mirror of
https://github.com/adulau/aha.git
synced 2025-01-03 22:53:18 +00:00
73eb7d9e8c
Rather than relying on the fixup code in init/main.c, explicitly initialise cpu_present_map. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
628 lines
13 KiB
C
628 lines
13 KiB
C
/*
|
|
* linux/arch/arm/kernel/smp.c
|
|
*
|
|
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
/*
|
|
* bitmask of present and online CPUs.
|
|
* The present bitmask indicates that the CPU is physically present.
|
|
* The online bitmask indicates that the CPU is up and running.
|
|
*/
|
|
cpumask_t cpu_possible_map;
|
|
cpumask_t cpu_online_map;
|
|
|
|
/*
|
|
* as from 2.5, kernels no longer have an init_tasks structure
|
|
* so we need some other way of telling a new secondary core
|
|
* where to place its SVC stack
|
|
*/
|
|
struct secondary_data secondary_data;
|
|
|
|
/*
|
|
* structures for inter-processor calls
|
|
* - A collection of single bit ipi messages.
|
|
*/
|
|
struct ipi_data {
|
|
spinlock_t lock;
|
|
unsigned long ipi_count;
|
|
unsigned long bits;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
|
|
.lock = SPIN_LOCK_UNLOCKED,
|
|
};
|
|
|
|
enum ipi_msg_type {
|
|
IPI_TIMER,
|
|
IPI_RESCHEDULE,
|
|
IPI_CALL_FUNC,
|
|
IPI_CPU_STOP,
|
|
};
|
|
|
|
struct smp_call_struct {
|
|
void (*func)(void *info);
|
|
void *info;
|
|
int wait;
|
|
cpumask_t pending;
|
|
cpumask_t unfinished;
|
|
};
|
|
|
|
static struct smp_call_struct * volatile smp_call_function_data;
|
|
static DEFINE_SPINLOCK(smp_call_function_lock);
|
|
|
|
int __init __cpu_up(unsigned int cpu)
|
|
{
|
|
struct task_struct *idle;
|
|
pgd_t *pgd;
|
|
pmd_t *pmd;
|
|
int ret;
|
|
|
|
/*
|
|
* Spawn a new process manually. Grab a pointer to
|
|
* its task struct so we can mess with it
|
|
*/
|
|
idle = fork_idle(cpu);
|
|
if (IS_ERR(idle)) {
|
|
printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
|
|
return PTR_ERR(idle);
|
|
}
|
|
|
|
/*
|
|
* Allocate initial page tables to allow the new CPU to
|
|
* enable the MMU safely. This essentially means a set
|
|
* of our "standard" page tables, with the addition of
|
|
* a 1:1 mapping for the physical address of the kernel.
|
|
*/
|
|
pgd = pgd_alloc(&init_mm);
|
|
pmd = pmd_offset(pgd, PHYS_OFFSET);
|
|
*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
|
|
PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
|
|
|
|
/*
|
|
* We need to tell the secondary core where to find
|
|
* its stack and the page tables.
|
|
*/
|
|
secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
|
|
secondary_data.pgdir = virt_to_phys(pgd);
|
|
wmb();
|
|
|
|
/*
|
|
* Now bring the CPU into our world.
|
|
*/
|
|
ret = boot_secondary(cpu, idle);
|
|
if (ret == 0) {
|
|
unsigned long timeout;
|
|
|
|
/*
|
|
* CPU was successfully started, wait for it
|
|
* to come online or time out.
|
|
*/
|
|
timeout = jiffies + HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
if (cpu_online(cpu))
|
|
break;
|
|
|
|
udelay(10);
|
|
barrier();
|
|
}
|
|
|
|
if (!cpu_online(cpu))
|
|
ret = -EIO;
|
|
}
|
|
|
|
secondary_data.stack = 0;
|
|
secondary_data.pgdir = 0;
|
|
|
|
*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
|
|
pgd_free(pgd);
|
|
|
|
if (ret) {
|
|
printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
|
|
|
|
/*
|
|
* FIXME: We need to clean up the new idle thread. --rmk
|
|
*/
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the secondary CPU boot entry. We're using this CPUs
|
|
* idle thread stack, but a set of temporary page tables.
|
|
*/
|
|
asmlinkage void __init secondary_start_kernel(void)
|
|
{
|
|
struct mm_struct *mm = &init_mm;
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
printk("CPU%u: Booted secondary processor\n", cpu);
|
|
|
|
/*
|
|
* All kernel threads share the same mm context; grab a
|
|
* reference and switch to it.
|
|
*/
|
|
atomic_inc(&mm->mm_users);
|
|
atomic_inc(&mm->mm_count);
|
|
current->active_mm = mm;
|
|
cpu_set(cpu, mm->cpu_vm_mask);
|
|
cpu_switch_mm(mm->pgd, mm);
|
|
enter_lazy_tlb(mm, current);
|
|
|
|
cpu_init();
|
|
|
|
/*
|
|
* Give the platform a chance to do its own initialisation.
|
|
*/
|
|
platform_secondary_init(cpu);
|
|
|
|
/*
|
|
* Enable local interrupts.
|
|
*/
|
|
local_irq_enable();
|
|
local_fiq_enable();
|
|
|
|
calibrate_delay();
|
|
|
|
smp_store_cpu_info(cpu);
|
|
|
|
/*
|
|
* OK, now it's safe to let the boot CPU continue
|
|
*/
|
|
cpu_set(cpu, cpu_online_map);
|
|
|
|
/*
|
|
* OK, it's off to the idle thread for us
|
|
*/
|
|
cpu_idle();
|
|
}
|
|
|
|
/*
|
|
* Called by both boot and secondaries to move global data into
|
|
* per-processor storage.
|
|
*/
|
|
void __init smp_store_cpu_info(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
|
|
|
|
cpu_info->loops_per_jiffy = loops_per_jiffy;
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
int cpu;
|
|
unsigned long bogosum = 0;
|
|
|
|
for_each_online_cpu(cpu)
|
|
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
|
|
|
|
printk(KERN_INFO "SMP: Total of %d processors activated "
|
|
"(%lu.%02lu BogoMIPS).\n",
|
|
num_online_cpus(),
|
|
bogosum / (500000/HZ),
|
|
(bogosum / (5000/HZ)) % 100);
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
cpu_set(cpu, cpu_possible_map);
|
|
cpu_set(cpu, cpu_present_map);
|
|
cpu_set(cpu, cpu_online_map);
|
|
}
|
|
|
|
static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
for_each_cpu_mask(cpu, callmap) {
|
|
struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
|
|
|
|
spin_lock(&ipi->lock);
|
|
ipi->bits |= 1 << msg;
|
|
spin_unlock(&ipi->lock);
|
|
}
|
|
|
|
/*
|
|
* Call the platform specific cross-CPU call function.
|
|
*/
|
|
smp_cross_call(callmap);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* You must not call this function with disabled interrupts, from a
|
|
* hardware interrupt handler, nor from a bottom half handler.
|
|
*/
|
|
int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
|
|
int wait, cpumask_t callmap)
|
|
{
|
|
struct smp_call_struct data;
|
|
unsigned long timeout;
|
|
int ret = 0;
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
data.wait = wait;
|
|
|
|
cpu_clear(smp_processor_id(), callmap);
|
|
if (cpus_empty(callmap))
|
|
goto out;
|
|
|
|
data.pending = callmap;
|
|
if (wait)
|
|
data.unfinished = callmap;
|
|
|
|
/*
|
|
* try to get the mutex on smp_call_function_data
|
|
*/
|
|
spin_lock(&smp_call_function_lock);
|
|
smp_call_function_data = &data;
|
|
|
|
send_ipi_message(callmap, IPI_CALL_FUNC);
|
|
|
|
timeout = jiffies + HZ;
|
|
while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
|
|
barrier();
|
|
|
|
/*
|
|
* did we time out?
|
|
*/
|
|
if (!cpus_empty(data.pending)) {
|
|
/*
|
|
* this may be causing our panic - report it
|
|
*/
|
|
printk(KERN_CRIT
|
|
"CPU%u: smp_call_function timeout for %p(%p)\n"
|
|
" callmap %lx pending %lx, %swait\n",
|
|
smp_processor_id(), func, info, callmap, data.pending,
|
|
wait ? "" : "no ");
|
|
|
|
/*
|
|
* TRACE
|
|
*/
|
|
timeout = jiffies + (5 * HZ);
|
|
while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
|
|
barrier();
|
|
|
|
if (cpus_empty(data.pending))
|
|
printk(KERN_CRIT " RESOLVED\n");
|
|
else
|
|
printk(KERN_CRIT " STILL STUCK\n");
|
|
}
|
|
|
|
/*
|
|
* whatever happened, we're done with the data, so release it
|
|
*/
|
|
smp_call_function_data = NULL;
|
|
spin_unlock(&smp_call_function_lock);
|
|
|
|
if (!cpus_empty(data.pending)) {
|
|
ret = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
if (wait)
|
|
while (!cpus_empty(data.unfinished))
|
|
barrier();
|
|
out:
|
|
|
|
return 0;
|
|
}
|
|
|
|
int smp_call_function(void (*func)(void *info), void *info, int retry,
|
|
int wait)
|
|
{
|
|
return smp_call_function_on_cpu(func, info, retry, wait,
|
|
cpu_online_map);
|
|
}
|
|
|
|
void show_ipi_list(struct seq_file *p)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
seq_puts(p, "IPI:");
|
|
|
|
for_each_present_cpu(cpu)
|
|
seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
|
|
|
|
seq_putc(p, '\n');
|
|
}
|
|
|
|
static void ipi_timer(struct pt_regs *regs)
|
|
{
|
|
int user = user_mode(regs);
|
|
|
|
irq_enter();
|
|
profile_tick(CPU_PROFILING, regs);
|
|
update_process_times(user);
|
|
irq_exit();
|
|
}
|
|
|
|
/*
|
|
* ipi_call_function - handle IPI from smp_call_function()
|
|
*
|
|
* Note that we copy data out of the cross-call structure and then
|
|
* let the caller know that we're here and have done with their data
|
|
*/
|
|
static void ipi_call_function(unsigned int cpu)
|
|
{
|
|
struct smp_call_struct *data = smp_call_function_data;
|
|
void (*func)(void *info) = data->func;
|
|
void *info = data->info;
|
|
int wait = data->wait;
|
|
|
|
cpu_clear(cpu, data->pending);
|
|
|
|
func(info);
|
|
|
|
if (wait)
|
|
cpu_clear(cpu, data->unfinished);
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(stop_lock);
|
|
|
|
/*
|
|
* ipi_cpu_stop - handle IPI from smp_send_stop()
|
|
*/
|
|
static void ipi_cpu_stop(unsigned int cpu)
|
|
{
|
|
spin_lock(&stop_lock);
|
|
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
|
|
dump_stack();
|
|
spin_unlock(&stop_lock);
|
|
|
|
cpu_clear(cpu, cpu_online_map);
|
|
|
|
local_fiq_disable();
|
|
local_irq_disable();
|
|
|
|
while (1)
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* Main handler for inter-processor interrupts
|
|
*
|
|
* For ARM, the ipimask now only identifies a single
|
|
* category of IPI (Bit 1 IPIs have been replaced by a
|
|
* different mechanism):
|
|
*
|
|
* Bit 0 - Inter-processor function call
|
|
*/
|
|
void do_IPI(struct pt_regs *regs)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
|
|
|
|
ipi->ipi_count++;
|
|
|
|
for (;;) {
|
|
unsigned long msgs;
|
|
|
|
spin_lock(&ipi->lock);
|
|
msgs = ipi->bits;
|
|
ipi->bits = 0;
|
|
spin_unlock(&ipi->lock);
|
|
|
|
if (!msgs)
|
|
break;
|
|
|
|
do {
|
|
unsigned nextmsg;
|
|
|
|
nextmsg = msgs & -msgs;
|
|
msgs &= ~nextmsg;
|
|
nextmsg = ffz(~nextmsg);
|
|
|
|
switch (nextmsg) {
|
|
case IPI_TIMER:
|
|
ipi_timer(regs);
|
|
break;
|
|
|
|
case IPI_RESCHEDULE:
|
|
/*
|
|
* nothing more to do - eveything is
|
|
* done on the interrupt return path
|
|
*/
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
ipi_call_function(cpu);
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
ipi_cpu_stop(cpu);
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
|
|
cpu, nextmsg);
|
|
break;
|
|
}
|
|
} while (msgs);
|
|
}
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
|
|
}
|
|
|
|
void smp_send_timer(void)
|
|
{
|
|
cpumask_t mask = cpu_online_map;
|
|
cpu_clear(smp_processor_id(), mask);
|
|
send_ipi_message(mask, IPI_TIMER);
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
cpumask_t mask = cpu_online_map;
|
|
cpu_clear(smp_processor_id(), mask);
|
|
send_ipi_message(mask, IPI_CPU_STOP);
|
|
}
|
|
|
|
/*
|
|
* not supported here
|
|
*/
|
|
int __init setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
|
|
cpumask_t mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
preempt_disable();
|
|
|
|
ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
|
|
if (cpu_isset(smp_processor_id(), mask))
|
|
func(info);
|
|
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**********************************************************************/
|
|
|
|
/*
|
|
* TLB operations
|
|
*/
|
|
struct tlb_args {
|
|
struct vm_area_struct *ta_vma;
|
|
unsigned long ta_start;
|
|
unsigned long ta_end;
|
|
};
|
|
|
|
static inline void ipi_flush_tlb_all(void *ignored)
|
|
{
|
|
local_flush_tlb_all();
|
|
}
|
|
|
|
static inline void ipi_flush_tlb_mm(void *arg)
|
|
{
|
|
struct mm_struct *mm = (struct mm_struct *)arg;
|
|
|
|
local_flush_tlb_mm(mm);
|
|
}
|
|
|
|
static inline void ipi_flush_tlb_page(void *arg)
|
|
{
|
|
struct tlb_args *ta = (struct tlb_args *)arg;
|
|
|
|
local_flush_tlb_page(ta->ta_vma, ta->ta_start);
|
|
}
|
|
|
|
static inline void ipi_flush_tlb_kernel_page(void *arg)
|
|
{
|
|
struct tlb_args *ta = (struct tlb_args *)arg;
|
|
|
|
local_flush_tlb_kernel_page(ta->ta_start);
|
|
}
|
|
|
|
static inline void ipi_flush_tlb_range(void *arg)
|
|
{
|
|
struct tlb_args *ta = (struct tlb_args *)arg;
|
|
|
|
local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
|
|
}
|
|
|
|
static inline void ipi_flush_tlb_kernel_range(void *arg)
|
|
{
|
|
struct tlb_args *ta = (struct tlb_args *)arg;
|
|
|
|
local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
|
|
}
|
|
|
|
void flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
cpumask_t mask = mm->cpu_vm_mask;
|
|
|
|
on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
|
|
{
|
|
cpumask_t mask = vma->vm_mm->cpu_vm_mask;
|
|
struct tlb_args ta;
|
|
|
|
ta.ta_vma = vma;
|
|
ta.ta_start = uaddr;
|
|
|
|
on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
|
|
}
|
|
|
|
void flush_tlb_kernel_page(unsigned long kaddr)
|
|
{
|
|
struct tlb_args ta;
|
|
|
|
ta.ta_start = kaddr;
|
|
|
|
on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
|
|
}
|
|
|
|
void flush_tlb_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
cpumask_t mask = vma->vm_mm->cpu_vm_mask;
|
|
struct tlb_args ta;
|
|
|
|
ta.ta_vma = vma;
|
|
ta.ta_start = start;
|
|
ta.ta_end = end;
|
|
|
|
on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
|
|
}
|
|
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
struct tlb_args ta;
|
|
|
|
ta.ta_start = start;
|
|
ta.ta_end = end;
|
|
|
|
on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
|
|
}
|