
|
}
|
|
} else {
|
|
/* Setup default behavior for smaller filesystems */
|
|
for (index = 0; index < agcount; index++) {
|
|
pag = &mp->m_perag[index];
|
|
pag->pagi_inodeok = 1;
|
|
}
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* xfs_xlatesb
|
|
*
|
|
* data - on disk version of sb
|
|
* sb - a superblock
|
|
* dir - conversion direction: <0 - convert sb to buf
|
|
* >0 - convert buf to sb
|
|
* fields - which fields to copy (bitmask)
|
|
*/
|
|
void
|
|
xfs_xlatesb(
|
|
void *data,
|
|
xfs_sb_t *sb,
|
|
int dir,
|
|
__int64_t fields)
|
|
{
|
|
xfs_caddr_t buf_ptr;
|
|
xfs_caddr_t mem_ptr;
|
|
xfs_sb_field_t f;
|
|
int first;
|
|
int size;
|
|
|
|
ASSERT(dir);
|
|
ASSERT(fields);
|
|
|
|
if (!fields)
|
|
return;
|
|
|
|
buf_ptr = (xfs_caddr_t)data;
|
|
mem_ptr = (xfs_caddr_t)sb;
|
|
|
|
while (fields) {
|
|
f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
|
|
first = xfs_sb_info[f].offset;
|
|
size = xfs_sb_info[f + 1].offset - first;
|
|
|
|
ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
|
|
|
|
if (size == 1 || xfs_sb_info[f].type == 1) {
|
|
if (dir > 0) {
|
|
memcpy(mem_ptr + first, buf_ptr + first, size);
|
|
} else {
|
|
memcpy(buf_ptr + first, mem_ptr + first, size);
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 2:
|
|
INT_XLATE(*(__uint16_t*)(buf_ptr+first),
|
|
*(__uint16_t*)(mem_ptr+first),
|
|
dir, ARCH_CONVERT);
|
|
break;
|
|
case 4:
|
|
INT_XLATE(*(__uint32_t*)(buf_ptr+first),
|
|
*(__uint32_t*)(mem_ptr+first),
|
|
dir, ARCH_CONVERT);
|
|
break;
|
|
case 8:
|
|
INT_XLATE(*(__uint64_t*)(buf_ptr+first),
|
|
*(__uint64_t*)(mem_ptr+first), dir, ARCH_CONVERT);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
|
|
fields &= ~(1LL << f);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xfs_readsb
|
|
*
|
|
* Does the initial read of the superblock.
|
|
*/
|
|
int
|
|
xfs_readsb(xfs_mount_t *mp, int flags)
|
|
{
|
|
unsigned int sector_size;
|
|
unsigned int extra_flags;
|
|
xfs_buf_t *bp;
|
|
xfs_sb_t *sbp;
|
|
int error;
|
|
|
|
ASSERT(mp->m_sb_bp == NULL);
|
|
ASSERT(mp->m_ddev_targp != NULL);
|
|
|
|
/*
|
|
* Allocate a (locked) buffer to hold the superblock.
|
|
* This will be kept around at all times to optimize
|
|
* access to the superblock.
|
|
*/
|
|
sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
|
|
extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
|
|
|
|
bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
|
|
BTOBB(sector_size), extra_flags);
|
|
if (!bp || XFS_BUF_ISERROR(bp)) {
|
|
xfs_fs_mount_cmn_err(flags, "SB read failed");
|
|
error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
|
|
goto fail;
|
|
}
|
|
ASSERT(XFS_BUF_ISBUSY(bp));
|
|
ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
|
|
|
|
/*
|
|
* Initialize the mount structure from the superblock.
|
|
* But first do some basic consistency checking.
|
|
*/
|
|
sbp = XFS_BUF_TO_SBP(bp);
|
|
xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), 1, XFS_SB_ALL_BITS);
|
|
|
|
error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
|
|
if (error) {
|
|
xfs_fs_mount_cmn_err(flags, "SB validate failed");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* We must be able to do sector-sized and sector-aligned IO.
|
|
*/
|
|
if (sector_size > mp->m_sb.sb_sectsize) {
|
|
xfs_fs_mount_cmn_err(flags,
|
|
"device supports only %u byte sectors (not %u)",
|
|
sector_size, mp->m_sb.sb_sectsize);
|
|
error = ENOSYS;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* If device sector size is smaller than the superblock size,
|
|
* re-read the superblock so the buffer is correctly sized.
|
|
*/
|
|
if (sector_size < mp->m_sb.sb_sectsize) {
|
|
XFS_BUF_UNMANAGE(bp);
|
|
xfs_buf_relse(bp);
|
|
sector_size = mp->m_sb.sb_sectsize;
|
|
bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
|
|
BTOBB(sector_size), extra_flags);
|
|
if (!bp || XFS_BUF_ISERROR(bp)) {
|
|
xfs_fs_mount_cmn_err(flags, "SB re-read failed");
|
|
error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
|
|
goto fail;
|
|
}
|
|
ASSERT(XFS_BUF_ISBUSY(bp));
|
|
ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
|
|
}
|
|
|
|
/* Initialize per-cpu counters */
|
|
xfs_icsb_reinit_counters(mp);
|
|
|
|
mp->m_sb_bp = bp;
|
|
xfs_buf_relse(bp);
|
|
ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
|
|
return 0;
|
|
|
|
fail:
|
|
if (bp) {
|
|
XFS_BUF_UNMANAGE(bp);
|
|
xfs_buf_relse(bp);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* xfs_mount_common
|
|
*
|
|
* Mount initialization code establishing various mount
|
|
* fields from the superblock associated with the given
|
|
* mount structure
|
|
*/
|
|
STATIC void
|
|
xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
|
|
{
|
|
int i;
|
|
|
|
mp->m_agfrotor = mp->m_agirotor = 0;
|
|
spinlock_init(&mp->m_agirotor_lock, "m_agirotor_lock");
|
|
mp->m_maxagi = mp->m_sb.sb_agcount;
|
|
mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
|
|
mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
|
|
mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
|
|
mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
|
|
mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
|
|
mp->m_litino = sbp->sb_inodesize -
|
|
((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
|
|
mp->m_blockmask = sbp->sb_blocksize - 1;
|
|
mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
|
|
mp->m_blockwmask = mp->m_blockwsize - 1;
|
|
INIT_LIST_HEAD(&mp->m_del_inodes);
|
|
|
|
/*
|
|
* Setup for attributes, in case they get created.
|
|
* This value is for inodes getting attributes for the first time,
|
|
* the per-inode value is for old attribute values.
|
|
*/
|
|
ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
|
|
switch (sbp->sb_inodesize) {
|
|
case 256:
|
|
mp->m_attroffset = XFS_LITINO(mp) -
|
|
XFS_BMDR_SPACE_CALC(MINABTPTRS);
|
|
break;
|
|
case 512:
|
|
case 1024:
|
|
case 2048:
|
|
mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
ASSERT(mp->m_attroffset < XFS_LITINO(mp));
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
|
|
xfs_alloc, i == 0);
|
|
mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
|
|
xfs_alloc, i == 0);
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
|
|
xfs_bmbt, i == 0);
|
|
mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
|
|
xfs_bmbt, i == 0);
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
|
|
xfs_inobt, i == 0);
|
|
mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
|
|
xfs_inobt, i == 0);
|
|
}
|
|
|
|
mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
|
|
mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
|
|
sbp->sb_inopblock);
|
|
mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
|
|
}
|
|
|
|
/*
|
|
* xfs_initialize_perag_data
|
|
*
|
|
* Read in each per-ag structure so we can count up the number of
|
|
* allocated inodes, free inodes and used filesystem blocks as this
|
|
* information is no longer persistent in the superblock. Once we have
|
|
* this information, write it into the in-core superblock structure.
|
|
*/
|
|
STATIC int
|
|
xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
|
|
{
|
|
xfs_agnumber_t index;
|
|
xfs_perag_t *pag;
|
|
xfs_sb_t *sbp = &mp->m_sb;
|
|
uint64_t ifree = 0;
|
|
uint64_t ialloc = 0;
|
|
uint64_t bfree = 0;
|
|
uint64_t bfreelst = 0;
|
|
uint64_t btree = 0;
|
|
int error;
|
|
int s;
|
|
|
|
for (index = 0; index < agcount; index++) {
|
|
/*
|
|
* read the agf, then the agi. This gets us
|
|
* all the inforamtion we need and populates the
|
|
* per-ag structures for us.
|
|
*/
|
|
error = xfs_alloc_pagf_init(mp, NULL, index, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_ialloc_pagi_init(mp, NULL, index);
|
|
if (error)
|
|
return error;
|
|
pag = &mp->m_perag[index];
|
|
ifree += pag->pagi_freecount;
|
|
ialloc += pag->pagi_count;
|
|
bfree += pag->pagf_freeblks;
|
|
bfreelst += pag->pagf_flcount;
|
|
btree += pag->pagf_btreeblks;
|
|
}
|
|
/*
|
|
* Overwrite incore superblock counters with just-read data
|
|
*/
|
|
s = XFS_SB_LOCK(mp);
|
|
sbp->sb_ifree = ifree;
|
|
sbp->sb_icount = ialloc;
|
|
sbp->sb_fdblocks = bfree + bfreelst + btree;
|
|
XFS_SB_UNLOCK(mp, s);
|
|
|
|
/* Fixup the per-cpu counters as well. */
|
|
xfs_icsb_reinit_counters(mp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_mountfs
|
|
*
|
|
* This function does the following on an initial mount of a file system:
|
|
* - reads the superblock from disk and init the mount struct
|
|
* - if we're a 32-bit kernel, do a size check on the superblock
|
|
* so we don't mount terabyte filesystems
|
|
* - init mount struct realtime fields
|
|
* - allocate inode hash table for fs
|
|
* - init directory manager
|
|
* - perform recovery and init the log manager
|
|
*/
|
|
int
|
|
xfs_mountfs(
|
|
bhv_vfs_t *vfsp,
|
|
xfs_mount_t *mp,
|
|
int mfsi_flags)
|
|
{
|
|
xfs_buf_t *bp;
|
|
xfs_sb_t *sbp = &(mp->m_sb);
|
|
xfs_inode_t *rip;
|
|
bhv_vnode_t *rvp = NULL;
|
|
int readio_log, writeio_log;
|
|
xfs_daddr_t d;
|
|
__uint64_t resblks;
|
|
__int64_t update_flags;
|
|
uint quotamount, quotaflags;
|
|
int agno;
|
|
int uuid_mounted = 0;
|
|
int error = 0;
|
|
|
|
if (mp->m_sb_bp == NULL) {
|
|
if ((error = xfs_readsb(mp, mfsi_flags))) {
|
|
return error;
|
|
}
|
|
}
|
|
xfs_mount_common(mp, sbp);
|
|
|
|
/*
|
|
* Check if sb_agblocks is aligned at stripe boundary
|
|
* If sb_agblocks is NOT aligned turn off m_dalign since
|
|
* allocator alignment is within an ag, therefore ag has
|
|
* to be aligned at stripe boundary.
|
|
*/
|
|
update_flags = 0LL;
|
|
if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
|
|
/*
|
|
* If stripe unit and stripe width are not multiples
|
|
* of the fs blocksize turn off alignment.
|
|
*/
|
|
if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
|
|
(BBTOB(mp->m_swidth) & mp->m_blockmask)) {
|
|
if (mp->m_flags & XFS_MOUNT_RETERR) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: alignment check 1 failed");
|
|
error = XFS_ERROR(EINVAL);
|
|
goto error1;
|
|
}
|
|
mp->m_dalign = mp->m_swidth = 0;
|
|
} else {
|
|
/*
|
|
* Convert the stripe unit and width to FSBs.
|
|
*/
|
|
mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
|
|
if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
|
|
if (mp->m_flags & XFS_MOUNT_RETERR) {
|
|
error = XFS_ERROR(EINVAL);
|
|
goto error1;
|
|
}
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
|
"stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
|
|
mp->m_dalign, mp->m_swidth,
|
|
sbp->sb_agblocks);
|
|
|
|
mp->m_dalign = 0;
|
|
mp->m_swidth = 0;
|
|
} else if (mp->m_dalign) {
|
|
mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
|
|
} else {
|
|
if (mp->m_flags & XFS_MOUNT_RETERR) {
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
|
"stripe alignment turned off: sunit(%d) less than bsize(%d)",
|
|
mp->m_dalign,
|
|
mp->m_blockmask +1);
|
|
error = XFS_ERROR(EINVAL);
|
|
goto error1;
|
|
}
|
|
mp->m_swidth = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update superblock with new values
|
|
* and log changes
|
|
*/
|
|
if (XFS_SB_VERSION_HASDALIGN(sbp)) {
|
|
if (sbp->sb_unit != mp->m_dalign) {
|
|
sbp->sb_unit = mp->m_dalign;
|
|
update_flags |= XFS_SB_UNIT;
|
|
}
|
|
if (sbp->sb_width != mp->m_swidth) {
|
|
sbp->sb_width = mp->m_swidth;
|
|
update_flags |= XFS_SB_WIDTH;
|
|
}
|
|
}
|
|
} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
|
|
XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) {
|
|
mp->m_dalign = sbp->sb_unit;
|
|
mp->m_swidth = sbp->sb_width;
|
|
}
|
|
|
|
xfs_alloc_compute_maxlevels(mp);
|
|
xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
|
|
xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
|
|
xfs_ialloc_compute_maxlevels(mp);
|
|
|
|
if (sbp->sb_imax_pct) {
|
|
__uint64_t icount;
|
|
|
|
/* Make sure the maximum inode count is a multiple of the
|
|
* units we allocate inodes in.
|
|
*/
|
|
|
|
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
|
|
do_div(icount, 100);
|
|
do_div(icount, mp->m_ialloc_blks);
|
|
mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
|
|
sbp->sb_inopblog;
|
|
} else
|
|
mp->m_maxicount = 0;
|
|
|
|
mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
|
|
|
|
/*
|
|
* XFS uses the uuid from the superblock as the unique
|
|
* identifier for fsid. We can not use the uuid from the volume
|
|
* since a single partition filesystem is identical to a single
|
|
* partition volume/filesystem.
|
|
*/
|
|
if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
|
|
(mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
|
|
__uint64_t ret64;
|
|
if (xfs_uuid_mount(mp)) {
|
|
error = XFS_ERROR(EINVAL);
|
|
goto error1;
|
|
}
|
|
uuid_mounted=1;
|
|
ret64 = uuid_hash64(&sbp->sb_uuid);
|
|
memcpy(&vfsp->vfs_fsid, &ret64, sizeof(ret64));
|
|
}
|
|
|
|
/*
|
|
* Set the default minimum read and write sizes unless
|
|
* already specified in a mount option.
|
|
* We use smaller I/O sizes when the file system
|
|
* is being used for NFS service (wsync mount option).
|
|
*/
|
|
if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
|
|
if (mp->m_flags & XFS_MOUNT_WSYNC) {
|
|
readio_log = XFS_WSYNC_READIO_LOG;
|
|
writeio_log = XFS_WSYNC_WRITEIO_LOG;
|
|
} else {
|
|
readio_log = XFS_READIO_LOG_LARGE;
|
|
writeio_log = XFS_WRITEIO_LOG_LARGE;
|
|
}
|
|
} else {
|
|
readio_log = mp->m_readio_log;
|
|
writeio_log = mp->m_writeio_log;
|
|
}
|
|
|
|
/*
|
|
* Set the number of readahead buffers to use based on
|
|
* physical memory size.
|
|
*/
|
|
if (xfs_physmem <= 4096) /* <= 16MB */
|
|
mp->m_nreadaheads = XFS_RW_NREADAHEAD_16MB;
|
|
else if (xfs_physmem <= 8192) /* <= 32MB */
|
|
mp->m_nreadaheads = XFS_RW_NREADAHEAD_32MB;
|
|
else
|
|
mp->m_nreadaheads = XFS_RW_NREADAHEAD_K32;
|
|
if (sbp->sb_blocklog > readio_log) {
|
|
mp->m_readio_log = sbp->sb_blocklog;
|
|
} else {
|
|
mp->m_readio_log = readio_log;
|
|
}
|
|
mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
|
|
if (sbp->sb_blocklog > writeio_log) {
|
|
mp->m_writeio_log = sbp->sb_blocklog;
|
|
} else {
|
|
mp->m_writeio_log = writeio_log;
|
|
}
|
|
mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
|
|
|
|
/*
|
|
* Set the inode cluster size based on the physical memory
|
|
* size. This may still be overridden by the file system
|
|
* block size if it is larger than the chosen cluster size.
|
|
*/
|
|
if (xfs_physmem <= btoc(32 * 1024 * 1024)) { /* <= 32 MB */
|
|
mp->m_inode_cluster_size = XFS_INODE_SMALL_CLUSTER_SIZE;
|
|
} else {
|
|
mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
|
|
}
|
|
/*
|
|
* Set whether we're using inode alignment.
|
|
*/
|
|
if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) &&
|
|
mp->m_sb.sb_inoalignmt >=
|
|
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
|
|
mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
|
|
else
|
|
mp->m_inoalign_mask = 0;
|
|
/*
|
|
* If we are using stripe alignment, check whether
|
|
* the stripe unit is a multiple of the inode alignment
|
|
*/
|
|
if (mp->m_dalign && mp->m_inoalign_mask &&
|
|
!(mp->m_dalign & mp->m_inoalign_mask))
|
|
mp->m_sinoalign = mp->m_dalign;
|
|
else
|
|
mp->m_sinoalign = 0;
|
|
/*
|
|
* Check that the data (and log if separate) are an ok size.
|
|
*/
|
|
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
|
|
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
|
|
cmn_err(CE_WARN, "XFS: size check 1 failed");
|
|
error = XFS_ERROR(E2BIG);
|
|
goto error1;
|
|
}
|
|
error = xfs_read_buf(mp, mp->m_ddev_targp,
|
|
d - XFS_FSS_TO_BB(mp, 1),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &bp);
|
|
if (!error) {
|
|
xfs_buf_relse(bp);
|
|
} else {
|
|
cmn_err(CE_WARN, "XFS: size check 2 failed");
|
|
if (error == ENOSPC) {
|
|
error = XFS_ERROR(E2BIG);
|
|
}
|
|
goto error1;
|
|
}
|
|
|
|
if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
|
|
mp->m_logdev_targp != mp->m_ddev_targp) {
|
|
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
|
|
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
|
|
cmn_err(CE_WARN, "XFS: size check 3 failed");
|
|
error = XFS_ERROR(E2BIG);
|
|
goto error1;
|
|
}
|
|
error = xfs_read_buf(mp, mp->m_logdev_targp,
|
|
d - XFS_FSB_TO_BB(mp, 1),
|
|
XFS_FSB_TO_BB(mp, 1), 0, &bp);
|
|
if (!error) {
|
|
xfs_buf_relse(bp);
|
|
} else {
|
|
cmn_err(CE_WARN, "XFS: size check 3 failed");
|
|
if (error == ENOSPC) {
|
|
error = XFS_ERROR(E2BIG);
|
|
}
|
|
goto error1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize realtime fields in the mount structure
|
|
*/
|
|
if ((error = xfs_rtmount_init(mp))) {
|
|
cmn_err(CE_WARN, "XFS: RT mount failed");
|
|
goto error1;
|
|
}
|
|
|
|
/*
|
|
* For client case we are done now
|
|
*/
|
|
if (mfsi_flags & XFS_MFSI_CLIENT) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copies the low order bits of the timestamp and the randomly
|
|
* set "sequence" number out of a UUID.
|
|
*/
|
|
uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
|
|
|
|
/*
|
|
* The vfs structure needs to have a file system independent
|
|
* way of checking for the invariant file system ID. Since it
|
|
* can't look at mount structures it has a pointer to the data
|
|
* in the mount structure.
|
|
*
|
|
* File systems that don't support user level file handles (i.e.
|
|
* all of them except for XFS) will leave vfs_altfsid as NULL.
|
|
*/
|
|
vfsp->vfs_altfsid = (xfs_fsid_t *)mp->m_fixedfsid;
|
|
mp->m_dmevmask = 0; /* not persistent; set after each mount */
|
|
|
|
xfs_dir_mount(mp);
|
|
|
|
/*
|
|
* Initialize the attribute manager's entries.
|
|
*/
|
|
mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
|
|
|
|
/*
|
|
* Initialize the precomputed transaction reservations values.
|
|
*/
|
|
xfs_trans_init(mp);
|
|
|
|
/*
|
|
* Allocate and initialize the inode hash table for this
|
|
* file system.
|
|
*/
|
|
xfs_ihash_init(mp);
|
|
xfs_chash_init(mp);
|
|
|
|
/*
|
|
* Allocate and initialize the per-ag data.
|
|
*/
|
|
init_rwsem(&mp->m_peraglock);
|
|
mp->m_perag =
|
|
kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
|
|
|
|
mp->m_maxagi = xfs_initialize_perag(vfsp, mp, sbp->sb_agcount);
|
|
|
|
/*
|
|
* log's mount-time initialization. Perform 1st part recovery if needed
|
|
*/
|
|
if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
|
|
error = xfs_log_mount(mp, mp->m_logdev_targp,
|
|
XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
|
|
XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
|
|
if (error) {
|
|
cmn_err(CE_WARN, "XFS: log mount failed");
|
|
goto error2;
|
|
}
|
|
} else { /* No log has been defined */
|
|
cmn_err(CE_WARN, "XFS: no log defined");
|
|
XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
|
|
error = XFS_ERROR(EFSCORRUPTED);
|
|
goto error2;
|
|
}
|
|
|
|
/*
|
|
* Now the log is mounted, we know if it was an unclean shutdown or
|
|
* not. If it was, with the first phase of recovery has completed, we
|
|
* have consistent AG blocks on disk. We have not recovered EFIs yet,
|
|
* but they are recovered transactionally in the second recovery phase
|
|
* later.
|
|
*
|
|
* Hence we can safely re-initialise incore superblock counters from
|
|
* the per-ag data. These may not be correct if the filesystem was not
|
|
* cleanly unmounted, so we need to wait for recovery to finish before
|
|
* doing this.
|
|
*
|
|
* If the filesystem was cleanly unmounted, then we can trust the
|
|
* values in the superblock to be correct and we don't need to do
|
|
* anything here.
|
|
*
|
|
* If we are currently making the filesystem, the initialisation will
|
|
* fail as the perag data is in an undefined state.
|
|
*/
|
|
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
|
|
!XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
|
|
!mp->m_sb.sb_inprogress) {
|
|
error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
|
|
if (error) {
|
|
goto error2;
|
|
}
|
|
}
|
|
/*
|
|
* Get and sanity-check the root inode.
|
|
* Save the pointer to it in the mount structure.
|
|
*/
|
|
error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
|
|
if (error) {
|
|
cmn_err(CE_WARN, "XFS: failed to read root inode");
|
|
goto error3;
|
|
}
|
|
|
|
ASSERT(rip != NULL);
|
|
rvp = XFS_ITOV(rip);
|
|
|
|
if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
|
|
cmn_err(CE_WARN, "XFS: corrupted root inode");
|
|
cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
|
|
XFS_BUFTARG_NAME(mp->m_ddev_targp),
|
|
(unsigned long long)rip->i_ino);
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
|
|
mp);
|
|
error = XFS_ERROR(EFSCORRUPTED);
|
|
goto error4;
|
|
}
|
|
mp->m_rootip = rip; /* save it */
|
|
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* Initialize realtime inode pointers in the mount structure
|
|
*/
|
|
if ((error = xfs_rtmount_inodes(mp))) {
|
|
/*
|
|
* Free up the root inode.
|
|
*/
|
|
cmn_err(CE_WARN, "XFS: failed to read RT inodes");
|
|
goto error4;
|
|
}
|
|
|
|
/*
|
|
* If fs is not mounted readonly, then update the superblock
|
|
* unit and width changes.
|
|
*/
|
|
if (update_flags && !(vfsp->vfs_flag & VFS_RDONLY))
|
|
xfs_mount_log_sbunit(mp, update_flags);
|
|
|
|
/*
|
|
* Initialise the XFS quota management subsystem for this mount
|
|
*/
|
|
if ((error = XFS_QM_INIT(mp, "amount, "aflags)))
|
|
goto error4;
|
|
|
|
/*
|
|
* Finish recovering the file system. This part needed to be
|
|
* delayed until after the root and real-time bitmap inodes
|
|
* were consistently read in.
|
|
*/
|
|
error = xfs_log_mount_finish(mp, mfsi_flags);
|
|
if (error) {
|
|
cmn_err(CE_WARN, "XFS: log mount finish failed");
|
|
goto error4;
|
|
}
|
|
|
|
/*
|
|
* Complete the quota initialisation, post-log-replay component.
|
|
*/
|
|
if ((error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags)))
|
|
goto error4;
|
|
|
|
/*
|
|
* Now we are mounted, reserve a small amount of unused space for
|
|
* privileged transactions. This is needed so that transaction
|
|
* space required for critical operations can dip into this pool
|
|
* when at ENOSPC. This is needed for operations like create with
|
|
* attr, unwritten extent conversion at ENOSPC, etc. Data allocations
|
|
* are not allowed to use this reserved space.
|
|
*
|
|
* We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
|
|
* This may drive us straight to ENOSPC on mount, but that implies
|
|
* we were already there on the last unmount.
|
|
*/
|
|
resblks = min_t(__uint64_t, mp->m_sb.sb_dblocks / 20, 1024);
|
|
xfs_reserve_blocks(mp, &resblks, NULL);
|
|
|
|
return 0;
|
|
|
|
error4:
|
|
/*
|
|
* Free up the root inode.
|
|
*/
|
|
VN_RELE(rvp);
|
|
error3:
|
|
xfs_log_unmount_dealloc(mp);
|
|
error2:
|
|
xfs_ihash_free(mp);
|
|
xfs_chash_free(mp);
|
|
for (agno = 0; agno < sbp->sb_agcount; agno++)
|
|
if (mp->m_perag[agno].pagb_list)
|
|
kmem_free(mp->m_perag[agno].pagb_list,
|
|
sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
|
|
kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
|
|
mp->m_perag = NULL;
|
|
/* FALLTHROUGH */
|
|
error1:
|
|
if (uuid_mounted)
|
|
xfs_uuid_unmount(mp);
|
|
xfs_freesb(mp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_unmountfs
|
|
*
|
|
* This flushes out the inodes,dquots and the superblock, unmounts the
|
|
* log and makes sure that incore structures are freed.
|
|
*/
|
|
int
|
|
xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
|
|
{
|
|
struct bhv_vfs *vfsp = XFS_MTOVFS(mp);
|
|
#if defined(DEBUG) || defined(INDUCE_IO_ERROR)
|
|
int64_t fsid;
|
|
#endif
|
|
__uint64_t resblks;
|
|
|
|
/*
|
|
* We can potentially deadlock here if we have an inode cluster
|
|
* that has been freed has it's buffer still pinned in memory because
|
|
* the transaction is still sitting in a iclog. The stale inodes
|
|
* on that buffer will have their flush locks held until the
|
|
* transaction hits the disk and the callbacks run. the inode
|
|
* flush takes the flush lock unconditionally and with nothing to
|
|
* push out the iclog we will never get that unlocked. hence we
|
|
* need to force the log first.
|
|
*/
|
|
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
|
|
xfs_iflush_all(mp);
|
|
|
|
XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
|
|
|
|
/*
|
|
* Flush out the log synchronously so that we know for sure
|
|
* that nothing is pinned. This is important because bflush()
|
|
* will skip pinned buffers.
|
|
*/
|
|
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
|
|
|
|
xfs_binval(mp->m_ddev_targp);
|
|
if (mp->m_rtdev_targp) {
|
|
xfs_binval(mp->m_rtdev_targp);
|
|
}
|
|
|
|
/*
|
|
* Unreserve any blocks we have so that when we unmount we don't account
|
|
* the reserved free space as used. This is really only necessary for
|
|
* lazy superblock counting because it trusts the incore superblock
|
|
* counters to be aboslutely correct on clean unmount.
|
|
*
|
|
* We don't bother correcting this elsewhere for lazy superblock
|
|
* counting because on mount of an unclean filesystem we reconstruct the
|
|
* correct counter value and this is irrelevant.
|
|
*
|
|
* For non-lazy counter filesystems, this doesn't matter at all because
|
|
* we only every apply deltas to the superblock and hence the incore
|
|
* value does not matter....
|
|
*/
|
|
resblks = 0;
|
|
xfs_reserve_blocks(mp, &resblks, NULL);
|
|
|
|
xfs_log_sbcount(mp, 1);
|
|
xfs_unmountfs_writesb(mp);
|
|
xfs_unmountfs_wait(mp); /* wait for async bufs */
|
|
xfs_log_unmount(mp); /* Done! No more fs ops. */
|
|
|
|
xfs_freesb(mp);
|
|
|
|
/*
|
|
* All inodes from this mount point should be freed.
|
|
*/
|
|
ASSERT(mp->m_inodes == NULL);
|
|
|
|
xfs_unmountfs_close(mp, cr);
|
|
if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
|
|
xfs_uuid_unmount(mp);
|
|
|
|
#if defined(DEBUG) || defined(INDUCE_IO_ERROR)
|
|
/*
|
|
* clear all error tags on this filesystem
|
|
*/
|
|
memcpy(&fsid, &vfsp->vfs_fsid, sizeof(int64_t));
|
|
xfs_errortag_clearall_umount(fsid, mp->m_fsname, 0);
|
|
#endif
|
|
XFS_IODONE(vfsp);
|
|
xfs_mount_free(mp, 1);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
|
|
{
|
|
if (mp->m_logdev_targp != mp->m_ddev_targp)
|
|
xfs_free_buftarg(mp->m_logdev_targp, 1);
|
|
if (mp->m_rtdev_targp)
|
|
xfs_free_buftarg(mp->m_rtdev_targp, 1);
|
|
xfs_free_buftarg(mp->m_ddev_targp, 0);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_unmountfs_wait(xfs_mount_t *mp)
|
|
{
|
|
if (mp->m_logdev_targp != mp->m_ddev_targp)
|
|
xfs_wait_buftarg(mp->m_logdev_targp);
|
|
if (mp->m_rtdev_targp)
|
|
xfs_wait_buftarg(mp->m_rtdev_targp);
|
|
xfs_wait_buftarg(mp->m_ddev_targp);
|
|
}
|
|
|
|
int
|
|
xfs_fs_writable(xfs_mount_t *mp)
|
|
{
|
|
bhv_vfs_t *vfsp = XFS_MTOVFS(mp);
|
|
|
|
return !(vfs_test_for_freeze(vfsp) || XFS_FORCED_SHUTDOWN(mp) ||
|
|
(vfsp->vfs_flag & VFS_RDONLY));
|
|
}
|
|
|
|
/*
|
|
* xfs_log_sbcount
|
|
*
|
|
* Called either periodically to keep the on disk superblock values
|
|
* roughly up to date or from unmount to make sure the values are
|
|
* correct on a clean unmount.
|
|
*
|
|
* Note this code can be called during the process of freezing, so
|
|
* we may need to use the transaction allocator which does not not
|
|
* block when the transaction subsystem is in its frozen state.
|
|
*/
|
|
int
|
|
xfs_log_sbcount(
|
|
xfs_mount_t *mp,
|
|
uint sync)
|
|
{
|
|
xfs_trans_t *tp;
|
|
int error;
|
|
|
|
if (!xfs_fs_writable(mp))
|
|
return 0;
|
|
|
|
xfs_icsb_sync_counters(mp);
|
|
|
|
/*
|
|
* we don't need to do this if we are updating the superblock
|
|
* counters on every modification.
|
|
*/
|
|
if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
return 0;
|
|
|
|
tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
|
|
error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
|
|
XFS_DEFAULT_LOG_COUNT);
|
|
if (error) {
|
|
xfs_trans_cancel(tp, 0);
|
|
return error;
|
|
}
|
|
|
|
xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
|
|
if (sync)
|
|
xfs_trans_set_sync(tp);
|
|
xfs_trans_commit(tp, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_unmountfs_writesb(xfs_mount_t *mp)
|
|
{
|
|
xfs_buf_t *sbp;
|
|
xfs_sb_t *sb;
|
|
int error = 0;
|
|
|
|
/*
|
|
* skip superblock write if fs is read-only, or
|
|
* if we are doing a forced umount.
|
|
*/
|
|
if (!(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY ||
|
|
XFS_FORCED_SHUTDOWN(mp))) {
|
|
|
|
sbp = xfs_getsb(mp, 0);
|
|
sb = XFS_BUF_TO_SBP(sbp);
|
|
|
|
/*
|
|
* mark shared-readonly if desired
|
|
*/
|
|
if (mp->m_mk_sharedro) {
|
|
if (!(sb->sb_flags & XFS_SBF_READONLY))
|
|
sb->sb_flags |= XFS_SBF_READONLY;
|
|
if (!XFS_SB_VERSION_HASSHARED(sb))
|
|
XFS_SB_VERSION_ADDSHARED(sb);
|
|
xfs_fs_cmn_err(CE_NOTE, mp,
|
|
"Unmounting, marking shared read-only");
|
|
}
|
|
|
|
XFS_BUF_UNDONE(sbp);
|
|
XFS_BUF_UNREAD(sbp);
|
|
XFS_BUF_UNDELAYWRITE(sbp);
|
|
XFS_BUF_WRITE(sbp);
|
|
XFS_BUF_UNASYNC(sbp);
|
|
ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
|
|
xfsbdstrat(mp, sbp);
|
|
/* Nevermind errors we might get here. */
|
|
error = xfs_iowait(sbp);
|
|
if (error)
|
|
xfs_ioerror_alert("xfs_unmountfs_writesb",
|
|
mp, sbp, XFS_BUF_ADDR(sbp));
|
|
if (error && mp->m_mk_sharedro)
|
|
xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
|
|
xfs_buf_relse(sbp);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_mod_sb() can be used to copy arbitrary changes to the
|
|
* in-core superblock into the superblock buffer to be logged.
|
|
* It does not provide the higher level of locking that is
|
|
* needed to protect the in-core superblock from concurrent
|
|
* access.
|
|
*/
|
|
void
|
|
xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
|
|
{
|
|
xfs_buf_t *bp;
|
|
int first;
|
|
int last;
|
|
xfs_mount_t *mp;
|
|
xfs_sb_t *sbp;
|
|
xfs_sb_field_t f;
|
|
|
|
ASSERT(fields);
|
|
if (!fields)
|
|
return;
|
|
mp = tp->t_mountp;
|
|
bp = xfs_trans_getsb(tp, mp, 0);
|
|
sbp = XFS_BUF_TO_SBP(bp);
|
|
first = sizeof(xfs_sb_t);
|
|
last = 0;
|
|
|
|
/* translate/copy */
|
|
|
|
xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), -1, fields);
|
|
|
|
/* find modified range */
|
|
|
|
f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
|
|
ASSERT((1LL << f) & XFS_SB_MOD_BITS);
|
|
first = xfs_sb_info[f].offset;
|
|
|
|
f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
|
|
ASSERT((1LL << f) & XFS_SB_MOD_BITS);
|
|
last = xfs_sb_info[f + 1].offset - 1;
|
|
|
|
xfs_trans_log_buf(tp, bp, first, last);
|
|
}
|
|
|
|
|
|
/*
|
|
* xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
|
|
* a delta to a specified field in the in-core superblock. Simply
|
|
* switch on the field indicated and apply the delta to that field.
|
|
* Fields are not allowed to dip below zero, so if the delta would
|
|
* do this do not apply it and return EINVAL.
|
|
*
|
|
* The SB_LOCK must be held when this routine is called.
|
|
*/
|
|
int
|
|
xfs_mod_incore_sb_unlocked(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field,
|
|
int64_t delta,
|
|
int rsvd)
|
|
{
|
|
int scounter; /* short counter for 32 bit fields */
|
|
long long lcounter; /* long counter for 64 bit fields */
|
|
long long res_used, rem;
|
|
|
|
/*
|
|
* With the in-core superblock spin lock held, switch
|
|
* on the indicated field. Apply the delta to the
|
|
* proper field. If the fields value would dip below
|
|
* 0, then do not apply the delta and return EINVAL.
|
|
*/
|
|
switch (field) {
|
|
case XFS_SBS_ICOUNT:
|
|
lcounter = (long long)mp->m_sb.sb_icount;
|
|
lcounter += delta;
|
|
if (lcounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_icount = lcounter;
|
|
return 0;
|
|
case XFS_SBS_IFREE:
|
|
lcounter = (long long)mp->m_sb.sb_ifree;
|
|
lcounter += delta;
|
|
if (lcounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_ifree = lcounter;
|
|
return 0;
|
|
case XFS_SBS_FDBLOCKS:
|
|
lcounter = (long long)
|
|
mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
|
|
res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
|
|
|
|
if (delta > 0) { /* Putting blocks back */
|
|
if (res_used > delta) {
|
|
mp->m_resblks_avail += delta;
|
|
} else {
|
|
rem = delta - res_used;
|
|
mp->m_resblks_avail = mp->m_resblks;
|
|
lcounter += rem;
|
|
}
|
|
} else { /* Taking blocks away */
|
|
|
|
lcounter += delta;
|
|
|
|
/*
|
|
* If were out of blocks, use any available reserved blocks if
|
|
* were allowed to.
|
|
*/
|
|
|
|
if (lcounter < 0) {
|
|
if (rsvd) {
|
|
lcounter = (long long)mp->m_resblks_avail + delta;
|
|
if (lcounter < 0) {
|
|
return XFS_ERROR(ENOSPC);
|
|
}
|
|
mp->m_resblks_avail = lcounter;
|
|
return 0;
|
|
} else { /* not reserved */
|
|
return XFS_ERROR(ENOSPC);
|
|
}
|
|
}
|
|
}
|
|
|
|
mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
|
|
return 0;
|
|
case XFS_SBS_FREXTENTS:
|
|
lcounter = (long long)mp->m_sb.sb_frextents;
|
|
lcounter += delta;
|
|
if (lcounter < 0) {
|
|
return XFS_ERROR(ENOSPC);
|
|
}
|
|
mp->m_sb.sb_frextents = lcounter;
|
|
return 0;
|
|
case XFS_SBS_DBLOCKS:
|
|
lcounter = (long long)mp->m_sb.sb_dblocks;
|
|
lcounter += delta;
|
|
if (lcounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_dblocks = lcounter;
|
|
return 0;
|
|
case XFS_SBS_AGCOUNT:
|
|
scounter = mp->m_sb.sb_agcount;
|
|
scounter += delta;
|
|
if (scounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_agcount = scounter;
|
|
return 0;
|
|
case XFS_SBS_IMAX_PCT:
|
|
scounter = mp->m_sb.sb_imax_pct;
|
|
scounter += delta;
|
|
if (scounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_imax_pct = scounter;
|
|
return 0;
|
|
case XFS_SBS_REXTSIZE:
|
|
scounter = mp->m_sb.sb_rextsize;
|
|
scounter += delta;
|
|
if (scounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_rextsize = scounter;
|
|
return 0;
|
|
case XFS_SBS_RBMBLOCKS:
|
|
scounter = mp->m_sb.sb_rbmblocks;
|
|
scounter += delta;
|
|
if (scounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_rbmblocks = scounter;
|
|
return 0;
|
|
case XFS_SBS_RBLOCKS:
|
|
lcounter = (long long)mp->m_sb.sb_rblocks;
|
|
lcounter += delta;
|
|
if (lcounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_rblocks = lcounter;
|
|
return 0;
|
|
case XFS_SBS_REXTENTS:
|
|
lcounter = (long long)mp->m_sb.sb_rextents;
|
|
lcounter += delta;
|
|
if (lcounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_rextents = lcounter;
|
|
return 0;
|
|
case XFS_SBS_REXTSLOG:
|
|
scounter = mp->m_sb.sb_rextslog;
|
|
scounter += delta;
|
|
if (scounter < 0) {
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
mp->m_sb.sb_rextslog = scounter;
|
|
return 0;
|
|
default:
|
|
ASSERT(0);
|
|
return XFS_ERROR(EINVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xfs_mod_incore_sb() is used to change a field in the in-core
|
|
* superblock structure by the specified delta. This modification
|
|
* is protected by the SB_LOCK. Just use the xfs_mod_incore_sb_unlocked()
|
|
* routine to do the work.
|
|
*/
|
|
int
|
|
xfs_mod_incore_sb(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field,
|
|
int64_t delta,
|
|
int rsvd)
|
|
{
|
|
unsigned long s;
|
|
int status;
|
|
|
|
/* check for per-cpu counters */
|
|
switch (field) {
|
|
#ifdef HAVE_PERCPU_SB
|
|
case XFS_SBS_ICOUNT:
|
|
case XFS_SBS_IFREE:
|
|
case XFS_SBS_FDBLOCKS:
|
|
if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
|
|
status = xfs_icsb_modify_counters(mp, field,
|
|
delta, rsvd);
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
default:
|
|
s = XFS_SB_LOCK(mp);
|
|
status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
|
|
XFS_SB_UNLOCK(mp, s);
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* xfs_mod_incore_sb_batch() is used to change more than one field
|
|
* in the in-core superblock structure at a time. This modification
|
|
* is protected by a lock internal to this module. The fields and
|
|
* changes to those fields are specified in the array of xfs_mod_sb
|
|
* structures passed in.
|
|
*
|
|
* Either all of the specified deltas will be applied or none of
|
|
* them will. If any modified field dips below 0, then all modifications
|
|
* will be backed out and EINVAL will be returned.
|
|
*/
|
|
int
|
|
xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
|
|
{
|
|
unsigned long s;
|
|
int status=0;
|
|
xfs_mod_sb_t *msbp;
|
|
|
|
/*
|
|
* Loop through the array of mod structures and apply each
|
|
* individually. If any fail, then back out all those
|
|
* which have already been applied. Do all of this within
|
|
* the scope of the SB_LOCK so that all of the changes will
|
|
* be atomic.
|
|
*/
|
|
s = XFS_SB_LOCK(mp);
|
|
msbp = &msb[0];
|
|
for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
|
|
/*
|
|
* Apply the delta at index n. If it fails, break
|
|
* from the loop so we'll fall into the undo loop
|
|
* below.
|
|
*/
|
|
switch (msbp->msb_field) {
|
|
#ifdef HAVE_PERCPU_SB
|
|
case XFS_SBS_ICOUNT:
|
|
case XFS_SBS_IFREE:
|
|
case XFS_SBS_FDBLOCKS:
|
|
if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
|
|
XFS_SB_UNLOCK(mp, s);
|
|
status = xfs_icsb_modify_counters(mp,
|
|
msbp->msb_field,
|
|
msbp->msb_delta, rsvd);
|
|
s = XFS_SB_LOCK(mp);
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
default:
|
|
status = xfs_mod_incore_sb_unlocked(mp,
|
|
msbp->msb_field,
|
|
msbp->msb_delta, rsvd);
|
|
break;
|
|
}
|
|
|
|
if (status != 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we didn't complete the loop above, then back out
|
|
* any changes made to the superblock. If you add code
|
|
* between the loop above and here, make sure that you
|
|
* preserve the value of status. Loop back until
|
|
* we step below the beginning of the array. Make sure
|
|
* we don't touch anything back there.
|
|
*/
|
|
if (status != 0) {
|
|
msbp--;
|
|
while (msbp >= msb) {
|
|
switch (msbp->msb_field) {
|
|
#ifdef HAVE_PERCPU_SB
|
|
case XFS_SBS_ICOUNT:
|
|
case XFS_SBS_IFREE:
|
|
case XFS_SBS_FDBLOCKS:
|
|
if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
|
|
XFS_SB_UNLOCK(mp, s);
|
|
status = xfs_icsb_modify_counters(mp,
|
|
msbp->msb_field,
|
|
-(msbp->msb_delta),
|
|
rsvd);
|
|
s = XFS_SB_LOCK(mp);
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
default:
|
|
status = xfs_mod_incore_sb_unlocked(mp,
|
|
msbp->msb_field,
|
|
-(msbp->msb_delta),
|
|
rsvd);
|
|
break;
|
|
}
|
|
ASSERT(status == 0);
|
|
msbp--;
|
|
}
|
|
}
|
|
XFS_SB_UNLOCK(mp, s);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* xfs_getsb() is called to obtain the buffer for the superblock.
|
|
* The buffer is returned locked and read in from disk.
|
|
* The buffer should be released with a call to xfs_brelse().
|
|
*
|
|
* If the flags parameter is BUF_TRYLOCK, then we'll only return
|
|
* the superblock buffer if it can be locked without sleeping.
|
|
* If it can't then we'll return NULL.
|
|
*/
|
|
xfs_buf_t *
|
|
xfs_getsb(
|
|
xfs_mount_t *mp,
|
|
int flags)
|
|
{
|
|
xfs_buf_t *bp;
|
|
|
|
ASSERT(mp->m_sb_bp != NULL);
|
|
bp = mp->m_sb_bp;
|
|
if (flags & XFS_BUF_TRYLOCK) {
|
|
if (!XFS_BUF_CPSEMA(bp)) {
|
|
return NULL;
|
|
}
|
|
} else {
|
|
XFS_BUF_PSEMA(bp, PRIBIO);
|
|
}
|
|
XFS_BUF_HOLD(bp);
|
|
ASSERT(XFS_BUF_ISDONE(bp));
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Used to free the superblock along various error paths.
|
|
*/
|
|
void
|
|
xfs_freesb(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_buf_t *bp;
|
|
|
|
/*
|
|
* Use xfs_getsb() so that the buffer will be locked
|
|
* when we call xfs_buf_relse().
|
|
*/
|
|
bp = xfs_getsb(mp, 0);
|
|
XFS_BUF_UNMANAGE(bp);
|
|
xfs_buf_relse(bp);
|
|
mp->m_sb_bp = NULL;
|
|
}
|
|
|
|
/*
|
|
* See if the UUID is unique among mounted XFS filesystems.
|
|
* Mount fails if UUID is nil or a FS with the same UUID is already mounted.
|
|
*/
|
|
STATIC int
|
|
xfs_uuid_mount(
|
|
xfs_mount_t *mp)
|
|
{
|
|
if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: Filesystem %s has nil UUID - can't mount",
|
|
mp->m_fsname);
|
|
return -1;
|
|
}
|
|
if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
|
|
cmn_err(CE_WARN,
|
|
"XFS: Filesystem %s has duplicate UUID - can't mount",
|
|
mp->m_fsname);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove filesystem from the UUID table.
|
|
*/
|
|
STATIC void
|
|
xfs_uuid_unmount(
|
|
xfs_mount_t *mp)
|
|
{
|
|
uuid_table_remove(&mp->m_sb.sb_uuid);
|
|
}
|
|
|
|
/*
|
|
* Used to log changes to the superblock unit and width fields which could
|
|
* be altered by the mount options. Only the first superblock is updated.
|
|
*/
|
|
STATIC void
|
|
xfs_mount_log_sbunit(
|
|
xfs_mount_t *mp,
|
|
__int64_t fields)
|
|
{
|
|
xfs_trans_t *tp;
|
|
|
|
ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
|
|
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
|
|
if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
|
|
XFS_DEFAULT_LOG_COUNT)) {
|
|
xfs_trans_cancel(tp, 0);
|
|
return;
|
|
}
|
|
xfs_mod_sb(tp, fields);
|
|
xfs_trans_commit(tp, 0);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_PERCPU_SB
|
|
/*
|
|
* Per-cpu incore superblock counters
|
|
*
|
|
* Simple concept, difficult implementation
|
|
*
|
|
* Basically, replace the incore superblock counters with a distributed per cpu
|
|
* counter for contended fields (e.g. free block count).
|
|
*
|
|
* Difficulties arise in that the incore sb is used for ENOSPC checking, and
|
|
* hence needs to be accurately read when we are running low on space. Hence
|
|
* there is a method to enable and disable the per-cpu counters based on how
|
|
* much "stuff" is available in them.
|
|
*
|
|
* Basically, a counter is enabled if there is enough free resource to justify
|
|
* running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
|
|
* ENOSPC), then we disable the counters to synchronise all callers and
|
|
* re-distribute the available resources.
|
|
*
|
|
* If, once we redistributed the available resources, we still get a failure,
|
|
* we disable the per-cpu counter and go through the slow path.
|
|
*
|
|
* The slow path is the current xfs_mod_incore_sb() function. This means that
|
|
* when we disable a per-cpu counter, we need to drain it's resources back to
|
|
* the global superblock. We do this after disabling the counter to prevent
|
|
* more threads from queueing up on the counter.
|
|
*
|
|
* Essentially, this means that we still need a lock in the fast path to enable
|
|
* synchronisation between the global counters and the per-cpu counters. This
|
|
* is not a problem because the lock will be local to a CPU almost all the time
|
|
* and have little contention except when we get to ENOSPC conditions.
|
|
*
|
|
* Basically, this lock becomes a barrier that enables us to lock out the fast
|
|
* path while we do things like enabling and disabling counters and
|
|
* synchronising the counters.
|
|
*
|
|
* Locking rules:
|
|
*
|
|
* 1. XFS_SB_LOCK() before picking up per-cpu locks
|
|
* 2. per-cpu locks always picked up via for_each_online_cpu() order
|
|
* 3. accurate counter sync requires XFS_SB_LOCK + per cpu locks
|
|
* 4. modifying per-cpu counters requires holding per-cpu lock
|
|
* 5. modifying global counters requires holding XFS_SB_LOCK
|
|
* 6. enabling or disabling a counter requires holding the XFS_SB_LOCK
|
|
* and _none_ of the per-cpu locks.
|
|
*
|
|
* Disabled counters are only ever re-enabled by a balance operation
|
|
* that results in more free resources per CPU than a given threshold.
|
|
* To ensure counters don't remain disabled, they are rebalanced when
|
|
* the global resource goes above a higher threshold (i.e. some hysteresis
|
|
* is present to prevent thrashing).
|
|
*/
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* hot-plug CPU notifier support.
|
|
*
|
|
* We need a notifier per filesystem as we need to be able to identify
|
|
* the filesystem to balance the counters out. This is achieved by
|
|
* having a notifier block embedded in the xfs_mount_t and doing pointer
|
|
* magic to get the mount pointer from the notifier block address.
|
|
*/
|
|
STATIC int
|
|
xfs_icsb_cpu_notify(
|
|
struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
xfs_icsb_cnts_t *cntp;
|
|
xfs_mount_t *mp;
|
|
int s;
|
|
|
|
mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
|
|
cntp = (xfs_icsb_cnts_t *)
|
|
per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
/* Easy Case - initialize the area and locks, and
|
|
* then rebalance when online does everything else for us. */
|
|
memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
|
|
break;
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
xfs_icsb_lock(mp);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
|
|
xfs_icsb_unlock(mp);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
/* Disable all the counters, then fold the dead cpu's
|
|
* count into the total on the global superblock and
|
|
* re-enable the counters. */
|
|
xfs_icsb_lock(mp);
|
|
s = XFS_SB_LOCK(mp);
|
|
xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
|
|
xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
|
|
xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
|
|
|
|
mp->m_sb.sb_icount += cntp->icsb_icount;
|
|
mp->m_sb.sb_ifree += cntp->icsb_ifree;
|
|
mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
|
|
|
|
memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
|
|
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
|
|
XFS_ICSB_SB_LOCKED, 0);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
|
|
XFS_ICSB_SB_LOCKED, 0);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
|
|
XFS_ICSB_SB_LOCKED, 0);
|
|
XFS_SB_UNLOCK(mp, s);
|
|
xfs_icsb_unlock(mp);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
int
|
|
xfs_icsb_init_counters(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_icsb_cnts_t *cntp;
|
|
int i;
|
|
|
|
mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
|
|
if (mp->m_sb_cnts == NULL)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
|
|
mp->m_icsb_notifier.priority = 0;
|
|
register_hotcpu_notifier(&mp->m_icsb_notifier);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
for_each_online_cpu(i) {
|
|
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
|
|
memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
|
|
}
|
|
|
|
mutex_init(&mp->m_icsb_mutex);
|
|
|
|
/*
|
|
* start with all counters disabled so that the
|
|
* initial balance kicks us off correctly
|
|
*/
|
|
mp->m_icsb_counters = -1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xfs_icsb_reinit_counters(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_icsb_lock(mp);
|
|
/*
|
|
* start with all counters disabled so that the
|
|
* initial balance kicks us off correctly
|
|
*/
|
|
mp->m_icsb_counters = -1;
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
|
|
xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
|
|
xfs_icsb_unlock(mp);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_icsb_destroy_counters(
|
|
xfs_mount_t *mp)
|
|
{
|
|
if (mp->m_sb_cnts) {
|
|
unregister_hotcpu_notifier(&mp->m_icsb_notifier);
|
|
free_percpu(mp->m_sb_cnts);
|
|
}
|
|
mutex_destroy(&mp->m_icsb_mutex);
|
|
}
|
|
|
|
STATIC_INLINE void
|
|
xfs_icsb_lock_cntr(
|
|
xfs_icsb_cnts_t *icsbp)
|
|
{
|
|
while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
|
|
ndelay(1000);
|
|
}
|
|
}
|
|
|
|
STATIC_INLINE void
|
|
xfs_icsb_unlock_cntr(
|
|
xfs_icsb_cnts_t *icsbp)
|
|
{
|
|
clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
|
|
}
|
|
|
|
|
|
STATIC_INLINE void
|
|
xfs_icsb_lock_all_counters(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_icsb_cnts_t *cntp;
|
|
int i;
|
|
|
|
for_each_online_cpu(i) {
|
|
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
|
|
xfs_icsb_lock_cntr(cntp);
|
|
}
|
|
}
|
|
|
|
STATIC_INLINE void
|
|
xfs_icsb_unlock_all_counters(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_icsb_cnts_t *cntp;
|
|
int i;
|
|
|
|
for_each_online_cpu(i) {
|
|
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
|
|
xfs_icsb_unlock_cntr(cntp);
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_icsb_count(
|
|
xfs_mount_t *mp,
|
|
xfs_icsb_cnts_t *cnt,
|
|
int flags)
|
|
{
|
|
xfs_icsb_cnts_t *cntp;
|
|
int i;
|
|
|
|
memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
|
|
|
|
if (!(flags & XFS_ICSB_LAZY_COUNT))
|
|
xfs_icsb_lock_all_counters(mp);
|
|
|
|
for_each_online_cpu(i) {
|
|
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
|
|
cnt->icsb_icount += cntp->icsb_icount;
|
|
cnt->icsb_ifree += cntp->icsb_ifree;
|
|
cnt->icsb_fdblocks += cntp->icsb_fdblocks;
|
|
}
|
|
|
|
if (!(flags & XFS_ICSB_LAZY_COUNT))
|
|
xfs_icsb_unlock_all_counters(mp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_icsb_counter_disabled(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field)
|
|
{
|
|
ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
|
|
return test_bit(field, &mp->m_icsb_counters);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_icsb_disable_counter(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field)
|
|
{
|
|
xfs_icsb_cnts_t cnt;
|
|
|
|
ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
|
|
|
|
/*
|
|
* If we are already disabled, then there is nothing to do
|
|
* here. We check before locking all the counters to avoid
|
|
* the expensive lock operation when being called in the
|
|
* slow path and the counter is already disabled. This is
|
|
* safe because the only time we set or clear this state is under
|
|
* the m_icsb_mutex.
|
|
*/
|
|
if (xfs_icsb_counter_disabled(mp, field))
|
|
return 0;
|
|
|
|
xfs_icsb_lock_all_counters(mp);
|
|
if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
|
|
/* drain back to superblock */
|
|
|
|
xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
|
|
switch(field) {
|
|
case XFS_SBS_ICOUNT:
|
|
mp->m_sb.sb_icount = cnt.icsb_icount;
|
|
break;
|
|
case XFS_SBS_IFREE:
|
|
mp->m_sb.sb_ifree = cnt.icsb_ifree;
|
|
break;
|
|
case XFS_SBS_FDBLOCKS:
|
|
mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
xfs_icsb_unlock_all_counters(mp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_icsb_enable_counter(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field,
|
|
uint64_t count,
|
|
uint64_t resid)
|
|
{
|
|
xfs_icsb_cnts_t *cntp;
|
|
int i;
|
|
|
|
ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
|
|
|
|
xfs_icsb_lock_all_counters(mp);
|
|
for_each_online_cpu(i) {
|
|
cntp = per_cpu_ptr(mp->m_sb_cnts, i);
|
|
switch (field) {
|
|
case XFS_SBS_ICOUNT:
|
|
cntp->icsb_icount = count + resid;
|
|
break;
|
|
case XFS_SBS_IFREE:
|
|
cntp->icsb_ifree = count + resid;
|
|
break;
|
|
case XFS_SBS_FDBLOCKS:
|
|
cntp->icsb_fdblocks = count + resid;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
resid = 0;
|
|
}
|
|
clear_bit(field, &mp->m_icsb_counters);
|
|
xfs_icsb_unlock_all_counters(mp);
|
|
}
|
|
|
|
void
|
|
xfs_icsb_sync_counters_flags(
|
|
xfs_mount_t *mp,
|
|
int flags)
|
|
{
|
|
xfs_icsb_cnts_t cnt;
|
|
int s;
|
|
|
|
/* Pass 1: lock all counters */
|
|
if ((flags & XFS_ICSB_SB_LOCKED) == 0)
|
|
s = XFS_SB_LOCK(mp);
|
|
|
|
xfs_icsb_count(mp, &cnt, flags);
|
|
|
|
/* Step 3: update mp->m_sb fields */
|
|
if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
|
|
mp->m_sb.sb_icount = cnt.icsb_icount;
|
|
if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
|
|
mp->m_sb.sb_ifree = cnt.icsb_ifree;
|
|
if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
|
|
mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
|
|
|
|
if ((flags & XFS_ICSB_SB_LOCKED) == 0)
|
|
XFS_SB_UNLOCK(mp, s);
|
|
}
|
|
|
|
/*
|
|
* Accurate update of per-cpu counters to incore superblock
|
|
*/
|
|
STATIC void
|
|
xfs_icsb_sync_counters(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_icsb_sync_counters_flags(mp, 0);
|
|
}
|
|
|
|
/*
|
|
* Balance and enable/disable counters as necessary.
|
|
*
|
|
* Thresholds for re-enabling counters are somewhat magic. inode counts are
|
|
* chosen to be the same number as single on disk allocation chunk per CPU, and
|
|
* free blocks is something far enough zero that we aren't going thrash when we
|
|
* get near ENOSPC. We also need to supply a minimum we require per cpu to
|
|
* prevent looping endlessly when xfs_alloc_space asks for more than will
|
|
* be distributed to a single CPU but each CPU has enough blocks to be
|
|
* reenabled.
|
|
*
|
|
* Note that we can be called when counters are already disabled.
|
|
* xfs_icsb_disable_counter() optimises the counter locking in this case to
|
|
* prevent locking every per-cpu counter needlessly.
|
|
*/
|
|
|
|
#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
|
|
#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
|
|
(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
|
|
STATIC void
|
|
xfs_icsb_balance_counter(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field,
|
|
int flags,
|
|
int min_per_cpu)
|
|
{
|
|
uint64_t count, resid;
|
|
int weight = num_online_cpus();
|
|
int s;
|
|
uint64_t min = (uint64_t)min_per_cpu;
|
|
|
|
if (!(flags & XFS_ICSB_SB_LOCKED))
|
|
s = XFS_SB_LOCK(mp);
|
|
|
|
/* disable counter and sync counter */
|
|
xfs_icsb_disable_counter(mp, field);
|
|
|
|
/* update counters - first CPU gets residual*/
|
|
switch (field) {
|
|
case XFS_SBS_ICOUNT:
|
|
count = mp->m_sb.sb_icount;
|
|
resid = do_div(count, weight);
|
|
if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
|
|
goto out;
|
|
break;
|
|
case XFS_SBS_IFREE:
|
|
count = mp->m_sb.sb_ifree;
|
|
resid = do_div(count, weight);
|
|
if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
|
|
goto out;
|
|
break;
|
|
case XFS_SBS_FDBLOCKS:
|
|
count = mp->m_sb.sb_fdblocks;
|
|
resid = do_div(count, weight);
|
|
if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
|
|
goto out;
|
|
break;
|
|
default:
|
|
BUG();
|
|
count = resid = 0; /* quiet, gcc */
|
|
break;
|
|
}
|
|
|
|
xfs_icsb_enable_counter(mp, field, count, resid);
|
|
out:
|
|
if (!(flags & XFS_ICSB_SB_LOCKED))
|
|
XFS_SB_UNLOCK(mp, s);
|
|
}
|
|
|
|
int
|
|
xfs_icsb_modify_counters(
|
|
xfs_mount_t *mp,
|
|
xfs_sb_field_t field,
|
|
int64_t delta,
|
|
int rsvd)
|
|
{
|
|
xfs_icsb_cnts_t *icsbp;
|
|
long long lcounter; /* long counter for 64 bit fields */
|
|
int cpu, ret = 0, s;
|
|
|
|
might_sleep();
|
|
again:
|
|
cpu = get_cpu();
|
|
icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
|
|
|
|
/*
|
|
* if the counter is disabled, go to slow path
|
|
*/
|
|
if (unlikely(xfs_icsb_counter_disabled(mp, field)))
|
|
goto slow_path;
|
|
xfs_icsb_lock_cntr(icsbp);
|
|
if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
|
|
xfs_icsb_unlock_cntr(icsbp);
|
|
goto slow_path;
|
|
}
|
|
|
|
switch (field) {
|
|
case XFS_SBS_ICOUNT:
|
|
lcounter = icsbp->icsb_icount;
|
|
lcounter += delta;
|
|
if (unlikely(lcounter < 0))
|
|
goto balance_counter;
|
|
icsbp->icsb_icount = lcounter;
|
|
break;
|
|
|
|
case XFS_SBS_IFREE:
|
|
lcounter = icsbp->icsb_ifree;
|
|
lcounter += delta;
|
|
if (unlikely(lcounter < 0))
|
|
goto balance_counter;
|
|
icsbp->icsb_ifree = lcounter;
|
|
break;
|
|
|
|
case XFS_SBS_FDBLOCKS:
|
|
BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
|
|
|
|
lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
|
|
lcounter += delta;
|
|
if (unlikely(lcounter < 0))
|
|
goto balance_counter;
|
|
icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
xfs_icsb_unlock_cntr(icsbp);
|
|
put_cpu();
|
|
return 0;
|
|
|
|
slow_path:
|
|
put_cpu();
|
|
|
|
/*
|
|
* serialise with a mutex so we don't burn lots of cpu on
|
|
* the superblock lock. We still need to hold the superblock
|
|
* lock, however, when we modify the global structures.
|
|
*/
|
|
xfs_icsb_lock(mp);
|
|
|
|
/*
|
|
* Now running atomically.
|
|
*
|
|
* If the counter is enabled, someone has beaten us to rebalancing.
|
|
* Drop the lock and try again in the fast path....
|
|
*/
|
|
if (!(xfs_icsb_counter_disabled(mp, field))) {
|
|
xfs_icsb_unlock(mp);
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* The counter is currently disabled. Because we are
|
|
* running atomically here, we know a rebalance cannot
|
|
* be in progress. Hence we can go straight to operating
|
|
* on the global superblock. We do not call xfs_mod_incore_sb()
|
|
* here even though we need to get the SB_LOCK. Doing so
|
|
* will cause us to re-enter this function and deadlock.
|
|
* Hence we get the SB_LOCK ourselves and then call
|
|
* xfs_mod_incore_sb_unlocked() as the unlocked path operates
|
|
* directly on the global counters.
|
|
*/
|
|
s = XFS_SB_LOCK(mp);
|
|
ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
|
|
XFS_SB_UNLOCK(mp, s);
|
|
|
|
/*
|
|
* Now that we've modified the global superblock, we
|
|
* may be able to re-enable the distributed counters
|
|
* (e.g. lots of space just got freed). After that
|
|
* we are done.
|
|
*/
|
|
if (ret != ENOSPC)
|
|
xfs_icsb_balance_counter(mp, field, 0, 0);
|
|
xfs_icsb_unlock(mp);
|
|
return ret;
|
|
|
|
balance_counter:
|
|
xfs_icsb_unlock_cntr(icsbp);
|
|
put_cpu();
|
|
|
|
/*
|
|
* We may have multiple threads here if multiple per-cpu
|
|
* counters run dry at the same time. This will mean we can
|
|
* do more balances than strictly necessary but it is not
|
|
* the common slowpath case.
|
|
*/
|
|
xfs_icsb_lock(mp);
|
|
|
|
/*
|
|
* running atomically.
|
|
*
|
|
* This will leave the counter in the correct state for future
|
|
* accesses. After the rebalance, we simply try again and our retry
|
|
* will either succeed through the fast path or slow path without
|
|
* another balance operation being required.
|
|
*/
|
|
xfs_icsb_balance_counter(mp, field, 0, delta);
|
|
xfs_icsb_unlock(mp);
|
|
goto again;
|
|
}
|
|
|
|
#endif
|