aha/net/ipv6/reassembly.c
Pavel Emelyanov c95477090a [INET]: Consolidate frag queues freeing
Since we now allocate the queues in inet_fragment.c, we
can safely free it in the same place. The ->destructor
callback thus becomes optional for inet_frags.

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-17 19:48:26 -07:00

649 lines
16 KiB
C

/*
* IPv6 fragment reassembly
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*
* $Id: reassembly.c,v 1.26 2001/03/07 22:00:57 davem Exp $
*
* Based on: net/ipv4/ip_fragment.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* Fixes:
* Andi Kleen Make it work with multiple hosts.
* More RFC compliance.
*
* Horst von Brand Add missing #include <linux/string.h>
* Alexey Kuznetsov SMP races, threading, cleanup.
* Patrick McHardy LRU queue of frag heads for evictor.
* Mitsuru KANDA @USAGI Register inet6_protocol{}.
* David Stevens and
* YOSHIFUJI,H. @USAGI Always remove fragment header to
* calculate ICV correctly.
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/jiffies.h>
#include <linux/net.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/in6.h>
#include <linux/ipv6.h>
#include <linux/icmpv6.h>
#include <linux/random.h>
#include <linux/jhash.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/ip6_route.h>
#include <net/protocol.h>
#include <net/transp_v6.h>
#include <net/rawv6.h>
#include <net/ndisc.h>
#include <net/addrconf.h>
#include <net/inet_frag.h>
struct ip6frag_skb_cb
{
struct inet6_skb_parm h;
int offset;
};
#define FRAG6_CB(skb) ((struct ip6frag_skb_cb*)((skb)->cb))
/*
* Equivalent of ipv4 struct ipq
*/
struct frag_queue
{
struct inet_frag_queue q;
__be32 id; /* fragment id */
struct in6_addr saddr;
struct in6_addr daddr;
int iif;
unsigned int csum;
__u16 nhoffset;
};
struct inet_frags_ctl ip6_frags_ctl __read_mostly = {
.high_thresh = 256 * 1024,
.low_thresh = 192 * 1024,
.timeout = IPV6_FRAG_TIMEOUT,
.secret_interval = 10 * 60 * HZ,
};
static struct inet_frags ip6_frags;
int ip6_frag_nqueues(void)
{
return ip6_frags.nqueues;
}
int ip6_frag_mem(void)
{
return atomic_read(&ip6_frags.mem);
}
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
struct net_device *dev);
/*
* callers should be careful not to use the hash value outside the ipfrag_lock
* as doing so could race with ipfrag_hash_rnd being recalculated.
*/
static unsigned int ip6qhashfn(__be32 id, struct in6_addr *saddr,
struct in6_addr *daddr)
{
u32 a, b, c;
a = (__force u32)saddr->s6_addr32[0];
b = (__force u32)saddr->s6_addr32[1];
c = (__force u32)saddr->s6_addr32[2];
a += JHASH_GOLDEN_RATIO;
b += JHASH_GOLDEN_RATIO;
c += ip6_frags.rnd;
__jhash_mix(a, b, c);
a += (__force u32)saddr->s6_addr32[3];
b += (__force u32)daddr->s6_addr32[0];
c += (__force u32)daddr->s6_addr32[1];
__jhash_mix(a, b, c);
a += (__force u32)daddr->s6_addr32[2];
b += (__force u32)daddr->s6_addr32[3];
c += (__force u32)id;
__jhash_mix(a, b, c);
return c & (INETFRAGS_HASHSZ - 1);
}
static unsigned int ip6_hashfn(struct inet_frag_queue *q)
{
struct frag_queue *fq;
fq = container_of(q, struct frag_queue, q);
return ip6qhashfn(fq->id, &fq->saddr, &fq->daddr);
}
int ip6_frag_match(struct inet_frag_queue *q, void *a)
{
struct frag_queue *fq;
struct ip6_create_arg *arg = a;
fq = container_of(q, struct frag_queue, q);
return (fq->id == arg->id &&
ipv6_addr_equal(&fq->saddr, arg->src) &&
ipv6_addr_equal(&fq->daddr, arg->dst));
}
EXPORT_SYMBOL(ip6_frag_match);
/* Memory Tracking Functions. */
static inline void frag_kfree_skb(struct sk_buff *skb, int *work)
{
if (work)
*work -= skb->truesize;
atomic_sub(skb->truesize, &ip6_frags.mem);
kfree_skb(skb);
}
void ip6_frag_init(struct inet_frag_queue *q, void *a)
{
struct frag_queue *fq = container_of(q, struct frag_queue, q);
struct ip6_create_arg *arg = a;
fq->id = arg->id;
ipv6_addr_copy(&fq->saddr, arg->src);
ipv6_addr_copy(&fq->daddr, arg->dst);
}
EXPORT_SYMBOL(ip6_frag_init);
/* Destruction primitives. */
static __inline__ void fq_put(struct frag_queue *fq)
{
inet_frag_put(&fq->q, &ip6_frags);
}
/* Kill fq entry. It is not destroyed immediately,
* because caller (and someone more) holds reference count.
*/
static __inline__ void fq_kill(struct frag_queue *fq)
{
inet_frag_kill(&fq->q, &ip6_frags);
}
static void ip6_evictor(struct inet6_dev *idev)
{
int evicted;
evicted = inet_frag_evictor(&ip6_frags);
if (evicted)
IP6_ADD_STATS_BH(idev, IPSTATS_MIB_REASMFAILS, evicted);
}
static void ip6_frag_expire(unsigned long data)
{
struct frag_queue *fq;
struct net_device *dev = NULL;
fq = container_of((struct inet_frag_queue *)data, struct frag_queue, q);
spin_lock(&fq->q.lock);
if (fq->q.last_in & COMPLETE)
goto out;
fq_kill(fq);
dev = dev_get_by_index(&init_net, fq->iif);
if (!dev)
goto out;
rcu_read_lock();
IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT);
IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
rcu_read_unlock();
/* Don't send error if the first segment did not arrive. */
if (!(fq->q.last_in&FIRST_IN) || !fq->q.fragments)
goto out;
/*
But use as source device on which LAST ARRIVED
segment was received. And do not use fq->dev
pointer directly, device might already disappeared.
*/
fq->q.fragments->dev = dev;
icmpv6_send(fq->q.fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0, dev);
out:
if (dev)
dev_put(dev);
spin_unlock(&fq->q.lock);
fq_put(fq);
}
static __inline__ struct frag_queue *
fq_find(__be32 id, struct in6_addr *src, struct in6_addr *dst,
struct inet6_dev *idev)
{
struct inet_frag_queue *q;
struct ip6_create_arg arg;
unsigned int hash;
arg.id = id;
arg.src = src;
arg.dst = dst;
hash = ip6qhashfn(id, src, dst);
q = inet_frag_find(&ip6_frags, &arg, hash);
if (q == NULL)
goto oom;
return container_of(q, struct frag_queue, q);
oom:
IP6_INC_STATS_BH(idev, IPSTATS_MIB_REASMFAILS);
return NULL;
}
static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
struct frag_hdr *fhdr, int nhoff)
{
struct sk_buff *prev, *next;
struct net_device *dev;
int offset, end;
if (fq->q.last_in & COMPLETE)
goto err;
offset = ntohs(fhdr->frag_off) & ~0x7;
end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
if ((unsigned int)end > IPV6_MAXPLEN) {
IP6_INC_STATS_BH(ip6_dst_idev(skb->dst),
IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
((u8 *)&fhdr->frag_off -
skb_network_header(skb)));
return -1;
}
if (skb->ip_summed == CHECKSUM_COMPLETE) {
const unsigned char *nh = skb_network_header(skb);
skb->csum = csum_sub(skb->csum,
csum_partial(nh, (u8 *)(fhdr + 1) - nh,
0));
}
/* Is this the final fragment? */
if (!(fhdr->frag_off & htons(IP6_MF))) {
/* If we already have some bits beyond end
* or have different end, the segment is corrupted.
*/
if (end < fq->q.len ||
((fq->q.last_in & LAST_IN) && end != fq->q.len))
goto err;
fq->q.last_in |= LAST_IN;
fq->q.len = end;
} else {
/* Check if the fragment is rounded to 8 bytes.
* Required by the RFC.
*/
if (end & 0x7) {
/* RFC2460 says always send parameter problem in
* this case. -DaveM
*/
IP6_INC_STATS_BH(ip6_dst_idev(skb->dst),
IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
offsetof(struct ipv6hdr, payload_len));
return -1;
}
if (end > fq->q.len) {
/* Some bits beyond end -> corruption. */
if (fq->q.last_in & LAST_IN)
goto err;
fq->q.len = end;
}
}
if (end == offset)
goto err;
/* Point into the IP datagram 'data' part. */
if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
goto err;
if (pskb_trim_rcsum(skb, end - offset))
goto err;
/* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = NULL;
for(next = fq->q.fragments; next != NULL; next = next->next) {
if (FRAG6_CB(next)->offset >= offset)
break; /* bingo! */
prev = next;
}
/* We found where to put this one. Check for overlap with
* preceding fragment, and, if needed, align things so that
* any overlaps are eliminated.
*/
if (prev) {
int i = (FRAG6_CB(prev)->offset + prev->len) - offset;
if (i > 0) {
offset += i;
if (end <= offset)
goto err;
if (!pskb_pull(skb, i))
goto err;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
}
/* Look for overlap with succeeding segments.
* If we can merge fragments, do it.
*/
while (next && FRAG6_CB(next)->offset < end) {
int i = end - FRAG6_CB(next)->offset; /* overlap is 'i' bytes */
if (i < next->len) {
/* Eat head of the next overlapped fragment
* and leave the loop. The next ones cannot overlap.
*/
if (!pskb_pull(next, i))
goto err;
FRAG6_CB(next)->offset += i; /* next fragment */
fq->q.meat -= i;
if (next->ip_summed != CHECKSUM_UNNECESSARY)
next->ip_summed = CHECKSUM_NONE;
break;
} else {
struct sk_buff *free_it = next;
/* Old fragment is completely overridden with
* new one drop it.
*/
next = next->next;
if (prev)
prev->next = next;
else
fq->q.fragments = next;
fq->q.meat -= free_it->len;
frag_kfree_skb(free_it, NULL);
}
}
FRAG6_CB(skb)->offset = offset;
/* Insert this fragment in the chain of fragments. */
skb->next = next;
if (prev)
prev->next = skb;
else
fq->q.fragments = skb;
dev = skb->dev;
if (dev) {
fq->iif = dev->ifindex;
skb->dev = NULL;
}
fq->q.stamp = skb->tstamp;
fq->q.meat += skb->len;
atomic_add(skb->truesize, &ip6_frags.mem);
/* The first fragment.
* nhoffset is obtained from the first fragment, of course.
*/
if (offset == 0) {
fq->nhoffset = nhoff;
fq->q.last_in |= FIRST_IN;
}
if (fq->q.last_in == (FIRST_IN | LAST_IN) && fq->q.meat == fq->q.len)
return ip6_frag_reasm(fq, prev, dev);
write_lock(&ip6_frags.lock);
list_move_tail(&fq->q.lru_list, &ip6_frags.lru_list);
write_unlock(&ip6_frags.lock);
return -1;
err:
IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMFAILS);
kfree_skb(skb);
return -1;
}
/*
* Check if this packet is complete.
* Returns NULL on failure by any reason, and pointer
* to current nexthdr field in reassembled frame.
*
* It is called with locked fq, and caller must check that
* queue is eligible for reassembly i.e. it is not COMPLETE,
* the last and the first frames arrived and all the bits are here.
*/
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
struct net_device *dev)
{
struct sk_buff *fp, *head = fq->q.fragments;
int payload_len;
unsigned int nhoff;
fq_kill(fq);
/* Make the one we just received the head. */
if (prev) {
head = prev->next;
fp = skb_clone(head, GFP_ATOMIC);
if (!fp)
goto out_oom;
fp->next = head->next;
prev->next = fp;
skb_morph(head, fq->q.fragments);
head->next = fq->q.fragments->next;
kfree_skb(fq->q.fragments);
fq->q.fragments = head;
}
BUG_TRAP(head != NULL);
BUG_TRAP(FRAG6_CB(head)->offset == 0);
/* Unfragmented part is taken from the first segment. */
payload_len = ((head->data - skb_network_header(head)) -
sizeof(struct ipv6hdr) + fq->q.len -
sizeof(struct frag_hdr));
if (payload_len > IPV6_MAXPLEN)
goto out_oversize;
/* Head of list must not be cloned. */
if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
goto out_oom;
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_shinfo(head)->frag_list) {
struct sk_buff *clone;
int i, plen = 0;
if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
goto out_oom;
clone->next = head->next;
head->next = clone;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_shinfo(head)->frag_list = NULL;
for (i=0; i<skb_shinfo(head)->nr_frags; i++)
plen += skb_shinfo(head)->frags[i].size;
clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
atomic_add(clone->truesize, &ip6_frags.mem);
}
/* We have to remove fragment header from datagram and to relocate
* header in order to calculate ICV correctly. */
nhoff = fq->nhoffset;
skb_network_header(head)[nhoff] = skb_transport_header(head)[0];
memmove(head->head + sizeof(struct frag_hdr), head->head,
(head->data - head->head) - sizeof(struct frag_hdr));
head->mac_header += sizeof(struct frag_hdr);
head->network_header += sizeof(struct frag_hdr);
skb_shinfo(head)->frag_list = head->next;
skb_reset_transport_header(head);
skb_push(head, head->data - skb_network_header(head));
atomic_sub(head->truesize, &ip6_frags.mem);
for (fp=head->next; fp; fp = fp->next) {
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
atomic_sub(fp->truesize, &ip6_frags.mem);
}
head->next = NULL;
head->dev = dev;
head->tstamp = fq->q.stamp;
ipv6_hdr(head)->payload_len = htons(payload_len);
IP6CB(head)->nhoff = nhoff;
/* Yes, and fold redundant checksum back. 8) */
if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_partial(skb_network_header(head),
skb_network_header_len(head),
head->csum);
rcu_read_lock();
IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMOKS);
rcu_read_unlock();
fq->q.fragments = NULL;
return 1;
out_oversize:
if (net_ratelimit())
printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len);
goto out_fail;
out_oom:
if (net_ratelimit())
printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n");
out_fail:
rcu_read_lock();
IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
rcu_read_unlock();
return -1;
}
static int ipv6_frag_rcv(struct sk_buff *skb)
{
struct frag_hdr *fhdr;
struct frag_queue *fq;
struct ipv6hdr *hdr = ipv6_hdr(skb);
IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMREQDS);
/* Jumbo payload inhibits frag. header */
if (hdr->payload_len==0) {
IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
skb_network_header_len(skb));
return -1;
}
if (!pskb_may_pull(skb, (skb_transport_offset(skb) +
sizeof(struct frag_hdr)))) {
IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
skb_network_header_len(skb));
return -1;
}
hdr = ipv6_hdr(skb);
fhdr = (struct frag_hdr *)skb_transport_header(skb);
if (!(fhdr->frag_off & htons(0xFFF9))) {
/* It is not a fragmented frame */
skb->transport_header += sizeof(struct frag_hdr);
IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMOKS);
IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb);
return 1;
}
if (atomic_read(&ip6_frags.mem) > ip6_frags_ctl.high_thresh)
ip6_evictor(ip6_dst_idev(skb->dst));
if ((fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr,
ip6_dst_idev(skb->dst))) != NULL) {
int ret;
spin_lock(&fq->q.lock);
ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff);
spin_unlock(&fq->q.lock);
fq_put(fq);
return ret;
}
IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMFAILS);
kfree_skb(skb);
return -1;
}
static struct inet6_protocol frag_protocol =
{
.handler = ipv6_frag_rcv,
.flags = INET6_PROTO_NOPOLICY,
};
void __init ipv6_frag_init(void)
{
if (inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT) < 0)
printk(KERN_ERR "ipv6_frag_init: Could not register protocol\n");
ip6_frags.ctl = &ip6_frags_ctl;
ip6_frags.hashfn = ip6_hashfn;
ip6_frags.constructor = ip6_frag_init;
ip6_frags.destructor = NULL;
ip6_frags.skb_free = NULL;
ip6_frags.qsize = sizeof(struct frag_queue);
ip6_frags.match = ip6_frag_match;
ip6_frags.frag_expire = ip6_frag_expire;
inet_frags_init(&ip6_frags);
}