mirror of
https://github.com/adulau/aha.git
synced 2025-01-04 07:03:38 +00:00
1944972d3b
This is for use with slab users that pass a dynamically allocated slab name in kmem_cache_create, so that before destroying the slab one can retrieve the name and free its memory. Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Signed-off-by: David S. Miller <davem@davemloft.net>
3083 lines
82 KiB
C
3083 lines
82 KiB
C
/*
|
|
* linux/mm/slab.c
|
|
* Written by Mark Hemment, 1996/97.
|
|
* (markhe@nextd.demon.co.uk)
|
|
*
|
|
* kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
|
|
*
|
|
* Major cleanup, different bufctl logic, per-cpu arrays
|
|
* (c) 2000 Manfred Spraul
|
|
*
|
|
* Cleanup, make the head arrays unconditional, preparation for NUMA
|
|
* (c) 2002 Manfred Spraul
|
|
*
|
|
* An implementation of the Slab Allocator as described in outline in;
|
|
* UNIX Internals: The New Frontiers by Uresh Vahalia
|
|
* Pub: Prentice Hall ISBN 0-13-101908-2
|
|
* or with a little more detail in;
|
|
* The Slab Allocator: An Object-Caching Kernel Memory Allocator
|
|
* Jeff Bonwick (Sun Microsystems).
|
|
* Presented at: USENIX Summer 1994 Technical Conference
|
|
*
|
|
* The memory is organized in caches, one cache for each object type.
|
|
* (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
|
|
* Each cache consists out of many slabs (they are small (usually one
|
|
* page long) and always contiguous), and each slab contains multiple
|
|
* initialized objects.
|
|
*
|
|
* This means, that your constructor is used only for newly allocated
|
|
* slabs and you must pass objects with the same intializations to
|
|
* kmem_cache_free.
|
|
*
|
|
* Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
|
|
* normal). If you need a special memory type, then must create a new
|
|
* cache for that memory type.
|
|
*
|
|
* In order to reduce fragmentation, the slabs are sorted in 3 groups:
|
|
* full slabs with 0 free objects
|
|
* partial slabs
|
|
* empty slabs with no allocated objects
|
|
*
|
|
* If partial slabs exist, then new allocations come from these slabs,
|
|
* otherwise from empty slabs or new slabs are allocated.
|
|
*
|
|
* kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
|
|
* during kmem_cache_destroy(). The caller must prevent concurrent allocs.
|
|
*
|
|
* Each cache has a short per-cpu head array, most allocs
|
|
* and frees go into that array, and if that array overflows, then 1/2
|
|
* of the entries in the array are given back into the global cache.
|
|
* The head array is strictly LIFO and should improve the cache hit rates.
|
|
* On SMP, it additionally reduces the spinlock operations.
|
|
*
|
|
* The c_cpuarray may not be read with enabled local interrupts -
|
|
* it's changed with a smp_call_function().
|
|
*
|
|
* SMP synchronization:
|
|
* constructors and destructors are called without any locking.
|
|
* Several members in kmem_cache_t and struct slab never change, they
|
|
* are accessed without any locking.
|
|
* The per-cpu arrays are never accessed from the wrong cpu, no locking,
|
|
* and local interrupts are disabled so slab code is preempt-safe.
|
|
* The non-constant members are protected with a per-cache irq spinlock.
|
|
*
|
|
* Many thanks to Mark Hemment, who wrote another per-cpu slab patch
|
|
* in 2000 - many ideas in the current implementation are derived from
|
|
* his patch.
|
|
*
|
|
* Further notes from the original documentation:
|
|
*
|
|
* 11 April '97. Started multi-threading - markhe
|
|
* The global cache-chain is protected by the semaphore 'cache_chain_sem'.
|
|
* The sem is only needed when accessing/extending the cache-chain, which
|
|
* can never happen inside an interrupt (kmem_cache_create(),
|
|
* kmem_cache_shrink() and kmem_cache_reap()).
|
|
*
|
|
* At present, each engine can be growing a cache. This should be blocked.
|
|
*
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
|
|
/*
|
|
* DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
|
|
* SLAB_RED_ZONE & SLAB_POISON.
|
|
* 0 for faster, smaller code (especially in the critical paths).
|
|
*
|
|
* STATS - 1 to collect stats for /proc/slabinfo.
|
|
* 0 for faster, smaller code (especially in the critical paths).
|
|
*
|
|
* FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
|
|
*/
|
|
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
#define DEBUG 1
|
|
#define STATS 1
|
|
#define FORCED_DEBUG 1
|
|
#else
|
|
#define DEBUG 0
|
|
#define STATS 0
|
|
#define FORCED_DEBUG 0
|
|
#endif
|
|
|
|
|
|
/* Shouldn't this be in a header file somewhere? */
|
|
#define BYTES_PER_WORD sizeof(void *)
|
|
|
|
#ifndef cache_line_size
|
|
#define cache_line_size() L1_CACHE_BYTES
|
|
#endif
|
|
|
|
#ifndef ARCH_KMALLOC_MINALIGN
|
|
/*
|
|
* Enforce a minimum alignment for the kmalloc caches.
|
|
* Usually, the kmalloc caches are cache_line_size() aligned, except when
|
|
* DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
|
|
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
|
|
* alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
|
|
* Note that this flag disables some debug features.
|
|
*/
|
|
#define ARCH_KMALLOC_MINALIGN 0
|
|
#endif
|
|
|
|
#ifndef ARCH_SLAB_MINALIGN
|
|
/*
|
|
* Enforce a minimum alignment for all caches.
|
|
* Intended for archs that get misalignment faults even for BYTES_PER_WORD
|
|
* aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
|
|
* If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
|
|
* some debug features.
|
|
*/
|
|
#define ARCH_SLAB_MINALIGN 0
|
|
#endif
|
|
|
|
#ifndef ARCH_KMALLOC_FLAGS
|
|
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
|
|
#endif
|
|
|
|
/* Legal flag mask for kmem_cache_create(). */
|
|
#if DEBUG
|
|
# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
|
|
SLAB_POISON | SLAB_HWCACHE_ALIGN | \
|
|
SLAB_NO_REAP | SLAB_CACHE_DMA | \
|
|
SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
|
|
SLAB_DESTROY_BY_RCU)
|
|
#else
|
|
# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
|
|
SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
|
|
SLAB_DESTROY_BY_RCU)
|
|
#endif
|
|
|
|
/*
|
|
* kmem_bufctl_t:
|
|
*
|
|
* Bufctl's are used for linking objs within a slab
|
|
* linked offsets.
|
|
*
|
|
* This implementation relies on "struct page" for locating the cache &
|
|
* slab an object belongs to.
|
|
* This allows the bufctl structure to be small (one int), but limits
|
|
* the number of objects a slab (not a cache) can contain when off-slab
|
|
* bufctls are used. The limit is the size of the largest general cache
|
|
* that does not use off-slab slabs.
|
|
* For 32bit archs with 4 kB pages, is this 56.
|
|
* This is not serious, as it is only for large objects, when it is unwise
|
|
* to have too many per slab.
|
|
* Note: This limit can be raised by introducing a general cache whose size
|
|
* is less than 512 (PAGE_SIZE<<3), but greater than 256.
|
|
*/
|
|
|
|
#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
|
|
#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
|
|
#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
|
|
|
|
/* Max number of objs-per-slab for caches which use off-slab slabs.
|
|
* Needed to avoid a possible looping condition in cache_grow().
|
|
*/
|
|
static unsigned long offslab_limit;
|
|
|
|
/*
|
|
* struct slab
|
|
*
|
|
* Manages the objs in a slab. Placed either at the beginning of mem allocated
|
|
* for a slab, or allocated from an general cache.
|
|
* Slabs are chained into three list: fully used, partial, fully free slabs.
|
|
*/
|
|
struct slab {
|
|
struct list_head list;
|
|
unsigned long colouroff;
|
|
void *s_mem; /* including colour offset */
|
|
unsigned int inuse; /* num of objs active in slab */
|
|
kmem_bufctl_t free;
|
|
};
|
|
|
|
/*
|
|
* struct slab_rcu
|
|
*
|
|
* slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
|
|
* arrange for kmem_freepages to be called via RCU. This is useful if
|
|
* we need to approach a kernel structure obliquely, from its address
|
|
* obtained without the usual locking. We can lock the structure to
|
|
* stabilize it and check it's still at the given address, only if we
|
|
* can be sure that the memory has not been meanwhile reused for some
|
|
* other kind of object (which our subsystem's lock might corrupt).
|
|
*
|
|
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
|
* taking the spinlock within the structure expected at that address.
|
|
*
|
|
* We assume struct slab_rcu can overlay struct slab when destroying.
|
|
*/
|
|
struct slab_rcu {
|
|
struct rcu_head head;
|
|
kmem_cache_t *cachep;
|
|
void *addr;
|
|
};
|
|
|
|
/*
|
|
* struct array_cache
|
|
*
|
|
* Per cpu structures
|
|
* Purpose:
|
|
* - LIFO ordering, to hand out cache-warm objects from _alloc
|
|
* - reduce the number of linked list operations
|
|
* - reduce spinlock operations
|
|
*
|
|
* The limit is stored in the per-cpu structure to reduce the data cache
|
|
* footprint.
|
|
*
|
|
*/
|
|
struct array_cache {
|
|
unsigned int avail;
|
|
unsigned int limit;
|
|
unsigned int batchcount;
|
|
unsigned int touched;
|
|
};
|
|
|
|
/* bootstrap: The caches do not work without cpuarrays anymore,
|
|
* but the cpuarrays are allocated from the generic caches...
|
|
*/
|
|
#define BOOT_CPUCACHE_ENTRIES 1
|
|
struct arraycache_init {
|
|
struct array_cache cache;
|
|
void * entries[BOOT_CPUCACHE_ENTRIES];
|
|
};
|
|
|
|
/*
|
|
* The slab lists of all objects.
|
|
* Hopefully reduce the internal fragmentation
|
|
* NUMA: The spinlock could be moved from the kmem_cache_t
|
|
* into this structure, too. Figure out what causes
|
|
* fewer cross-node spinlock operations.
|
|
*/
|
|
struct kmem_list3 {
|
|
struct list_head slabs_partial; /* partial list first, better asm code */
|
|
struct list_head slabs_full;
|
|
struct list_head slabs_free;
|
|
unsigned long free_objects;
|
|
int free_touched;
|
|
unsigned long next_reap;
|
|
struct array_cache *shared;
|
|
};
|
|
|
|
#define LIST3_INIT(parent) \
|
|
{ \
|
|
.slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
|
|
.slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
|
|
.slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
|
|
}
|
|
#define list3_data(cachep) \
|
|
(&(cachep)->lists)
|
|
|
|
/* NUMA: per-node */
|
|
#define list3_data_ptr(cachep, ptr) \
|
|
list3_data(cachep)
|
|
|
|
/*
|
|
* kmem_cache_t
|
|
*
|
|
* manages a cache.
|
|
*/
|
|
|
|
struct kmem_cache_s {
|
|
/* 1) per-cpu data, touched during every alloc/free */
|
|
struct array_cache *array[NR_CPUS];
|
|
unsigned int batchcount;
|
|
unsigned int limit;
|
|
/* 2) touched by every alloc & free from the backend */
|
|
struct kmem_list3 lists;
|
|
/* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */
|
|
unsigned int objsize;
|
|
unsigned int flags; /* constant flags */
|
|
unsigned int num; /* # of objs per slab */
|
|
unsigned int free_limit; /* upper limit of objects in the lists */
|
|
spinlock_t spinlock;
|
|
|
|
/* 3) cache_grow/shrink */
|
|
/* order of pgs per slab (2^n) */
|
|
unsigned int gfporder;
|
|
|
|
/* force GFP flags, e.g. GFP_DMA */
|
|
unsigned int gfpflags;
|
|
|
|
size_t colour; /* cache colouring range */
|
|
unsigned int colour_off; /* colour offset */
|
|
unsigned int colour_next; /* cache colouring */
|
|
kmem_cache_t *slabp_cache;
|
|
unsigned int slab_size;
|
|
unsigned int dflags; /* dynamic flags */
|
|
|
|
/* constructor func */
|
|
void (*ctor)(void *, kmem_cache_t *, unsigned long);
|
|
|
|
/* de-constructor func */
|
|
void (*dtor)(void *, kmem_cache_t *, unsigned long);
|
|
|
|
/* 4) cache creation/removal */
|
|
const char *name;
|
|
struct list_head next;
|
|
|
|
/* 5) statistics */
|
|
#if STATS
|
|
unsigned long num_active;
|
|
unsigned long num_allocations;
|
|
unsigned long high_mark;
|
|
unsigned long grown;
|
|
unsigned long reaped;
|
|
unsigned long errors;
|
|
unsigned long max_freeable;
|
|
unsigned long node_allocs;
|
|
atomic_t allochit;
|
|
atomic_t allocmiss;
|
|
atomic_t freehit;
|
|
atomic_t freemiss;
|
|
#endif
|
|
#if DEBUG
|
|
int dbghead;
|
|
int reallen;
|
|
#endif
|
|
};
|
|
|
|
#define CFLGS_OFF_SLAB (0x80000000UL)
|
|
#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
|
|
|
|
#define BATCHREFILL_LIMIT 16
|
|
/* Optimization question: fewer reaps means less
|
|
* probability for unnessary cpucache drain/refill cycles.
|
|
*
|
|
* OTHO the cpuarrays can contain lots of objects,
|
|
* which could lock up otherwise freeable slabs.
|
|
*/
|
|
#define REAPTIMEOUT_CPUC (2*HZ)
|
|
#define REAPTIMEOUT_LIST3 (4*HZ)
|
|
|
|
#if STATS
|
|
#define STATS_INC_ACTIVE(x) ((x)->num_active++)
|
|
#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
|
|
#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
|
|
#define STATS_INC_GROWN(x) ((x)->grown++)
|
|
#define STATS_INC_REAPED(x) ((x)->reaped++)
|
|
#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
|
|
(x)->high_mark = (x)->num_active; \
|
|
} while (0)
|
|
#define STATS_INC_ERR(x) ((x)->errors++)
|
|
#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
|
|
#define STATS_SET_FREEABLE(x, i) \
|
|
do { if ((x)->max_freeable < i) \
|
|
(x)->max_freeable = i; \
|
|
} while (0)
|
|
|
|
#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
|
|
#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
|
|
#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
|
|
#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
|
|
#else
|
|
#define STATS_INC_ACTIVE(x) do { } while (0)
|
|
#define STATS_DEC_ACTIVE(x) do { } while (0)
|
|
#define STATS_INC_ALLOCED(x) do { } while (0)
|
|
#define STATS_INC_GROWN(x) do { } while (0)
|
|
#define STATS_INC_REAPED(x) do { } while (0)
|
|
#define STATS_SET_HIGH(x) do { } while (0)
|
|
#define STATS_INC_ERR(x) do { } while (0)
|
|
#define STATS_INC_NODEALLOCS(x) do { } while (0)
|
|
#define STATS_SET_FREEABLE(x, i) \
|
|
do { } while (0)
|
|
|
|
#define STATS_INC_ALLOCHIT(x) do { } while (0)
|
|
#define STATS_INC_ALLOCMISS(x) do { } while (0)
|
|
#define STATS_INC_FREEHIT(x) do { } while (0)
|
|
#define STATS_INC_FREEMISS(x) do { } while (0)
|
|
#endif
|
|
|
|
#if DEBUG
|
|
/* Magic nums for obj red zoning.
|
|
* Placed in the first word before and the first word after an obj.
|
|
*/
|
|
#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
|
|
#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
|
|
|
|
/* ...and for poisoning */
|
|
#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
|
|
#define POISON_FREE 0x6b /* for use-after-free poisoning */
|
|
#define POISON_END 0xa5 /* end-byte of poisoning */
|
|
|
|
/* memory layout of objects:
|
|
* 0 : objp
|
|
* 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
|
|
* the end of an object is aligned with the end of the real
|
|
* allocation. Catches writes behind the end of the allocation.
|
|
* cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
|
|
* redzone word.
|
|
* cachep->dbghead: The real object.
|
|
* cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
|
|
* cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
|
|
*/
|
|
static int obj_dbghead(kmem_cache_t *cachep)
|
|
{
|
|
return cachep->dbghead;
|
|
}
|
|
|
|
static int obj_reallen(kmem_cache_t *cachep)
|
|
{
|
|
return cachep->reallen;
|
|
}
|
|
|
|
static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
|
|
{
|
|
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
|
|
return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
|
|
}
|
|
|
|
static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
|
|
{
|
|
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
|
|
return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
|
|
}
|
|
|
|
static void **dbg_userword(kmem_cache_t *cachep, void *objp)
|
|
{
|
|
BUG_ON(!(cachep->flags & SLAB_STORE_USER));
|
|
return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
|
|
}
|
|
|
|
#else
|
|
|
|
#define obj_dbghead(x) 0
|
|
#define obj_reallen(cachep) (cachep->objsize)
|
|
#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
|
|
#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
|
|
#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Maximum size of an obj (in 2^order pages)
|
|
* and absolute limit for the gfp order.
|
|
*/
|
|
#if defined(CONFIG_LARGE_ALLOCS)
|
|
#define MAX_OBJ_ORDER 13 /* up to 32Mb */
|
|
#define MAX_GFP_ORDER 13 /* up to 32Mb */
|
|
#elif defined(CONFIG_MMU)
|
|
#define MAX_OBJ_ORDER 5 /* 32 pages */
|
|
#define MAX_GFP_ORDER 5 /* 32 pages */
|
|
#else
|
|
#define MAX_OBJ_ORDER 8 /* up to 1Mb */
|
|
#define MAX_GFP_ORDER 8 /* up to 1Mb */
|
|
#endif
|
|
|
|
/*
|
|
* Do not go above this order unless 0 objects fit into the slab.
|
|
*/
|
|
#define BREAK_GFP_ORDER_HI 1
|
|
#define BREAK_GFP_ORDER_LO 0
|
|
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
|
|
|
|
/* Macros for storing/retrieving the cachep and or slab from the
|
|
* global 'mem_map'. These are used to find the slab an obj belongs to.
|
|
* With kfree(), these are used to find the cache which an obj belongs to.
|
|
*/
|
|
#define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
|
|
#define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
|
|
#define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
|
|
#define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
|
|
|
|
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
|
|
struct cache_sizes malloc_sizes[] = {
|
|
#define CACHE(x) { .cs_size = (x) },
|
|
#include <linux/kmalloc_sizes.h>
|
|
CACHE(ULONG_MAX)
|
|
#undef CACHE
|
|
};
|
|
EXPORT_SYMBOL(malloc_sizes);
|
|
|
|
/* Must match cache_sizes above. Out of line to keep cache footprint low. */
|
|
struct cache_names {
|
|
char *name;
|
|
char *name_dma;
|
|
};
|
|
|
|
static struct cache_names __initdata cache_names[] = {
|
|
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
|
|
#include <linux/kmalloc_sizes.h>
|
|
{ NULL, }
|
|
#undef CACHE
|
|
};
|
|
|
|
static struct arraycache_init initarray_cache __initdata =
|
|
{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
|
|
static struct arraycache_init initarray_generic =
|
|
{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
|
|
|
|
/* internal cache of cache description objs */
|
|
static kmem_cache_t cache_cache = {
|
|
.lists = LIST3_INIT(cache_cache.lists),
|
|
.batchcount = 1,
|
|
.limit = BOOT_CPUCACHE_ENTRIES,
|
|
.objsize = sizeof(kmem_cache_t),
|
|
.flags = SLAB_NO_REAP,
|
|
.spinlock = SPIN_LOCK_UNLOCKED,
|
|
.name = "kmem_cache",
|
|
#if DEBUG
|
|
.reallen = sizeof(kmem_cache_t),
|
|
#endif
|
|
};
|
|
|
|
/* Guard access to the cache-chain. */
|
|
static struct semaphore cache_chain_sem;
|
|
static struct list_head cache_chain;
|
|
|
|
/*
|
|
* vm_enough_memory() looks at this to determine how many
|
|
* slab-allocated pages are possibly freeable under pressure
|
|
*
|
|
* SLAB_RECLAIM_ACCOUNT turns this on per-slab
|
|
*/
|
|
atomic_t slab_reclaim_pages;
|
|
EXPORT_SYMBOL(slab_reclaim_pages);
|
|
|
|
/*
|
|
* chicken and egg problem: delay the per-cpu array allocation
|
|
* until the general caches are up.
|
|
*/
|
|
static enum {
|
|
NONE,
|
|
PARTIAL,
|
|
FULL
|
|
} g_cpucache_up;
|
|
|
|
static DEFINE_PER_CPU(struct work_struct, reap_work);
|
|
|
|
static void free_block(kmem_cache_t* cachep, void** objpp, int len);
|
|
static void enable_cpucache (kmem_cache_t *cachep);
|
|
static void cache_reap (void *unused);
|
|
|
|
static inline void **ac_entry(struct array_cache *ac)
|
|
{
|
|
return (void**)(ac+1);
|
|
}
|
|
|
|
static inline struct array_cache *ac_data(kmem_cache_t *cachep)
|
|
{
|
|
return cachep->array[smp_processor_id()];
|
|
}
|
|
|
|
static inline kmem_cache_t *__find_general_cachep(size_t size, int gfpflags)
|
|
{
|
|
struct cache_sizes *csizep = malloc_sizes;
|
|
|
|
#if DEBUG
|
|
/* This happens if someone tries to call
|
|
* kmem_cache_create(), or __kmalloc(), before
|
|
* the generic caches are initialized.
|
|
*/
|
|
BUG_ON(csizep->cs_cachep == NULL);
|
|
#endif
|
|
while (size > csizep->cs_size)
|
|
csizep++;
|
|
|
|
/*
|
|
* Really subtile: The last entry with cs->cs_size==ULONG_MAX
|
|
* has cs_{dma,}cachep==NULL. Thus no special case
|
|
* for large kmalloc calls required.
|
|
*/
|
|
if (unlikely(gfpflags & GFP_DMA))
|
|
return csizep->cs_dmacachep;
|
|
return csizep->cs_cachep;
|
|
}
|
|
|
|
kmem_cache_t *kmem_find_general_cachep(size_t size, int gfpflags)
|
|
{
|
|
return __find_general_cachep(size, gfpflags);
|
|
}
|
|
EXPORT_SYMBOL(kmem_find_general_cachep);
|
|
|
|
/* Cal the num objs, wastage, and bytes left over for a given slab size. */
|
|
static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
|
|
int flags, size_t *left_over, unsigned int *num)
|
|
{
|
|
int i;
|
|
size_t wastage = PAGE_SIZE<<gfporder;
|
|
size_t extra = 0;
|
|
size_t base = 0;
|
|
|
|
if (!(flags & CFLGS_OFF_SLAB)) {
|
|
base = sizeof(struct slab);
|
|
extra = sizeof(kmem_bufctl_t);
|
|
}
|
|
i = 0;
|
|
while (i*size + ALIGN(base+i*extra, align) <= wastage)
|
|
i++;
|
|
if (i > 0)
|
|
i--;
|
|
|
|
if (i > SLAB_LIMIT)
|
|
i = SLAB_LIMIT;
|
|
|
|
*num = i;
|
|
wastage -= i*size;
|
|
wastage -= ALIGN(base+i*extra, align);
|
|
*left_over = wastage;
|
|
}
|
|
|
|
#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
|
|
|
|
static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
|
|
{
|
|
printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
|
|
function, cachep->name, msg);
|
|
dump_stack();
|
|
}
|
|
|
|
/*
|
|
* Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
|
|
* via the workqueue/eventd.
|
|
* Add the CPU number into the expiration time to minimize the possibility of
|
|
* the CPUs getting into lockstep and contending for the global cache chain
|
|
* lock.
|
|
*/
|
|
static void __devinit start_cpu_timer(int cpu)
|
|
{
|
|
struct work_struct *reap_work = &per_cpu(reap_work, cpu);
|
|
|
|
/*
|
|
* When this gets called from do_initcalls via cpucache_init(),
|
|
* init_workqueues() has already run, so keventd will be setup
|
|
* at that time.
|
|
*/
|
|
if (keventd_up() && reap_work->func == NULL) {
|
|
INIT_WORK(reap_work, cache_reap, NULL);
|
|
schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
|
|
}
|
|
}
|
|
|
|
static struct array_cache *alloc_arraycache(int cpu, int entries,
|
|
int batchcount)
|
|
{
|
|
int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
|
|
struct array_cache *nc = NULL;
|
|
|
|
if (cpu == -1)
|
|
nc = kmalloc(memsize, GFP_KERNEL);
|
|
else
|
|
nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu));
|
|
|
|
if (nc) {
|
|
nc->avail = 0;
|
|
nc->limit = entries;
|
|
nc->batchcount = batchcount;
|
|
nc->touched = 0;
|
|
}
|
|
return nc;
|
|
}
|
|
|
|
static int __devinit cpuup_callback(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
long cpu = (long)hcpu;
|
|
kmem_cache_t* cachep;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
down(&cache_chain_sem);
|
|
list_for_each_entry(cachep, &cache_chain, next) {
|
|
struct array_cache *nc;
|
|
|
|
nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount);
|
|
if (!nc)
|
|
goto bad;
|
|
|
|
spin_lock_irq(&cachep->spinlock);
|
|
cachep->array[cpu] = nc;
|
|
cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
|
|
+ cachep->num;
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
}
|
|
up(&cache_chain_sem);
|
|
break;
|
|
case CPU_ONLINE:
|
|
start_cpu_timer(cpu);
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
/* fall thru */
|
|
case CPU_UP_CANCELED:
|
|
down(&cache_chain_sem);
|
|
|
|
list_for_each_entry(cachep, &cache_chain, next) {
|
|
struct array_cache *nc;
|
|
|
|
spin_lock_irq(&cachep->spinlock);
|
|
/* cpu is dead; no one can alloc from it. */
|
|
nc = cachep->array[cpu];
|
|
cachep->array[cpu] = NULL;
|
|
cachep->free_limit -= cachep->batchcount;
|
|
free_block(cachep, ac_entry(nc), nc->avail);
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
kfree(nc);
|
|
}
|
|
up(&cache_chain_sem);
|
|
break;
|
|
#endif
|
|
}
|
|
return NOTIFY_OK;
|
|
bad:
|
|
up(&cache_chain_sem);
|
|
return NOTIFY_BAD;
|
|
}
|
|
|
|
static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
|
|
|
|
/* Initialisation.
|
|
* Called after the gfp() functions have been enabled, and before smp_init().
|
|
*/
|
|
void __init kmem_cache_init(void)
|
|
{
|
|
size_t left_over;
|
|
struct cache_sizes *sizes;
|
|
struct cache_names *names;
|
|
|
|
/*
|
|
* Fragmentation resistance on low memory - only use bigger
|
|
* page orders on machines with more than 32MB of memory.
|
|
*/
|
|
if (num_physpages > (32 << 20) >> PAGE_SHIFT)
|
|
slab_break_gfp_order = BREAK_GFP_ORDER_HI;
|
|
|
|
|
|
/* Bootstrap is tricky, because several objects are allocated
|
|
* from caches that do not exist yet:
|
|
* 1) initialize the cache_cache cache: it contains the kmem_cache_t
|
|
* structures of all caches, except cache_cache itself: cache_cache
|
|
* is statically allocated.
|
|
* Initially an __init data area is used for the head array, it's
|
|
* replaced with a kmalloc allocated array at the end of the bootstrap.
|
|
* 2) Create the first kmalloc cache.
|
|
* The kmem_cache_t for the new cache is allocated normally. An __init
|
|
* data area is used for the head array.
|
|
* 3) Create the remaining kmalloc caches, with minimally sized head arrays.
|
|
* 4) Replace the __init data head arrays for cache_cache and the first
|
|
* kmalloc cache with kmalloc allocated arrays.
|
|
* 5) Resize the head arrays of the kmalloc caches to their final sizes.
|
|
*/
|
|
|
|
/* 1) create the cache_cache */
|
|
init_MUTEX(&cache_chain_sem);
|
|
INIT_LIST_HEAD(&cache_chain);
|
|
list_add(&cache_cache.next, &cache_chain);
|
|
cache_cache.colour_off = cache_line_size();
|
|
cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
|
|
|
|
cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
|
|
|
|
cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
|
|
&left_over, &cache_cache.num);
|
|
if (!cache_cache.num)
|
|
BUG();
|
|
|
|
cache_cache.colour = left_over/cache_cache.colour_off;
|
|
cache_cache.colour_next = 0;
|
|
cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
|
|
sizeof(struct slab), cache_line_size());
|
|
|
|
/* 2+3) create the kmalloc caches */
|
|
sizes = malloc_sizes;
|
|
names = cache_names;
|
|
|
|
while (sizes->cs_size != ULONG_MAX) {
|
|
/* For performance, all the general caches are L1 aligned.
|
|
* This should be particularly beneficial on SMP boxes, as it
|
|
* eliminates "false sharing".
|
|
* Note for systems short on memory removing the alignment will
|
|
* allow tighter packing of the smaller caches. */
|
|
sizes->cs_cachep = kmem_cache_create(names->name,
|
|
sizes->cs_size, ARCH_KMALLOC_MINALIGN,
|
|
(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
|
|
|
|
/* Inc off-slab bufctl limit until the ceiling is hit. */
|
|
if (!(OFF_SLAB(sizes->cs_cachep))) {
|
|
offslab_limit = sizes->cs_size-sizeof(struct slab);
|
|
offslab_limit /= sizeof(kmem_bufctl_t);
|
|
}
|
|
|
|
sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
|
|
sizes->cs_size, ARCH_KMALLOC_MINALIGN,
|
|
(ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
|
|
NULL, NULL);
|
|
|
|
sizes++;
|
|
names++;
|
|
}
|
|
/* 4) Replace the bootstrap head arrays */
|
|
{
|
|
void * ptr;
|
|
|
|
ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
|
|
local_irq_disable();
|
|
BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
|
|
memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init));
|
|
cache_cache.array[smp_processor_id()] = ptr;
|
|
local_irq_enable();
|
|
|
|
ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
|
|
local_irq_disable();
|
|
BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache);
|
|
memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep),
|
|
sizeof(struct arraycache_init));
|
|
malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr;
|
|
local_irq_enable();
|
|
}
|
|
|
|
/* 5) resize the head arrays to their final sizes */
|
|
{
|
|
kmem_cache_t *cachep;
|
|
down(&cache_chain_sem);
|
|
list_for_each_entry(cachep, &cache_chain, next)
|
|
enable_cpucache(cachep);
|
|
up(&cache_chain_sem);
|
|
}
|
|
|
|
/* Done! */
|
|
g_cpucache_up = FULL;
|
|
|
|
/* Register a cpu startup notifier callback
|
|
* that initializes ac_data for all new cpus
|
|
*/
|
|
register_cpu_notifier(&cpucache_notifier);
|
|
|
|
|
|
/* The reap timers are started later, with a module init call:
|
|
* That part of the kernel is not yet operational.
|
|
*/
|
|
}
|
|
|
|
static int __init cpucache_init(void)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* Register the timers that return unneeded
|
|
* pages to gfp.
|
|
*/
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
if (cpu_online(cpu))
|
|
start_cpu_timer(cpu);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
__initcall(cpucache_init);
|
|
|
|
/*
|
|
* Interface to system's page allocator. No need to hold the cache-lock.
|
|
*
|
|
* If we requested dmaable memory, we will get it. Even if we
|
|
* did not request dmaable memory, we might get it, but that
|
|
* would be relatively rare and ignorable.
|
|
*/
|
|
static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
|
|
{
|
|
struct page *page;
|
|
void *addr;
|
|
int i;
|
|
|
|
flags |= cachep->gfpflags;
|
|
if (likely(nodeid == -1)) {
|
|
page = alloc_pages(flags, cachep->gfporder);
|
|
} else {
|
|
page = alloc_pages_node(nodeid, flags, cachep->gfporder);
|
|
}
|
|
if (!page)
|
|
return NULL;
|
|
addr = page_address(page);
|
|
|
|
i = (1 << cachep->gfporder);
|
|
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
|
|
atomic_add(i, &slab_reclaim_pages);
|
|
add_page_state(nr_slab, i);
|
|
while (i--) {
|
|
SetPageSlab(page);
|
|
page++;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Interface to system's page release.
|
|
*/
|
|
static void kmem_freepages(kmem_cache_t *cachep, void *addr)
|
|
{
|
|
unsigned long i = (1<<cachep->gfporder);
|
|
struct page *page = virt_to_page(addr);
|
|
const unsigned long nr_freed = i;
|
|
|
|
while (i--) {
|
|
if (!TestClearPageSlab(page))
|
|
BUG();
|
|
page++;
|
|
}
|
|
sub_page_state(nr_slab, nr_freed);
|
|
if (current->reclaim_state)
|
|
current->reclaim_state->reclaimed_slab += nr_freed;
|
|
free_pages((unsigned long)addr, cachep->gfporder);
|
|
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
|
|
atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
|
|
}
|
|
|
|
static void kmem_rcu_free(struct rcu_head *head)
|
|
{
|
|
struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
|
|
kmem_cache_t *cachep = slab_rcu->cachep;
|
|
|
|
kmem_freepages(cachep, slab_rcu->addr);
|
|
if (OFF_SLAB(cachep))
|
|
kmem_cache_free(cachep->slabp_cache, slab_rcu);
|
|
}
|
|
|
|
#if DEBUG
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
|
|
unsigned long caller)
|
|
{
|
|
int size = obj_reallen(cachep);
|
|
|
|
addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
|
|
|
|
if (size < 5*sizeof(unsigned long))
|
|
return;
|
|
|
|
*addr++=0x12345678;
|
|
*addr++=caller;
|
|
*addr++=smp_processor_id();
|
|
size -= 3*sizeof(unsigned long);
|
|
{
|
|
unsigned long *sptr = &caller;
|
|
unsigned long svalue;
|
|
|
|
while (!kstack_end(sptr)) {
|
|
svalue = *sptr++;
|
|
if (kernel_text_address(svalue)) {
|
|
*addr++=svalue;
|
|
size -= sizeof(unsigned long);
|
|
if (size <= sizeof(unsigned long))
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
*addr++=0x87654321;
|
|
}
|
|
#endif
|
|
|
|
static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
|
|
{
|
|
int size = obj_reallen(cachep);
|
|
addr = &((char*)addr)[obj_dbghead(cachep)];
|
|
|
|
memset(addr, val, size);
|
|
*(unsigned char *)(addr+size-1) = POISON_END;
|
|
}
|
|
|
|
static void dump_line(char *data, int offset, int limit)
|
|
{
|
|
int i;
|
|
printk(KERN_ERR "%03x:", offset);
|
|
for (i=0;i<limit;i++) {
|
|
printk(" %02x", (unsigned char)data[offset+i]);
|
|
}
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG
|
|
|
|
static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
|
|
{
|
|
int i, size;
|
|
char *realobj;
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
|
|
*dbg_redzone1(cachep, objp),
|
|
*dbg_redzone2(cachep, objp));
|
|
}
|
|
|
|
if (cachep->flags & SLAB_STORE_USER) {
|
|
printk(KERN_ERR "Last user: [<%p>]",
|
|
*dbg_userword(cachep, objp));
|
|
print_symbol("(%s)",
|
|
(unsigned long)*dbg_userword(cachep, objp));
|
|
printk("\n");
|
|
}
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
size = obj_reallen(cachep);
|
|
for (i=0; i<size && lines;i+=16, lines--) {
|
|
int limit;
|
|
limit = 16;
|
|
if (i+limit > size)
|
|
limit = size-i;
|
|
dump_line(realobj, i, limit);
|
|
}
|
|
}
|
|
|
|
static void check_poison_obj(kmem_cache_t *cachep, void *objp)
|
|
{
|
|
char *realobj;
|
|
int size, i;
|
|
int lines = 0;
|
|
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
size = obj_reallen(cachep);
|
|
|
|
for (i=0;i<size;i++) {
|
|
char exp = POISON_FREE;
|
|
if (i == size-1)
|
|
exp = POISON_END;
|
|
if (realobj[i] != exp) {
|
|
int limit;
|
|
/* Mismatch ! */
|
|
/* Print header */
|
|
if (lines == 0) {
|
|
printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
|
|
realobj, size);
|
|
print_objinfo(cachep, objp, 0);
|
|
}
|
|
/* Hexdump the affected line */
|
|
i = (i/16)*16;
|
|
limit = 16;
|
|
if (i+limit > size)
|
|
limit = size-i;
|
|
dump_line(realobj, i, limit);
|
|
i += 16;
|
|
lines++;
|
|
/* Limit to 5 lines */
|
|
if (lines > 5)
|
|
break;
|
|
}
|
|
}
|
|
if (lines != 0) {
|
|
/* Print some data about the neighboring objects, if they
|
|
* exist:
|
|
*/
|
|
struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
|
|
int objnr;
|
|
|
|
objnr = (objp-slabp->s_mem)/cachep->objsize;
|
|
if (objnr) {
|
|
objp = slabp->s_mem+(objnr-1)*cachep->objsize;
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
|
|
realobj, size);
|
|
print_objinfo(cachep, objp, 2);
|
|
}
|
|
if (objnr+1 < cachep->num) {
|
|
objp = slabp->s_mem+(objnr+1)*cachep->objsize;
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
|
|
realobj, size);
|
|
print_objinfo(cachep, objp, 2);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Destroy all the objs in a slab, and release the mem back to the system.
|
|
* Before calling the slab must have been unlinked from the cache.
|
|
* The cache-lock is not held/needed.
|
|
*/
|
|
static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
|
|
{
|
|
void *addr = slabp->s_mem - slabp->colouroff;
|
|
|
|
#if DEBUG
|
|
int i;
|
|
for (i = 0; i < cachep->num; i++) {
|
|
void *objp = slabp->s_mem + cachep->objsize * i;
|
|
|
|
if (cachep->flags & SLAB_POISON) {
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
|
|
else
|
|
check_poison_obj(cachep, objp);
|
|
#else
|
|
check_poison_obj(cachep, objp);
|
|
#endif
|
|
}
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
|
|
slab_error(cachep, "start of a freed object "
|
|
"was overwritten");
|
|
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
|
|
slab_error(cachep, "end of a freed object "
|
|
"was overwritten");
|
|
}
|
|
if (cachep->dtor && !(cachep->flags & SLAB_POISON))
|
|
(cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
|
|
}
|
|
#else
|
|
if (cachep->dtor) {
|
|
int i;
|
|
for (i = 0; i < cachep->num; i++) {
|
|
void* objp = slabp->s_mem+cachep->objsize*i;
|
|
(cachep->dtor)(objp, cachep, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
|
|
struct slab_rcu *slab_rcu;
|
|
|
|
slab_rcu = (struct slab_rcu *) slabp;
|
|
slab_rcu->cachep = cachep;
|
|
slab_rcu->addr = addr;
|
|
call_rcu(&slab_rcu->head, kmem_rcu_free);
|
|
} else {
|
|
kmem_freepages(cachep, addr);
|
|
if (OFF_SLAB(cachep))
|
|
kmem_cache_free(cachep->slabp_cache, slabp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kmem_cache_create - Create a cache.
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @size: The size of objects to be created in this cache.
|
|
* @align: The required alignment for the objects.
|
|
* @flags: SLAB flags
|
|
* @ctor: A constructor for the objects.
|
|
* @dtor: A destructor for the objects.
|
|
*
|
|
* Returns a ptr to the cache on success, NULL on failure.
|
|
* Cannot be called within a int, but can be interrupted.
|
|
* The @ctor is run when new pages are allocated by the cache
|
|
* and the @dtor is run before the pages are handed back.
|
|
*
|
|
* @name must be valid until the cache is destroyed. This implies that
|
|
* the module calling this has to destroy the cache before getting
|
|
* unloaded.
|
|
*
|
|
* The flags are
|
|
*
|
|
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
|
|
* to catch references to uninitialised memory.
|
|
*
|
|
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
|
|
* for buffer overruns.
|
|
*
|
|
* %SLAB_NO_REAP - Don't automatically reap this cache when we're under
|
|
* memory pressure.
|
|
*
|
|
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
|
|
* cacheline. This can be beneficial if you're counting cycles as closely
|
|
* as davem.
|
|
*/
|
|
kmem_cache_t *
|
|
kmem_cache_create (const char *name, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
|
|
void (*dtor)(void*, kmem_cache_t *, unsigned long))
|
|
{
|
|
size_t left_over, slab_size, ralign;
|
|
kmem_cache_t *cachep = NULL;
|
|
|
|
/*
|
|
* Sanity checks... these are all serious usage bugs.
|
|
*/
|
|
if ((!name) ||
|
|
in_interrupt() ||
|
|
(size < BYTES_PER_WORD) ||
|
|
(size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
|
|
(dtor && !ctor)) {
|
|
printk(KERN_ERR "%s: Early error in slab %s\n",
|
|
__FUNCTION__, name);
|
|
BUG();
|
|
}
|
|
|
|
#if DEBUG
|
|
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
|
|
if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
|
|
/* No constructor, but inital state check requested */
|
|
printk(KERN_ERR "%s: No con, but init state check "
|
|
"requested - %s\n", __FUNCTION__, name);
|
|
flags &= ~SLAB_DEBUG_INITIAL;
|
|
}
|
|
|
|
#if FORCED_DEBUG
|
|
/*
|
|
* Enable redzoning and last user accounting, except for caches with
|
|
* large objects, if the increased size would increase the object size
|
|
* above the next power of two: caches with object sizes just above a
|
|
* power of two have a significant amount of internal fragmentation.
|
|
*/
|
|
if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
|
|
flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
|
|
if (!(flags & SLAB_DESTROY_BY_RCU))
|
|
flags |= SLAB_POISON;
|
|
#endif
|
|
if (flags & SLAB_DESTROY_BY_RCU)
|
|
BUG_ON(flags & SLAB_POISON);
|
|
#endif
|
|
if (flags & SLAB_DESTROY_BY_RCU)
|
|
BUG_ON(dtor);
|
|
|
|
/*
|
|
* Always checks flags, a caller might be expecting debug
|
|
* support which isn't available.
|
|
*/
|
|
if (flags & ~CREATE_MASK)
|
|
BUG();
|
|
|
|
/* Check that size is in terms of words. This is needed to avoid
|
|
* unaligned accesses for some archs when redzoning is used, and makes
|
|
* sure any on-slab bufctl's are also correctly aligned.
|
|
*/
|
|
if (size & (BYTES_PER_WORD-1)) {
|
|
size += (BYTES_PER_WORD-1);
|
|
size &= ~(BYTES_PER_WORD-1);
|
|
}
|
|
|
|
/* calculate out the final buffer alignment: */
|
|
/* 1) arch recommendation: can be overridden for debug */
|
|
if (flags & SLAB_HWCACHE_ALIGN) {
|
|
/* Default alignment: as specified by the arch code.
|
|
* Except if an object is really small, then squeeze multiple
|
|
* objects into one cacheline.
|
|
*/
|
|
ralign = cache_line_size();
|
|
while (size <= ralign/2)
|
|
ralign /= 2;
|
|
} else {
|
|
ralign = BYTES_PER_WORD;
|
|
}
|
|
/* 2) arch mandated alignment: disables debug if necessary */
|
|
if (ralign < ARCH_SLAB_MINALIGN) {
|
|
ralign = ARCH_SLAB_MINALIGN;
|
|
if (ralign > BYTES_PER_WORD)
|
|
flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
|
|
}
|
|
/* 3) caller mandated alignment: disables debug if necessary */
|
|
if (ralign < align) {
|
|
ralign = align;
|
|
if (ralign > BYTES_PER_WORD)
|
|
flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
|
|
}
|
|
/* 4) Store it. Note that the debug code below can reduce
|
|
* the alignment to BYTES_PER_WORD.
|
|
*/
|
|
align = ralign;
|
|
|
|
/* Get cache's description obj. */
|
|
cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
|
|
if (!cachep)
|
|
goto opps;
|
|
memset(cachep, 0, sizeof(kmem_cache_t));
|
|
|
|
#if DEBUG
|
|
cachep->reallen = size;
|
|
|
|
if (flags & SLAB_RED_ZONE) {
|
|
/* redzoning only works with word aligned caches */
|
|
align = BYTES_PER_WORD;
|
|
|
|
/* add space for red zone words */
|
|
cachep->dbghead += BYTES_PER_WORD;
|
|
size += 2*BYTES_PER_WORD;
|
|
}
|
|
if (flags & SLAB_STORE_USER) {
|
|
/* user store requires word alignment and
|
|
* one word storage behind the end of the real
|
|
* object.
|
|
*/
|
|
align = BYTES_PER_WORD;
|
|
size += BYTES_PER_WORD;
|
|
}
|
|
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
|
|
if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
|
|
cachep->dbghead += PAGE_SIZE - size;
|
|
size = PAGE_SIZE;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* Determine if the slab management is 'on' or 'off' slab. */
|
|
if (size >= (PAGE_SIZE>>3))
|
|
/*
|
|
* Size is large, assume best to place the slab management obj
|
|
* off-slab (should allow better packing of objs).
|
|
*/
|
|
flags |= CFLGS_OFF_SLAB;
|
|
|
|
size = ALIGN(size, align);
|
|
|
|
if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
|
|
/*
|
|
* A VFS-reclaimable slab tends to have most allocations
|
|
* as GFP_NOFS and we really don't want to have to be allocating
|
|
* higher-order pages when we are unable to shrink dcache.
|
|
*/
|
|
cachep->gfporder = 0;
|
|
cache_estimate(cachep->gfporder, size, align, flags,
|
|
&left_over, &cachep->num);
|
|
} else {
|
|
/*
|
|
* Calculate size (in pages) of slabs, and the num of objs per
|
|
* slab. This could be made much more intelligent. For now,
|
|
* try to avoid using high page-orders for slabs. When the
|
|
* gfp() funcs are more friendly towards high-order requests,
|
|
* this should be changed.
|
|
*/
|
|
do {
|
|
unsigned int break_flag = 0;
|
|
cal_wastage:
|
|
cache_estimate(cachep->gfporder, size, align, flags,
|
|
&left_over, &cachep->num);
|
|
if (break_flag)
|
|
break;
|
|
if (cachep->gfporder >= MAX_GFP_ORDER)
|
|
break;
|
|
if (!cachep->num)
|
|
goto next;
|
|
if (flags & CFLGS_OFF_SLAB &&
|
|
cachep->num > offslab_limit) {
|
|
/* This num of objs will cause problems. */
|
|
cachep->gfporder--;
|
|
break_flag++;
|
|
goto cal_wastage;
|
|
}
|
|
|
|
/*
|
|
* Large num of objs is good, but v. large slabs are
|
|
* currently bad for the gfp()s.
|
|
*/
|
|
if (cachep->gfporder >= slab_break_gfp_order)
|
|
break;
|
|
|
|
if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
|
|
break; /* Acceptable internal fragmentation. */
|
|
next:
|
|
cachep->gfporder++;
|
|
} while (1);
|
|
}
|
|
|
|
if (!cachep->num) {
|
|
printk("kmem_cache_create: couldn't create cache %s.\n", name);
|
|
kmem_cache_free(&cache_cache, cachep);
|
|
cachep = NULL;
|
|
goto opps;
|
|
}
|
|
slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
|
|
+ sizeof(struct slab), align);
|
|
|
|
/*
|
|
* If the slab has been placed off-slab, and we have enough space then
|
|
* move it on-slab. This is at the expense of any extra colouring.
|
|
*/
|
|
if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
|
|
flags &= ~CFLGS_OFF_SLAB;
|
|
left_over -= slab_size;
|
|
}
|
|
|
|
if (flags & CFLGS_OFF_SLAB) {
|
|
/* really off slab. No need for manual alignment */
|
|
slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
|
|
}
|
|
|
|
cachep->colour_off = cache_line_size();
|
|
/* Offset must be a multiple of the alignment. */
|
|
if (cachep->colour_off < align)
|
|
cachep->colour_off = align;
|
|
cachep->colour = left_over/cachep->colour_off;
|
|
cachep->slab_size = slab_size;
|
|
cachep->flags = flags;
|
|
cachep->gfpflags = 0;
|
|
if (flags & SLAB_CACHE_DMA)
|
|
cachep->gfpflags |= GFP_DMA;
|
|
spin_lock_init(&cachep->spinlock);
|
|
cachep->objsize = size;
|
|
/* NUMA */
|
|
INIT_LIST_HEAD(&cachep->lists.slabs_full);
|
|
INIT_LIST_HEAD(&cachep->lists.slabs_partial);
|
|
INIT_LIST_HEAD(&cachep->lists.slabs_free);
|
|
|
|
if (flags & CFLGS_OFF_SLAB)
|
|
cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
|
|
cachep->ctor = ctor;
|
|
cachep->dtor = dtor;
|
|
cachep->name = name;
|
|
|
|
/* Don't let CPUs to come and go */
|
|
lock_cpu_hotplug();
|
|
|
|
if (g_cpucache_up == FULL) {
|
|
enable_cpucache(cachep);
|
|
} else {
|
|
if (g_cpucache_up == NONE) {
|
|
/* Note: the first kmem_cache_create must create
|
|
* the cache that's used by kmalloc(24), otherwise
|
|
* the creation of further caches will BUG().
|
|
*/
|
|
cachep->array[smp_processor_id()] = &initarray_generic.cache;
|
|
g_cpucache_up = PARTIAL;
|
|
} else {
|
|
cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL);
|
|
}
|
|
BUG_ON(!ac_data(cachep));
|
|
ac_data(cachep)->avail = 0;
|
|
ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
|
|
ac_data(cachep)->batchcount = 1;
|
|
ac_data(cachep)->touched = 0;
|
|
cachep->batchcount = 1;
|
|
cachep->limit = BOOT_CPUCACHE_ENTRIES;
|
|
cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
|
|
+ cachep->num;
|
|
}
|
|
|
|
cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 +
|
|
((unsigned long)cachep)%REAPTIMEOUT_LIST3;
|
|
|
|
/* Need the semaphore to access the chain. */
|
|
down(&cache_chain_sem);
|
|
{
|
|
struct list_head *p;
|
|
mm_segment_t old_fs;
|
|
|
|
old_fs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
list_for_each(p, &cache_chain) {
|
|
kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
|
|
char tmp;
|
|
/* This happens when the module gets unloaded and doesn't
|
|
destroy its slab cache and noone else reuses the vmalloc
|
|
area of the module. Print a warning. */
|
|
if (__get_user(tmp,pc->name)) {
|
|
printk("SLAB: cache with size %d has lost its name\n",
|
|
pc->objsize);
|
|
continue;
|
|
}
|
|
if (!strcmp(pc->name,name)) {
|
|
printk("kmem_cache_create: duplicate cache %s\n",name);
|
|
up(&cache_chain_sem);
|
|
unlock_cpu_hotplug();
|
|
BUG();
|
|
}
|
|
}
|
|
set_fs(old_fs);
|
|
}
|
|
|
|
/* cache setup completed, link it into the list */
|
|
list_add(&cachep->next, &cache_chain);
|
|
up(&cache_chain_sem);
|
|
unlock_cpu_hotplug();
|
|
opps:
|
|
if (!cachep && (flags & SLAB_PANIC))
|
|
panic("kmem_cache_create(): failed to create slab `%s'\n",
|
|
name);
|
|
return cachep;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_create);
|
|
|
|
#if DEBUG
|
|
static void check_irq_off(void)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
}
|
|
|
|
static void check_irq_on(void)
|
|
{
|
|
BUG_ON(irqs_disabled());
|
|
}
|
|
|
|
static void check_spinlock_acquired(kmem_cache_t *cachep)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
check_irq_off();
|
|
BUG_ON(spin_trylock(&cachep->spinlock));
|
|
#endif
|
|
}
|
|
#else
|
|
#define check_irq_off() do { } while(0)
|
|
#define check_irq_on() do { } while(0)
|
|
#define check_spinlock_acquired(x) do { } while(0)
|
|
#endif
|
|
|
|
/*
|
|
* Waits for all CPUs to execute func().
|
|
*/
|
|
static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
|
|
{
|
|
check_irq_on();
|
|
preempt_disable();
|
|
|
|
local_irq_disable();
|
|
func(arg);
|
|
local_irq_enable();
|
|
|
|
if (smp_call_function(func, arg, 1, 1))
|
|
BUG();
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void drain_array_locked(kmem_cache_t* cachep,
|
|
struct array_cache *ac, int force);
|
|
|
|
static void do_drain(void *arg)
|
|
{
|
|
kmem_cache_t *cachep = (kmem_cache_t*)arg;
|
|
struct array_cache *ac;
|
|
|
|
check_irq_off();
|
|
ac = ac_data(cachep);
|
|
spin_lock(&cachep->spinlock);
|
|
free_block(cachep, &ac_entry(ac)[0], ac->avail);
|
|
spin_unlock(&cachep->spinlock);
|
|
ac->avail = 0;
|
|
}
|
|
|
|
static void drain_cpu_caches(kmem_cache_t *cachep)
|
|
{
|
|
smp_call_function_all_cpus(do_drain, cachep);
|
|
check_irq_on();
|
|
spin_lock_irq(&cachep->spinlock);
|
|
if (cachep->lists.shared)
|
|
drain_array_locked(cachep, cachep->lists.shared, 1);
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
}
|
|
|
|
|
|
/* NUMA shrink all list3s */
|
|
static int __cache_shrink(kmem_cache_t *cachep)
|
|
{
|
|
struct slab *slabp;
|
|
int ret;
|
|
|
|
drain_cpu_caches(cachep);
|
|
|
|
check_irq_on();
|
|
spin_lock_irq(&cachep->spinlock);
|
|
|
|
for(;;) {
|
|
struct list_head *p;
|
|
|
|
p = cachep->lists.slabs_free.prev;
|
|
if (p == &cachep->lists.slabs_free)
|
|
break;
|
|
|
|
slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list);
|
|
#if DEBUG
|
|
if (slabp->inuse)
|
|
BUG();
|
|
#endif
|
|
list_del(&slabp->list);
|
|
|
|
cachep->lists.free_objects -= cachep->num;
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
slab_destroy(cachep, slabp);
|
|
spin_lock_irq(&cachep->spinlock);
|
|
}
|
|
ret = !list_empty(&cachep->lists.slabs_full) ||
|
|
!list_empty(&cachep->lists.slabs_partial);
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kmem_cache_shrink - Shrink a cache.
|
|
* @cachep: The cache to shrink.
|
|
*
|
|
* Releases as many slabs as possible for a cache.
|
|
* To help debugging, a zero exit status indicates all slabs were released.
|
|
*/
|
|
int kmem_cache_shrink(kmem_cache_t *cachep)
|
|
{
|
|
if (!cachep || in_interrupt())
|
|
BUG();
|
|
|
|
return __cache_shrink(cachep);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_shrink);
|
|
|
|
/**
|
|
* kmem_cache_destroy - delete a cache
|
|
* @cachep: the cache to destroy
|
|
*
|
|
* Remove a kmem_cache_t object from the slab cache.
|
|
* Returns 0 on success.
|
|
*
|
|
* It is expected this function will be called by a module when it is
|
|
* unloaded. This will remove the cache completely, and avoid a duplicate
|
|
* cache being allocated each time a module is loaded and unloaded, if the
|
|
* module doesn't have persistent in-kernel storage across loads and unloads.
|
|
*
|
|
* The cache must be empty before calling this function.
|
|
*
|
|
* The caller must guarantee that noone will allocate memory from the cache
|
|
* during the kmem_cache_destroy().
|
|
*/
|
|
int kmem_cache_destroy(kmem_cache_t * cachep)
|
|
{
|
|
int i;
|
|
|
|
if (!cachep || in_interrupt())
|
|
BUG();
|
|
|
|
/* Don't let CPUs to come and go */
|
|
lock_cpu_hotplug();
|
|
|
|
/* Find the cache in the chain of caches. */
|
|
down(&cache_chain_sem);
|
|
/*
|
|
* the chain is never empty, cache_cache is never destroyed
|
|
*/
|
|
list_del(&cachep->next);
|
|
up(&cache_chain_sem);
|
|
|
|
if (__cache_shrink(cachep)) {
|
|
slab_error(cachep, "Can't free all objects");
|
|
down(&cache_chain_sem);
|
|
list_add(&cachep->next,&cache_chain);
|
|
up(&cache_chain_sem);
|
|
unlock_cpu_hotplug();
|
|
return 1;
|
|
}
|
|
|
|
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
|
|
synchronize_rcu();
|
|
|
|
/* no cpu_online check required here since we clear the percpu
|
|
* array on cpu offline and set this to NULL.
|
|
*/
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
kfree(cachep->array[i]);
|
|
|
|
/* NUMA: free the list3 structures */
|
|
kfree(cachep->lists.shared);
|
|
cachep->lists.shared = NULL;
|
|
kmem_cache_free(&cache_cache, cachep);
|
|
|
|
unlock_cpu_hotplug();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_destroy);
|
|
|
|
/* Get the memory for a slab management obj. */
|
|
static struct slab* alloc_slabmgmt(kmem_cache_t *cachep,
|
|
void *objp, int colour_off, unsigned int __nocast local_flags)
|
|
{
|
|
struct slab *slabp;
|
|
|
|
if (OFF_SLAB(cachep)) {
|
|
/* Slab management obj is off-slab. */
|
|
slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
|
|
if (!slabp)
|
|
return NULL;
|
|
} else {
|
|
slabp = objp+colour_off;
|
|
colour_off += cachep->slab_size;
|
|
}
|
|
slabp->inuse = 0;
|
|
slabp->colouroff = colour_off;
|
|
slabp->s_mem = objp+colour_off;
|
|
|
|
return slabp;
|
|
}
|
|
|
|
static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
|
|
{
|
|
return (kmem_bufctl_t *)(slabp+1);
|
|
}
|
|
|
|
static void cache_init_objs(kmem_cache_t *cachep,
|
|
struct slab *slabp, unsigned long ctor_flags)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cachep->num; i++) {
|
|
void* objp = slabp->s_mem+cachep->objsize*i;
|
|
#if DEBUG
|
|
/* need to poison the objs? */
|
|
if (cachep->flags & SLAB_POISON)
|
|
poison_obj(cachep, objp, POISON_FREE);
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
*dbg_userword(cachep, objp) = NULL;
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
|
|
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
|
|
}
|
|
/*
|
|
* Constructors are not allowed to allocate memory from
|
|
* the same cache which they are a constructor for.
|
|
* Otherwise, deadlock. They must also be threaded.
|
|
*/
|
|
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
|
|
cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
|
|
slab_error(cachep, "constructor overwrote the"
|
|
" end of an object");
|
|
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
|
|
slab_error(cachep, "constructor overwrote the"
|
|
" start of an object");
|
|
}
|
|
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
|
|
#else
|
|
if (cachep->ctor)
|
|
cachep->ctor(objp, cachep, ctor_flags);
|
|
#endif
|
|
slab_bufctl(slabp)[i] = i+1;
|
|
}
|
|
slab_bufctl(slabp)[i-1] = BUFCTL_END;
|
|
slabp->free = 0;
|
|
}
|
|
|
|
static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags)
|
|
{
|
|
if (flags & SLAB_DMA) {
|
|
if (!(cachep->gfpflags & GFP_DMA))
|
|
BUG();
|
|
} else {
|
|
if (cachep->gfpflags & GFP_DMA)
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
|
|
{
|
|
int i;
|
|
struct page *page;
|
|
|
|
/* Nasty!!!!!! I hope this is OK. */
|
|
i = 1 << cachep->gfporder;
|
|
page = virt_to_page(objp);
|
|
do {
|
|
SET_PAGE_CACHE(page, cachep);
|
|
SET_PAGE_SLAB(page, slabp);
|
|
page++;
|
|
} while (--i);
|
|
}
|
|
|
|
/*
|
|
* Grow (by 1) the number of slabs within a cache. This is called by
|
|
* kmem_cache_alloc() when there are no active objs left in a cache.
|
|
*/
|
|
static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
|
|
{
|
|
struct slab *slabp;
|
|
void *objp;
|
|
size_t offset;
|
|
unsigned int local_flags;
|
|
unsigned long ctor_flags;
|
|
|
|
/* Be lazy and only check for valid flags here,
|
|
* keeping it out of the critical path in kmem_cache_alloc().
|
|
*/
|
|
if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
|
|
BUG();
|
|
if (flags & SLAB_NO_GROW)
|
|
return 0;
|
|
|
|
ctor_flags = SLAB_CTOR_CONSTRUCTOR;
|
|
local_flags = (flags & SLAB_LEVEL_MASK);
|
|
if (!(local_flags & __GFP_WAIT))
|
|
/*
|
|
* Not allowed to sleep. Need to tell a constructor about
|
|
* this - it might need to know...
|
|
*/
|
|
ctor_flags |= SLAB_CTOR_ATOMIC;
|
|
|
|
/* About to mess with non-constant members - lock. */
|
|
check_irq_off();
|
|
spin_lock(&cachep->spinlock);
|
|
|
|
/* Get colour for the slab, and cal the next value. */
|
|
offset = cachep->colour_next;
|
|
cachep->colour_next++;
|
|
if (cachep->colour_next >= cachep->colour)
|
|
cachep->colour_next = 0;
|
|
offset *= cachep->colour_off;
|
|
|
|
spin_unlock(&cachep->spinlock);
|
|
|
|
if (local_flags & __GFP_WAIT)
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* The test for missing atomic flag is performed here, rather than
|
|
* the more obvious place, simply to reduce the critical path length
|
|
* in kmem_cache_alloc(). If a caller is seriously mis-behaving they
|
|
* will eventually be caught here (where it matters).
|
|
*/
|
|
kmem_flagcheck(cachep, flags);
|
|
|
|
|
|
/* Get mem for the objs. */
|
|
if (!(objp = kmem_getpages(cachep, flags, nodeid)))
|
|
goto failed;
|
|
|
|
/* Get slab management. */
|
|
if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
|
|
goto opps1;
|
|
|
|
set_slab_attr(cachep, slabp, objp);
|
|
|
|
cache_init_objs(cachep, slabp, ctor_flags);
|
|
|
|
if (local_flags & __GFP_WAIT)
|
|
local_irq_disable();
|
|
check_irq_off();
|
|
spin_lock(&cachep->spinlock);
|
|
|
|
/* Make slab active. */
|
|
list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
|
|
STATS_INC_GROWN(cachep);
|
|
list3_data(cachep)->free_objects += cachep->num;
|
|
spin_unlock(&cachep->spinlock);
|
|
return 1;
|
|
opps1:
|
|
kmem_freepages(cachep, objp);
|
|
failed:
|
|
if (local_flags & __GFP_WAIT)
|
|
local_irq_disable();
|
|
return 0;
|
|
}
|
|
|
|
#if DEBUG
|
|
|
|
/*
|
|
* Perform extra freeing checks:
|
|
* - detect bad pointers.
|
|
* - POISON/RED_ZONE checking
|
|
* - destructor calls, for caches with POISON+dtor
|
|
*/
|
|
static void kfree_debugcheck(const void *objp)
|
|
{
|
|
struct page *page;
|
|
|
|
if (!virt_addr_valid(objp)) {
|
|
printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
|
|
(unsigned long)objp);
|
|
BUG();
|
|
}
|
|
page = virt_to_page(objp);
|
|
if (!PageSlab(page)) {
|
|
printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
|
|
void *caller)
|
|
{
|
|
struct page *page;
|
|
unsigned int objnr;
|
|
struct slab *slabp;
|
|
|
|
objp -= obj_dbghead(cachep);
|
|
kfree_debugcheck(objp);
|
|
page = virt_to_page(objp);
|
|
|
|
if (GET_PAGE_CACHE(page) != cachep) {
|
|
printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
|
|
GET_PAGE_CACHE(page),cachep);
|
|
printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
|
|
printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
|
|
WARN_ON(1);
|
|
}
|
|
slabp = GET_PAGE_SLAB(page);
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
|
|
slab_error(cachep, "double free, or memory outside"
|
|
" object was overwritten");
|
|
printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
|
|
objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
|
|
}
|
|
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
|
|
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
|
|
}
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
*dbg_userword(cachep, objp) = caller;
|
|
|
|
objnr = (objp-slabp->s_mem)/cachep->objsize;
|
|
|
|
BUG_ON(objnr >= cachep->num);
|
|
BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
|
|
|
|
if (cachep->flags & SLAB_DEBUG_INITIAL) {
|
|
/* Need to call the slab's constructor so the
|
|
* caller can perform a verify of its state (debugging).
|
|
* Called without the cache-lock held.
|
|
*/
|
|
cachep->ctor(objp+obj_dbghead(cachep),
|
|
cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
|
|
}
|
|
if (cachep->flags & SLAB_POISON && cachep->dtor) {
|
|
/* we want to cache poison the object,
|
|
* call the destruction callback
|
|
*/
|
|
cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
|
|
}
|
|
if (cachep->flags & SLAB_POISON) {
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
|
|
store_stackinfo(cachep, objp, (unsigned long)caller);
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
|
|
} else {
|
|
poison_obj(cachep, objp, POISON_FREE);
|
|
}
|
|
#else
|
|
poison_obj(cachep, objp, POISON_FREE);
|
|
#endif
|
|
}
|
|
return objp;
|
|
}
|
|
|
|
static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
|
|
{
|
|
kmem_bufctl_t i;
|
|
int entries = 0;
|
|
|
|
check_spinlock_acquired(cachep);
|
|
/* Check slab's freelist to see if this obj is there. */
|
|
for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
|
|
entries++;
|
|
if (entries > cachep->num || i >= cachep->num)
|
|
goto bad;
|
|
}
|
|
if (entries != cachep->num - slabp->inuse) {
|
|
bad:
|
|
printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
|
|
cachep->name, cachep->num, slabp, slabp->inuse);
|
|
for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
|
|
if ((i%16)==0)
|
|
printk("\n%03x:", i);
|
|
printk(" %02x", ((unsigned char*)slabp)[i]);
|
|
}
|
|
printk("\n");
|
|
BUG();
|
|
}
|
|
}
|
|
#else
|
|
#define kfree_debugcheck(x) do { } while(0)
|
|
#define cache_free_debugcheck(x,objp,z) (objp)
|
|
#define check_slabp(x,y) do { } while(0)
|
|
#endif
|
|
|
|
static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags)
|
|
{
|
|
int batchcount;
|
|
struct kmem_list3 *l3;
|
|
struct array_cache *ac;
|
|
|
|
check_irq_off();
|
|
ac = ac_data(cachep);
|
|
retry:
|
|
batchcount = ac->batchcount;
|
|
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
|
|
/* if there was little recent activity on this
|
|
* cache, then perform only a partial refill.
|
|
* Otherwise we could generate refill bouncing.
|
|
*/
|
|
batchcount = BATCHREFILL_LIMIT;
|
|
}
|
|
l3 = list3_data(cachep);
|
|
|
|
BUG_ON(ac->avail > 0);
|
|
spin_lock(&cachep->spinlock);
|
|
if (l3->shared) {
|
|
struct array_cache *shared_array = l3->shared;
|
|
if (shared_array->avail) {
|
|
if (batchcount > shared_array->avail)
|
|
batchcount = shared_array->avail;
|
|
shared_array->avail -= batchcount;
|
|
ac->avail = batchcount;
|
|
memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail],
|
|
sizeof(void*)*batchcount);
|
|
shared_array->touched = 1;
|
|
goto alloc_done;
|
|
}
|
|
}
|
|
while (batchcount > 0) {
|
|
struct list_head *entry;
|
|
struct slab *slabp;
|
|
/* Get slab alloc is to come from. */
|
|
entry = l3->slabs_partial.next;
|
|
if (entry == &l3->slabs_partial) {
|
|
l3->free_touched = 1;
|
|
entry = l3->slabs_free.next;
|
|
if (entry == &l3->slabs_free)
|
|
goto must_grow;
|
|
}
|
|
|
|
slabp = list_entry(entry, struct slab, list);
|
|
check_slabp(cachep, slabp);
|
|
check_spinlock_acquired(cachep);
|
|
while (slabp->inuse < cachep->num && batchcount--) {
|
|
kmem_bufctl_t next;
|
|
STATS_INC_ALLOCED(cachep);
|
|
STATS_INC_ACTIVE(cachep);
|
|
STATS_SET_HIGH(cachep);
|
|
|
|
/* get obj pointer */
|
|
ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize;
|
|
|
|
slabp->inuse++;
|
|
next = slab_bufctl(slabp)[slabp->free];
|
|
#if DEBUG
|
|
slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
|
|
#endif
|
|
slabp->free = next;
|
|
}
|
|
check_slabp(cachep, slabp);
|
|
|
|
/* move slabp to correct slabp list: */
|
|
list_del(&slabp->list);
|
|
if (slabp->free == BUFCTL_END)
|
|
list_add(&slabp->list, &l3->slabs_full);
|
|
else
|
|
list_add(&slabp->list, &l3->slabs_partial);
|
|
}
|
|
|
|
must_grow:
|
|
l3->free_objects -= ac->avail;
|
|
alloc_done:
|
|
spin_unlock(&cachep->spinlock);
|
|
|
|
if (unlikely(!ac->avail)) {
|
|
int x;
|
|
x = cache_grow(cachep, flags, -1);
|
|
|
|
// cache_grow can reenable interrupts, then ac could change.
|
|
ac = ac_data(cachep);
|
|
if (!x && ac->avail == 0) // no objects in sight? abort
|
|
return NULL;
|
|
|
|
if (!ac->avail) // objects refilled by interrupt?
|
|
goto retry;
|
|
}
|
|
ac->touched = 1;
|
|
return ac_entry(ac)[--ac->avail];
|
|
}
|
|
|
|
static inline void
|
|
cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags)
|
|
{
|
|
might_sleep_if(flags & __GFP_WAIT);
|
|
#if DEBUG
|
|
kmem_flagcheck(cachep, flags);
|
|
#endif
|
|
}
|
|
|
|
#if DEBUG
|
|
static void *
|
|
cache_alloc_debugcheck_after(kmem_cache_t *cachep,
|
|
unsigned long flags, void *objp, void *caller)
|
|
{
|
|
if (!objp)
|
|
return objp;
|
|
if (cachep->flags & SLAB_POISON) {
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
|
|
else
|
|
check_poison_obj(cachep, objp);
|
|
#else
|
|
check_poison_obj(cachep, objp);
|
|
#endif
|
|
poison_obj(cachep, objp, POISON_INUSE);
|
|
}
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
*dbg_userword(cachep, objp) = caller;
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
|
|
slab_error(cachep, "double free, or memory outside"
|
|
" object was overwritten");
|
|
printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
|
|
objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
|
|
}
|
|
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
|
|
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
|
|
}
|
|
objp += obj_dbghead(cachep);
|
|
if (cachep->ctor && cachep->flags & SLAB_POISON) {
|
|
unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
|
|
|
|
if (!(flags & __GFP_WAIT))
|
|
ctor_flags |= SLAB_CTOR_ATOMIC;
|
|
|
|
cachep->ctor(objp, cachep, ctor_flags);
|
|
}
|
|
return objp;
|
|
}
|
|
#else
|
|
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
|
|
#endif
|
|
|
|
|
|
static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
|
|
{
|
|
unsigned long save_flags;
|
|
void* objp;
|
|
struct array_cache *ac;
|
|
|
|
cache_alloc_debugcheck_before(cachep, flags);
|
|
|
|
local_irq_save(save_flags);
|
|
ac = ac_data(cachep);
|
|
if (likely(ac->avail)) {
|
|
STATS_INC_ALLOCHIT(cachep);
|
|
ac->touched = 1;
|
|
objp = ac_entry(ac)[--ac->avail];
|
|
} else {
|
|
STATS_INC_ALLOCMISS(cachep);
|
|
objp = cache_alloc_refill(cachep, flags);
|
|
}
|
|
local_irq_restore(save_flags);
|
|
objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0));
|
|
return objp;
|
|
}
|
|
|
|
/*
|
|
* NUMA: different approach needed if the spinlock is moved into
|
|
* the l3 structure
|
|
*/
|
|
|
|
static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
|
|
{
|
|
int i;
|
|
|
|
check_spinlock_acquired(cachep);
|
|
|
|
/* NUMA: move add into loop */
|
|
cachep->lists.free_objects += nr_objects;
|
|
|
|
for (i = 0; i < nr_objects; i++) {
|
|
void *objp = objpp[i];
|
|
struct slab *slabp;
|
|
unsigned int objnr;
|
|
|
|
slabp = GET_PAGE_SLAB(virt_to_page(objp));
|
|
list_del(&slabp->list);
|
|
objnr = (objp - slabp->s_mem) / cachep->objsize;
|
|
check_slabp(cachep, slabp);
|
|
#if DEBUG
|
|
if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
|
|
printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n",
|
|
cachep->name, objp);
|
|
BUG();
|
|
}
|
|
#endif
|
|
slab_bufctl(slabp)[objnr] = slabp->free;
|
|
slabp->free = objnr;
|
|
STATS_DEC_ACTIVE(cachep);
|
|
slabp->inuse--;
|
|
check_slabp(cachep, slabp);
|
|
|
|
/* fixup slab chains */
|
|
if (slabp->inuse == 0) {
|
|
if (cachep->lists.free_objects > cachep->free_limit) {
|
|
cachep->lists.free_objects -= cachep->num;
|
|
slab_destroy(cachep, slabp);
|
|
} else {
|
|
list_add(&slabp->list,
|
|
&list3_data_ptr(cachep, objp)->slabs_free);
|
|
}
|
|
} else {
|
|
/* Unconditionally move a slab to the end of the
|
|
* partial list on free - maximum time for the
|
|
* other objects to be freed, too.
|
|
*/
|
|
list_add_tail(&slabp->list,
|
|
&list3_data_ptr(cachep, objp)->slabs_partial);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
|
|
{
|
|
int batchcount;
|
|
|
|
batchcount = ac->batchcount;
|
|
#if DEBUG
|
|
BUG_ON(!batchcount || batchcount > ac->avail);
|
|
#endif
|
|
check_irq_off();
|
|
spin_lock(&cachep->spinlock);
|
|
if (cachep->lists.shared) {
|
|
struct array_cache *shared_array = cachep->lists.shared;
|
|
int max = shared_array->limit-shared_array->avail;
|
|
if (max) {
|
|
if (batchcount > max)
|
|
batchcount = max;
|
|
memcpy(&ac_entry(shared_array)[shared_array->avail],
|
|
&ac_entry(ac)[0],
|
|
sizeof(void*)*batchcount);
|
|
shared_array->avail += batchcount;
|
|
goto free_done;
|
|
}
|
|
}
|
|
|
|
free_block(cachep, &ac_entry(ac)[0], batchcount);
|
|
free_done:
|
|
#if STATS
|
|
{
|
|
int i = 0;
|
|
struct list_head *p;
|
|
|
|
p = list3_data(cachep)->slabs_free.next;
|
|
while (p != &(list3_data(cachep)->slabs_free)) {
|
|
struct slab *slabp;
|
|
|
|
slabp = list_entry(p, struct slab, list);
|
|
BUG_ON(slabp->inuse);
|
|
|
|
i++;
|
|
p = p->next;
|
|
}
|
|
STATS_SET_FREEABLE(cachep, i);
|
|
}
|
|
#endif
|
|
spin_unlock(&cachep->spinlock);
|
|
ac->avail -= batchcount;
|
|
memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount],
|
|
sizeof(void*)*ac->avail);
|
|
}
|
|
|
|
/*
|
|
* __cache_free
|
|
* Release an obj back to its cache. If the obj has a constructed
|
|
* state, it must be in this state _before_ it is released.
|
|
*
|
|
* Called with disabled ints.
|
|
*/
|
|
static inline void __cache_free(kmem_cache_t *cachep, void *objp)
|
|
{
|
|
struct array_cache *ac = ac_data(cachep);
|
|
|
|
check_irq_off();
|
|
objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
|
|
|
|
if (likely(ac->avail < ac->limit)) {
|
|
STATS_INC_FREEHIT(cachep);
|
|
ac_entry(ac)[ac->avail++] = objp;
|
|
return;
|
|
} else {
|
|
STATS_INC_FREEMISS(cachep);
|
|
cache_flusharray(cachep, ac);
|
|
ac_entry(ac)[ac->avail++] = objp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kmem_cache_alloc - Allocate an object
|
|
* @cachep: The cache to allocate from.
|
|
* @flags: See kmalloc().
|
|
*
|
|
* Allocate an object from this cache. The flags are only relevant
|
|
* if the cache has no available objects.
|
|
*/
|
|
void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
|
|
{
|
|
return __cache_alloc(cachep, flags);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_alloc);
|
|
|
|
/**
|
|
* kmem_ptr_validate - check if an untrusted pointer might
|
|
* be a slab entry.
|
|
* @cachep: the cache we're checking against
|
|
* @ptr: pointer to validate
|
|
*
|
|
* This verifies that the untrusted pointer looks sane:
|
|
* it is _not_ a guarantee that the pointer is actually
|
|
* part of the slab cache in question, but it at least
|
|
* validates that the pointer can be dereferenced and
|
|
* looks half-way sane.
|
|
*
|
|
* Currently only used for dentry validation.
|
|
*/
|
|
int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
|
|
{
|
|
unsigned long addr = (unsigned long) ptr;
|
|
unsigned long min_addr = PAGE_OFFSET;
|
|
unsigned long align_mask = BYTES_PER_WORD-1;
|
|
unsigned long size = cachep->objsize;
|
|
struct page *page;
|
|
|
|
if (unlikely(addr < min_addr))
|
|
goto out;
|
|
if (unlikely(addr > (unsigned long)high_memory - size))
|
|
goto out;
|
|
if (unlikely(addr & align_mask))
|
|
goto out;
|
|
if (unlikely(!kern_addr_valid(addr)))
|
|
goto out;
|
|
if (unlikely(!kern_addr_valid(addr + size - 1)))
|
|
goto out;
|
|
page = virt_to_page(ptr);
|
|
if (unlikely(!PageSlab(page)))
|
|
goto out;
|
|
if (unlikely(GET_PAGE_CACHE(page) != cachep))
|
|
goto out;
|
|
return 1;
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/**
|
|
* kmem_cache_alloc_node - Allocate an object on the specified node
|
|
* @cachep: The cache to allocate from.
|
|
* @flags: See kmalloc().
|
|
* @nodeid: node number of the target node.
|
|
*
|
|
* Identical to kmem_cache_alloc, except that this function is slow
|
|
* and can sleep. And it will allocate memory on the given node, which
|
|
* can improve the performance for cpu bound structures.
|
|
*/
|
|
void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
|
|
{
|
|
int loop;
|
|
void *objp;
|
|
struct slab *slabp;
|
|
kmem_bufctl_t next;
|
|
|
|
for (loop = 0;;loop++) {
|
|
struct list_head *q;
|
|
|
|
objp = NULL;
|
|
check_irq_on();
|
|
spin_lock_irq(&cachep->spinlock);
|
|
/* walk through all partial and empty slab and find one
|
|
* from the right node */
|
|
list_for_each(q,&cachep->lists.slabs_partial) {
|
|
slabp = list_entry(q, struct slab, list);
|
|
|
|
if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid ||
|
|
loop > 2)
|
|
goto got_slabp;
|
|
}
|
|
list_for_each(q, &cachep->lists.slabs_free) {
|
|
slabp = list_entry(q, struct slab, list);
|
|
|
|
if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid ||
|
|
loop > 2)
|
|
goto got_slabp;
|
|
}
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
local_irq_disable();
|
|
if (!cache_grow(cachep, flags, nodeid)) {
|
|
local_irq_enable();
|
|
return NULL;
|
|
}
|
|
local_irq_enable();
|
|
}
|
|
got_slabp:
|
|
/* found one: allocate object */
|
|
check_slabp(cachep, slabp);
|
|
check_spinlock_acquired(cachep);
|
|
|
|
STATS_INC_ALLOCED(cachep);
|
|
STATS_INC_ACTIVE(cachep);
|
|
STATS_SET_HIGH(cachep);
|
|
STATS_INC_NODEALLOCS(cachep);
|
|
|
|
objp = slabp->s_mem + slabp->free*cachep->objsize;
|
|
|
|
slabp->inuse++;
|
|
next = slab_bufctl(slabp)[slabp->free];
|
|
#if DEBUG
|
|
slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
|
|
#endif
|
|
slabp->free = next;
|
|
check_slabp(cachep, slabp);
|
|
|
|
/* move slabp to correct slabp list: */
|
|
list_del(&slabp->list);
|
|
if (slabp->free == BUFCTL_END)
|
|
list_add(&slabp->list, &cachep->lists.slabs_full);
|
|
else
|
|
list_add(&slabp->list, &cachep->lists.slabs_partial);
|
|
|
|
list3_data(cachep)->free_objects--;
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp,
|
|
__builtin_return_address(0));
|
|
return objp;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_alloc_node);
|
|
|
|
void *kmalloc_node(size_t size, int flags, int node)
|
|
{
|
|
kmem_cache_t *cachep;
|
|
|
|
cachep = kmem_find_general_cachep(size, flags);
|
|
if (unlikely(cachep == NULL))
|
|
return NULL;
|
|
return kmem_cache_alloc_node(cachep, flags, node);
|
|
}
|
|
EXPORT_SYMBOL(kmalloc_node);
|
|
#endif
|
|
|
|
/**
|
|
* kmalloc - allocate memory
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* kmalloc is the normal method of allocating memory
|
|
* in the kernel.
|
|
*
|
|
* The @flags argument may be one of:
|
|
*
|
|
* %GFP_USER - Allocate memory on behalf of user. May sleep.
|
|
*
|
|
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
|
|
*
|
|
* %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
|
|
*
|
|
* Additionally, the %GFP_DMA flag may be set to indicate the memory
|
|
* must be suitable for DMA. This can mean different things on different
|
|
* platforms. For example, on i386, it means that the memory must come
|
|
* from the first 16MB.
|
|
*/
|
|
void *__kmalloc(size_t size, unsigned int __nocast flags)
|
|
{
|
|
kmem_cache_t *cachep;
|
|
|
|
/* If you want to save a few bytes .text space: replace
|
|
* __ with kmem_.
|
|
* Then kmalloc uses the uninlined functions instead of the inline
|
|
* functions.
|
|
*/
|
|
cachep = __find_general_cachep(size, flags);
|
|
if (unlikely(cachep == NULL))
|
|
return NULL;
|
|
return __cache_alloc(cachep, flags);
|
|
}
|
|
EXPORT_SYMBOL(__kmalloc);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* __alloc_percpu - allocate one copy of the object for every present
|
|
* cpu in the system, zeroing them.
|
|
* Objects should be dereferenced using the per_cpu_ptr macro only.
|
|
*
|
|
* @size: how many bytes of memory are required.
|
|
* @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
|
|
*/
|
|
void *__alloc_percpu(size_t size, size_t align)
|
|
{
|
|
int i;
|
|
struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
|
|
|
|
if (!pdata)
|
|
return NULL;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (!cpu_possible(i))
|
|
continue;
|
|
pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL,
|
|
cpu_to_node(i));
|
|
|
|
if (!pdata->ptrs[i])
|
|
goto unwind_oom;
|
|
memset(pdata->ptrs[i], 0, size);
|
|
}
|
|
|
|
/* Catch derefs w/o wrappers */
|
|
return (void *) (~(unsigned long) pdata);
|
|
|
|
unwind_oom:
|
|
while (--i >= 0) {
|
|
if (!cpu_possible(i))
|
|
continue;
|
|
kfree(pdata->ptrs[i]);
|
|
}
|
|
kfree(pdata);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(__alloc_percpu);
|
|
#endif
|
|
|
|
/**
|
|
* kmem_cache_free - Deallocate an object
|
|
* @cachep: The cache the allocation was from.
|
|
* @objp: The previously allocated object.
|
|
*
|
|
* Free an object which was previously allocated from this
|
|
* cache.
|
|
*/
|
|
void kmem_cache_free(kmem_cache_t *cachep, void *objp)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__cache_free(cachep, objp);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_free);
|
|
|
|
/**
|
|
* kcalloc - allocate memory for an array. The memory is set to zero.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate.
|
|
*/
|
|
void *kcalloc(size_t n, size_t size, unsigned int __nocast flags)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if (n != 0 && size > INT_MAX / n)
|
|
return ret;
|
|
|
|
ret = kmalloc(n * size, flags);
|
|
if (ret)
|
|
memset(ret, 0, n * size);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kcalloc);
|
|
|
|
/**
|
|
* kfree - free previously allocated memory
|
|
* @objp: pointer returned by kmalloc.
|
|
*
|
|
* Don't free memory not originally allocated by kmalloc()
|
|
* or you will run into trouble.
|
|
*/
|
|
void kfree(const void *objp)
|
|
{
|
|
kmem_cache_t *c;
|
|
unsigned long flags;
|
|
|
|
if (unlikely(!objp))
|
|
return;
|
|
local_irq_save(flags);
|
|
kfree_debugcheck(objp);
|
|
c = GET_PAGE_CACHE(virt_to_page(objp));
|
|
__cache_free(c, (void*)objp);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(kfree);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* free_percpu - free previously allocated percpu memory
|
|
* @objp: pointer returned by alloc_percpu.
|
|
*
|
|
* Don't free memory not originally allocated by alloc_percpu()
|
|
* The complemented objp is to check for that.
|
|
*/
|
|
void
|
|
free_percpu(const void *objp)
|
|
{
|
|
int i;
|
|
struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (!cpu_possible(i))
|
|
continue;
|
|
kfree(p->ptrs[i]);
|
|
}
|
|
kfree(p);
|
|
}
|
|
EXPORT_SYMBOL(free_percpu);
|
|
#endif
|
|
|
|
unsigned int kmem_cache_size(kmem_cache_t *cachep)
|
|
{
|
|
return obj_reallen(cachep);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_size);
|
|
|
|
const char *kmem_cache_name(kmem_cache_t *cachep)
|
|
{
|
|
return cachep->name;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kmem_cache_name);
|
|
|
|
struct ccupdate_struct {
|
|
kmem_cache_t *cachep;
|
|
struct array_cache *new[NR_CPUS];
|
|
};
|
|
|
|
static void do_ccupdate_local(void *info)
|
|
{
|
|
struct ccupdate_struct *new = (struct ccupdate_struct *)info;
|
|
struct array_cache *old;
|
|
|
|
check_irq_off();
|
|
old = ac_data(new->cachep);
|
|
|
|
new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
|
|
new->new[smp_processor_id()] = old;
|
|
}
|
|
|
|
|
|
static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
|
|
int shared)
|
|
{
|
|
struct ccupdate_struct new;
|
|
struct array_cache *new_shared;
|
|
int i;
|
|
|
|
memset(&new.new,0,sizeof(new.new));
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (cpu_online(i)) {
|
|
new.new[i] = alloc_arraycache(i, limit, batchcount);
|
|
if (!new.new[i]) {
|
|
for (i--; i >= 0; i--) kfree(new.new[i]);
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
new.new[i] = NULL;
|
|
}
|
|
}
|
|
new.cachep = cachep;
|
|
|
|
smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
|
|
|
|
check_irq_on();
|
|
spin_lock_irq(&cachep->spinlock);
|
|
cachep->batchcount = batchcount;
|
|
cachep->limit = limit;
|
|
cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num;
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
struct array_cache *ccold = new.new[i];
|
|
if (!ccold)
|
|
continue;
|
|
spin_lock_irq(&cachep->spinlock);
|
|
free_block(cachep, ac_entry(ccold), ccold->avail);
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
kfree(ccold);
|
|
}
|
|
new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d);
|
|
if (new_shared) {
|
|
struct array_cache *old;
|
|
|
|
spin_lock_irq(&cachep->spinlock);
|
|
old = cachep->lists.shared;
|
|
cachep->lists.shared = new_shared;
|
|
if (old)
|
|
free_block(cachep, ac_entry(old), old->avail);
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
kfree(old);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void enable_cpucache(kmem_cache_t *cachep)
|
|
{
|
|
int err;
|
|
int limit, shared;
|
|
|
|
/* The head array serves three purposes:
|
|
* - create a LIFO ordering, i.e. return objects that are cache-warm
|
|
* - reduce the number of spinlock operations.
|
|
* - reduce the number of linked list operations on the slab and
|
|
* bufctl chains: array operations are cheaper.
|
|
* The numbers are guessed, we should auto-tune as described by
|
|
* Bonwick.
|
|
*/
|
|
if (cachep->objsize > 131072)
|
|
limit = 1;
|
|
else if (cachep->objsize > PAGE_SIZE)
|
|
limit = 8;
|
|
else if (cachep->objsize > 1024)
|
|
limit = 24;
|
|
else if (cachep->objsize > 256)
|
|
limit = 54;
|
|
else
|
|
limit = 120;
|
|
|
|
/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
|
|
* allocation behaviour: Most allocs on one cpu, most free operations
|
|
* on another cpu. For these cases, an efficient object passing between
|
|
* cpus is necessary. This is provided by a shared array. The array
|
|
* replaces Bonwick's magazine layer.
|
|
* On uniprocessor, it's functionally equivalent (but less efficient)
|
|
* to a larger limit. Thus disabled by default.
|
|
*/
|
|
shared = 0;
|
|
#ifdef CONFIG_SMP
|
|
if (cachep->objsize <= PAGE_SIZE)
|
|
shared = 8;
|
|
#endif
|
|
|
|
#if DEBUG
|
|
/* With debugging enabled, large batchcount lead to excessively
|
|
* long periods with disabled local interrupts. Limit the
|
|
* batchcount
|
|
*/
|
|
if (limit > 32)
|
|
limit = 32;
|
|
#endif
|
|
err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
|
|
if (err)
|
|
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
|
|
cachep->name, -err);
|
|
}
|
|
|
|
static void drain_array_locked(kmem_cache_t *cachep,
|
|
struct array_cache *ac, int force)
|
|
{
|
|
int tofree;
|
|
|
|
check_spinlock_acquired(cachep);
|
|
if (ac->touched && !force) {
|
|
ac->touched = 0;
|
|
} else if (ac->avail) {
|
|
tofree = force ? ac->avail : (ac->limit+4)/5;
|
|
if (tofree > ac->avail) {
|
|
tofree = (ac->avail+1)/2;
|
|
}
|
|
free_block(cachep, ac_entry(ac), tofree);
|
|
ac->avail -= tofree;
|
|
memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
|
|
sizeof(void*)*ac->avail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cache_reap - Reclaim memory from caches.
|
|
*
|
|
* Called from workqueue/eventd every few seconds.
|
|
* Purpose:
|
|
* - clear the per-cpu caches for this CPU.
|
|
* - return freeable pages to the main free memory pool.
|
|
*
|
|
* If we cannot acquire the cache chain semaphore then just give up - we'll
|
|
* try again on the next iteration.
|
|
*/
|
|
static void cache_reap(void *unused)
|
|
{
|
|
struct list_head *walk;
|
|
|
|
if (down_trylock(&cache_chain_sem)) {
|
|
/* Give up. Setup the next iteration. */
|
|
schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
|
|
return;
|
|
}
|
|
|
|
list_for_each(walk, &cache_chain) {
|
|
kmem_cache_t *searchp;
|
|
struct list_head* p;
|
|
int tofree;
|
|
struct slab *slabp;
|
|
|
|
searchp = list_entry(walk, kmem_cache_t, next);
|
|
|
|
if (searchp->flags & SLAB_NO_REAP)
|
|
goto next;
|
|
|
|
check_irq_on();
|
|
|
|
spin_lock_irq(&searchp->spinlock);
|
|
|
|
drain_array_locked(searchp, ac_data(searchp), 0);
|
|
|
|
if(time_after(searchp->lists.next_reap, jiffies))
|
|
goto next_unlock;
|
|
|
|
searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3;
|
|
|
|
if (searchp->lists.shared)
|
|
drain_array_locked(searchp, searchp->lists.shared, 0);
|
|
|
|
if (searchp->lists.free_touched) {
|
|
searchp->lists.free_touched = 0;
|
|
goto next_unlock;
|
|
}
|
|
|
|
tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num);
|
|
do {
|
|
p = list3_data(searchp)->slabs_free.next;
|
|
if (p == &(list3_data(searchp)->slabs_free))
|
|
break;
|
|
|
|
slabp = list_entry(p, struct slab, list);
|
|
BUG_ON(slabp->inuse);
|
|
list_del(&slabp->list);
|
|
STATS_INC_REAPED(searchp);
|
|
|
|
/* Safe to drop the lock. The slab is no longer
|
|
* linked to the cache.
|
|
* searchp cannot disappear, we hold
|
|
* cache_chain_lock
|
|
*/
|
|
searchp->lists.free_objects -= searchp->num;
|
|
spin_unlock_irq(&searchp->spinlock);
|
|
slab_destroy(searchp, slabp);
|
|
spin_lock_irq(&searchp->spinlock);
|
|
} while(--tofree > 0);
|
|
next_unlock:
|
|
spin_unlock_irq(&searchp->spinlock);
|
|
next:
|
|
cond_resched();
|
|
}
|
|
check_irq_on();
|
|
up(&cache_chain_sem);
|
|
/* Setup the next iteration */
|
|
schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
loff_t n = *pos;
|
|
struct list_head *p;
|
|
|
|
down(&cache_chain_sem);
|
|
if (!n) {
|
|
/*
|
|
* Output format version, so at least we can change it
|
|
* without _too_ many complaints.
|
|
*/
|
|
#if STATS
|
|
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
|
|
#else
|
|
seq_puts(m, "slabinfo - version: 2.1\n");
|
|
#endif
|
|
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
|
|
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
|
|
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
|
|
#if STATS
|
|
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
|
|
" <error> <maxfreeable> <freelimit> <nodeallocs>");
|
|
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
|
|
#endif
|
|
seq_putc(m, '\n');
|
|
}
|
|
p = cache_chain.next;
|
|
while (n--) {
|
|
p = p->next;
|
|
if (p == &cache_chain)
|
|
return NULL;
|
|
}
|
|
return list_entry(p, kmem_cache_t, next);
|
|
}
|
|
|
|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
kmem_cache_t *cachep = p;
|
|
++*pos;
|
|
return cachep->next.next == &cache_chain ? NULL
|
|
: list_entry(cachep->next.next, kmem_cache_t, next);
|
|
}
|
|
|
|
static void s_stop(struct seq_file *m, void *p)
|
|
{
|
|
up(&cache_chain_sem);
|
|
}
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
{
|
|
kmem_cache_t *cachep = p;
|
|
struct list_head *q;
|
|
struct slab *slabp;
|
|
unsigned long active_objs;
|
|
unsigned long num_objs;
|
|
unsigned long active_slabs = 0;
|
|
unsigned long num_slabs;
|
|
const char *name;
|
|
char *error = NULL;
|
|
|
|
check_irq_on();
|
|
spin_lock_irq(&cachep->spinlock);
|
|
active_objs = 0;
|
|
num_slabs = 0;
|
|
list_for_each(q,&cachep->lists.slabs_full) {
|
|
slabp = list_entry(q, struct slab, list);
|
|
if (slabp->inuse != cachep->num && !error)
|
|
error = "slabs_full accounting error";
|
|
active_objs += cachep->num;
|
|
active_slabs++;
|
|
}
|
|
list_for_each(q,&cachep->lists.slabs_partial) {
|
|
slabp = list_entry(q, struct slab, list);
|
|
if (slabp->inuse == cachep->num && !error)
|
|
error = "slabs_partial inuse accounting error";
|
|
if (!slabp->inuse && !error)
|
|
error = "slabs_partial/inuse accounting error";
|
|
active_objs += slabp->inuse;
|
|
active_slabs++;
|
|
}
|
|
list_for_each(q,&cachep->lists.slabs_free) {
|
|
slabp = list_entry(q, struct slab, list);
|
|
if (slabp->inuse && !error)
|
|
error = "slabs_free/inuse accounting error";
|
|
num_slabs++;
|
|
}
|
|
num_slabs+=active_slabs;
|
|
num_objs = num_slabs*cachep->num;
|
|
if (num_objs - active_objs != cachep->lists.free_objects && !error)
|
|
error = "free_objects accounting error";
|
|
|
|
name = cachep->name;
|
|
if (error)
|
|
printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
|
|
|
|
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
|
|
name, active_objs, num_objs, cachep->objsize,
|
|
cachep->num, (1<<cachep->gfporder));
|
|
seq_printf(m, " : tunables %4u %4u %4u",
|
|
cachep->limit, cachep->batchcount,
|
|
cachep->lists.shared->limit/cachep->batchcount);
|
|
seq_printf(m, " : slabdata %6lu %6lu %6u",
|
|
active_slabs, num_slabs, cachep->lists.shared->avail);
|
|
#if STATS
|
|
{ /* list3 stats */
|
|
unsigned long high = cachep->high_mark;
|
|
unsigned long allocs = cachep->num_allocations;
|
|
unsigned long grown = cachep->grown;
|
|
unsigned long reaped = cachep->reaped;
|
|
unsigned long errors = cachep->errors;
|
|
unsigned long max_freeable = cachep->max_freeable;
|
|
unsigned long free_limit = cachep->free_limit;
|
|
unsigned long node_allocs = cachep->node_allocs;
|
|
|
|
seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu",
|
|
allocs, high, grown, reaped, errors,
|
|
max_freeable, free_limit, node_allocs);
|
|
}
|
|
/* cpu stats */
|
|
{
|
|
unsigned long allochit = atomic_read(&cachep->allochit);
|
|
unsigned long allocmiss = atomic_read(&cachep->allocmiss);
|
|
unsigned long freehit = atomic_read(&cachep->freehit);
|
|
unsigned long freemiss = atomic_read(&cachep->freemiss);
|
|
|
|
seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
|
|
allochit, allocmiss, freehit, freemiss);
|
|
}
|
|
#endif
|
|
seq_putc(m, '\n');
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* slabinfo_op - iterator that generates /proc/slabinfo
|
|
*
|
|
* Output layout:
|
|
* cache-name
|
|
* num-active-objs
|
|
* total-objs
|
|
* object size
|
|
* num-active-slabs
|
|
* total-slabs
|
|
* num-pages-per-slab
|
|
* + further values on SMP and with statistics enabled
|
|
*/
|
|
|
|
struct seq_operations slabinfo_op = {
|
|
.start = s_start,
|
|
.next = s_next,
|
|
.stop = s_stop,
|
|
.show = s_show,
|
|
};
|
|
|
|
#define MAX_SLABINFO_WRITE 128
|
|
/**
|
|
* slabinfo_write - Tuning for the slab allocator
|
|
* @file: unused
|
|
* @buffer: user buffer
|
|
* @count: data length
|
|
* @ppos: unused
|
|
*/
|
|
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
|
|
int limit, batchcount, shared, res;
|
|
struct list_head *p;
|
|
|
|
if (count > MAX_SLABINFO_WRITE)
|
|
return -EINVAL;
|
|
if (copy_from_user(&kbuf, buffer, count))
|
|
return -EFAULT;
|
|
kbuf[MAX_SLABINFO_WRITE] = '\0';
|
|
|
|
tmp = strchr(kbuf, ' ');
|
|
if (!tmp)
|
|
return -EINVAL;
|
|
*tmp = '\0';
|
|
tmp++;
|
|
if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
|
|
return -EINVAL;
|
|
|
|
/* Find the cache in the chain of caches. */
|
|
down(&cache_chain_sem);
|
|
res = -EINVAL;
|
|
list_for_each(p,&cache_chain) {
|
|
kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
|
|
|
|
if (!strcmp(cachep->name, kbuf)) {
|
|
if (limit < 1 ||
|
|
batchcount < 1 ||
|
|
batchcount > limit ||
|
|
shared < 0) {
|
|
res = -EINVAL;
|
|
} else {
|
|
res = do_tune_cpucache(cachep, limit, batchcount, shared);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
up(&cache_chain_sem);
|
|
if (res >= 0)
|
|
res = count;
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
unsigned int ksize(const void *objp)
|
|
{
|
|
kmem_cache_t *c;
|
|
unsigned long flags;
|
|
unsigned int size = 0;
|
|
|
|
if (likely(objp != NULL)) {
|
|
local_irq_save(flags);
|
|
c = GET_PAGE_CACHE(virt_to_page(objp));
|
|
size = kmem_cache_size(c);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
return size;
|
|
}
|