mirror of
https://github.com/adulau/aha.git
synced 2025-01-04 07:03:38 +00:00
5ad887fa8e
This reverts commit e1abecc489
.
The driver works on some hardware that skge doesn't handle yet.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
1296 lines
33 KiB
C
1296 lines
33 KiB
C
/******************************************************************************
|
|
*
|
|
* Name: ski2c.c
|
|
* Project: Gigabit Ethernet Adapters, TWSI-Module
|
|
* Version: $Revision: 1.59 $
|
|
* Date: $Date: 2003/10/20 09:07:25 $
|
|
* Purpose: Functions to access Voltage and Temperature Sensor
|
|
*
|
|
******************************************************************************/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* (C)Copyright 1998-2002 SysKonnect.
|
|
* (C)Copyright 2002-2003 Marvell.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* The information in this file is provided "AS IS" without warranty.
|
|
*
|
|
******************************************************************************/
|
|
|
|
/*
|
|
* I2C Protocol
|
|
*/
|
|
#if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM))))
|
|
static const char SysKonnectFileId[] =
|
|
"@(#) $Id: ski2c.c,v 1.59 2003/10/20 09:07:25 rschmidt Exp $ (C) Marvell. ";
|
|
#endif
|
|
|
|
#include "h/skdrv1st.h" /* Driver Specific Definitions */
|
|
#include "h/lm80.h"
|
|
#include "h/skdrv2nd.h" /* Adapter Control- and Driver specific Def. */
|
|
|
|
#ifdef __C2MAN__
|
|
/*
|
|
I2C protocol implementation.
|
|
|
|
General Description:
|
|
|
|
The I2C protocol is used for the temperature sensors and for
|
|
the serial EEPROM which hold the configuration.
|
|
|
|
This file covers functions that allow to read write and do
|
|
some bulk requests a specified I2C address.
|
|
|
|
The Genesis has 2 I2C buses. One for the EEPROM which holds
|
|
the VPD Data and one for temperature and voltage sensor.
|
|
The following picture shows the I2C buses, I2C devices and
|
|
their control registers.
|
|
|
|
Note: The VPD functions are in skvpd.c
|
|
.
|
|
. PCI Config I2C Bus for VPD Data:
|
|
.
|
|
. +------------+
|
|
. | VPD EEPROM |
|
|
. +------------+
|
|
. |
|
|
. | <-- I2C
|
|
. |
|
|
. +-----------+-----------+
|
|
. | |
|
|
. +-----------------+ +-----------------+
|
|
. | PCI_VPD_ADR_REG | | PCI_VPD_DAT_REG |
|
|
. +-----------------+ +-----------------+
|
|
.
|
|
.
|
|
. I2C Bus for LM80 sensor:
|
|
.
|
|
. +-----------------+
|
|
. | Temperature and |
|
|
. | Voltage Sensor |
|
|
. | LM80 |
|
|
. +-----------------+
|
|
. |
|
|
. |
|
|
. I2C --> |
|
|
. |
|
|
. +----+
|
|
. +-------------->| OR |<--+
|
|
. | +----+ |
|
|
. +------+------+ |
|
|
. | | |
|
|
. +--------+ +--------+ +----------+
|
|
. | B2_I2C | | B2_I2C | | B2_I2C |
|
|
. | _CTRL | | _DATA | | _SW |
|
|
. +--------+ +--------+ +----------+
|
|
.
|
|
The I2C bus may be driven by the B2_I2C_SW or by the B2_I2C_CTRL
|
|
and B2_I2C_DATA registers.
|
|
For driver software it is recommended to use the I2C control and
|
|
data register, because I2C bus timing is done by the ASIC and
|
|
an interrupt may be received when the I2C request is completed.
|
|
|
|
Clock Rate Timing: MIN MAX generated by
|
|
VPD EEPROM: 50 kHz 100 kHz HW
|
|
LM80 over I2C Ctrl/Data reg. 50 kHz 100 kHz HW
|
|
LM80 over B2_I2C_SW register 0 400 kHz SW
|
|
|
|
Note: The clock generated by the hardware is dependend on the
|
|
PCI clock. If the PCI bus clock is 33 MHz, the I2C/VPD
|
|
clock is 50 kHz.
|
|
*/
|
|
intro()
|
|
{}
|
|
#endif
|
|
|
|
#ifdef SK_DIAG
|
|
/*
|
|
* I2C Fast Mode timing values used by the LM80.
|
|
* If new devices are added to the I2C bus the timing values have to be checked.
|
|
*/
|
|
#ifndef I2C_SLOW_TIMING
|
|
#define T_CLK_LOW 1300L /* clock low time in ns */
|
|
#define T_CLK_HIGH 600L /* clock high time in ns */
|
|
#define T_DATA_IN_SETUP 100L /* data in Set-up Time */
|
|
#define T_START_HOLD 600L /* start condition hold time */
|
|
#define T_START_SETUP 600L /* start condition Set-up time */
|
|
#define T_STOP_SETUP 600L /* stop condition Set-up time */
|
|
#define T_BUS_IDLE 1300L /* time the bus must free after Tx */
|
|
#define T_CLK_2_DATA_OUT 900L /* max. clock low to data output valid */
|
|
#else /* I2C_SLOW_TIMING */
|
|
/* I2C Standard Mode Timing */
|
|
#define T_CLK_LOW 4700L /* clock low time in ns */
|
|
#define T_CLK_HIGH 4000L /* clock high time in ns */
|
|
#define T_DATA_IN_SETUP 250L /* data in Set-up Time */
|
|
#define T_START_HOLD 4000L /* start condition hold time */
|
|
#define T_START_SETUP 4700L /* start condition Set-up time */
|
|
#define T_STOP_SETUP 4000L /* stop condition Set-up time */
|
|
#define T_BUS_IDLE 4700L /* time the bus must free after Tx */
|
|
#endif /* !I2C_SLOW_TIMING */
|
|
|
|
#define NS2BCLK(x) (((x)*125)/10000)
|
|
|
|
/*
|
|
* I2C Wire Operations
|
|
*
|
|
* About I2C_CLK_LOW():
|
|
*
|
|
* The Data Direction bit (I2C_DATA_DIR) has to be set to input when setting
|
|
* clock to low, to prevent the ASIC and the I2C data client from driving the
|
|
* serial data line simultaneously (ASIC: last bit of a byte = '1', I2C client
|
|
* send an 'ACK'). See also Concentrator Bugreport No. 10192.
|
|
*/
|
|
#define I2C_DATA_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA)
|
|
#define I2C_DATA_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA)
|
|
#define I2C_DATA_OUT(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA_DIR)
|
|
#define I2C_DATA_IN(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA)
|
|
#define I2C_CLK_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_CLK)
|
|
#define I2C_CLK_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK | I2C_DATA_DIR)
|
|
#define I2C_START_COND(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK)
|
|
|
|
#define NS2CLKT(x) ((x*125L)/10000)
|
|
|
|
/*--------------- I2C Interface Register Functions --------------- */
|
|
|
|
/*
|
|
* sending one bit
|
|
*/
|
|
void SkI2cSndBit(
|
|
SK_IOC IoC, /* I/O Context */
|
|
SK_U8 Bit) /* Bit to send */
|
|
{
|
|
I2C_DATA_OUT(IoC);
|
|
if (Bit) {
|
|
I2C_DATA_HIGH(IoC);
|
|
}
|
|
else {
|
|
I2C_DATA_LOW(IoC);
|
|
}
|
|
SkDgWaitTime(IoC, NS2BCLK(T_DATA_IN_SETUP));
|
|
I2C_CLK_HIGH(IoC);
|
|
SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH));
|
|
I2C_CLK_LOW(IoC);
|
|
} /* SkI2cSndBit*/
|
|
|
|
|
|
/*
|
|
* Signal a start to the I2C Bus.
|
|
*
|
|
* A start is signaled when data goes to low in a high clock cycle.
|
|
*
|
|
* Ends with Clock Low.
|
|
*
|
|
* Status: not tested
|
|
*/
|
|
void SkI2cStart(
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
/* Init data and Clock to output lines */
|
|
/* Set Data high */
|
|
I2C_DATA_OUT(IoC);
|
|
I2C_DATA_HIGH(IoC);
|
|
/* Set Clock high */
|
|
I2C_CLK_HIGH(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_START_SETUP));
|
|
|
|
/* Set Data Low */
|
|
I2C_DATA_LOW(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_START_HOLD));
|
|
|
|
/* Clock low without Data to Input */
|
|
I2C_START_COND(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW));
|
|
} /* SkI2cStart */
|
|
|
|
|
|
void SkI2cStop(
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
/* Init data and Clock to output lines */
|
|
/* Set Data low */
|
|
I2C_DATA_OUT(IoC);
|
|
I2C_DATA_LOW(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT));
|
|
|
|
/* Set Clock high */
|
|
I2C_CLK_HIGH(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_STOP_SETUP));
|
|
|
|
/*
|
|
* Set Data High: Do it by setting the Data Line to Input.
|
|
* Because of a pull up resistor the Data Line
|
|
* floods to high.
|
|
*/
|
|
I2C_DATA_IN(IoC);
|
|
|
|
/*
|
|
* When I2C activity is stopped
|
|
* o DATA should be set to input and
|
|
* o CLOCK should be set to high!
|
|
*/
|
|
SkDgWaitTime(IoC, NS2BCLK(T_BUS_IDLE));
|
|
} /* SkI2cStop */
|
|
|
|
|
|
/*
|
|
* Receive just one bit via the I2C bus.
|
|
*
|
|
* Note: Clock must be set to LOW before calling this function.
|
|
*
|
|
* Returns The received bit.
|
|
*/
|
|
int SkI2cRcvBit(
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
int Bit;
|
|
SK_U8 I2cSwCtrl;
|
|
|
|
/* Init data as input line */
|
|
I2C_DATA_IN(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT));
|
|
|
|
I2C_CLK_HIGH(IoC);
|
|
|
|
SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH));
|
|
|
|
SK_I2C_GET_SW(IoC, &I2cSwCtrl);
|
|
|
|
Bit = (I2cSwCtrl & I2C_DATA) ? 1 : 0;
|
|
|
|
I2C_CLK_LOW(IoC);
|
|
SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW-T_CLK_2_DATA_OUT));
|
|
|
|
return(Bit);
|
|
} /* SkI2cRcvBit */
|
|
|
|
|
|
/*
|
|
* Receive an ACK.
|
|
*
|
|
* returns 0 If acknowledged
|
|
* 1 in case of an error
|
|
*/
|
|
int SkI2cRcvAck(
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
/*
|
|
* Received bit must be zero.
|
|
*/
|
|
return(SkI2cRcvBit(IoC) != 0);
|
|
} /* SkI2cRcvAck */
|
|
|
|
|
|
/*
|
|
* Send an NACK.
|
|
*/
|
|
void SkI2cSndNAck(
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
/*
|
|
* Received bit must be zero.
|
|
*/
|
|
SkI2cSndBit(IoC, 1);
|
|
} /* SkI2cSndNAck */
|
|
|
|
|
|
/*
|
|
* Send an ACK.
|
|
*/
|
|
void SkI2cSndAck(
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
/*
|
|
* Received bit must be zero.
|
|
*/
|
|
SkI2cSndBit(IoC, 0);
|
|
} /* SkI2cSndAck */
|
|
|
|
|
|
/*
|
|
* Send one byte to the I2C device and wait for ACK.
|
|
*
|
|
* Return acknowleged status.
|
|
*/
|
|
int SkI2cSndByte(
|
|
SK_IOC IoC, /* I/O Context */
|
|
int Byte) /* byte to send */
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (Byte & (1<<(7-i))) {
|
|
SkI2cSndBit(IoC, 1);
|
|
}
|
|
else {
|
|
SkI2cSndBit(IoC, 0);
|
|
}
|
|
}
|
|
|
|
return(SkI2cRcvAck(IoC));
|
|
} /* SkI2cSndByte */
|
|
|
|
|
|
/*
|
|
* Receive one byte and ack it.
|
|
*
|
|
* Return byte.
|
|
*/
|
|
int SkI2cRcvByte(
|
|
SK_IOC IoC, /* I/O Context */
|
|
int Last) /* Last Byte Flag */
|
|
{
|
|
int i;
|
|
int Byte = 0;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
Byte <<= 1;
|
|
Byte |= SkI2cRcvBit(IoC);
|
|
}
|
|
|
|
if (Last) {
|
|
SkI2cSndNAck(IoC);
|
|
}
|
|
else {
|
|
SkI2cSndAck(IoC);
|
|
}
|
|
|
|
return(Byte);
|
|
} /* SkI2cRcvByte */
|
|
|
|
|
|
/*
|
|
* Start dialog and send device address
|
|
*
|
|
* Return 0 if acknowleged, 1 in case of an error
|
|
*/
|
|
int SkI2cSndDev(
|
|
SK_IOC IoC, /* I/O Context */
|
|
int Addr, /* Device Address */
|
|
int Rw) /* Read / Write Flag */
|
|
{
|
|
SkI2cStart(IoC);
|
|
Rw = ~Rw;
|
|
Rw &= I2C_WRITE;
|
|
return(SkI2cSndByte(IoC, (Addr<<1) | Rw));
|
|
} /* SkI2cSndDev */
|
|
|
|
#endif /* SK_DIAG */
|
|
|
|
/*----------------- I2C CTRL Register Functions ----------*/
|
|
|
|
/*
|
|
* waits for a completion of an I2C transfer
|
|
*
|
|
* returns 0: success, transfer completes
|
|
* 1: error, transfer does not complete, I2C transfer
|
|
* killed, wait loop terminated.
|
|
*/
|
|
static int SkI2cWait(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC, /* I/O Context */
|
|
int Event) /* complete event to wait for (I2C_READ or I2C_WRITE) */
|
|
{
|
|
SK_U64 StartTime;
|
|
SK_U64 CurrentTime;
|
|
SK_U32 I2cCtrl;
|
|
|
|
StartTime = SkOsGetTime(pAC);
|
|
|
|
do {
|
|
CurrentTime = SkOsGetTime(pAC);
|
|
|
|
if (CurrentTime - StartTime > SK_TICKS_PER_SEC / 8) {
|
|
|
|
SK_I2C_STOP(IoC);
|
|
#ifndef SK_DIAG
|
|
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E002, SKERR_I2C_E002MSG);
|
|
#endif /* !SK_DIAG */
|
|
return(1);
|
|
}
|
|
|
|
SK_I2C_GET_CTL(IoC, &I2cCtrl);
|
|
|
|
#ifdef xYUKON_DBG
|
|
printf("StartTime=%lu, CurrentTime=%lu\n",
|
|
StartTime, CurrentTime);
|
|
if (kbhit()) {
|
|
return(1);
|
|
}
|
|
#endif /* YUKON_DBG */
|
|
|
|
} while ((I2cCtrl & I2C_FLAG) == (SK_U32)Event << 31);
|
|
|
|
return(0);
|
|
} /* SkI2cWait */
|
|
|
|
|
|
/*
|
|
* waits for a completion of an I2C transfer
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
void SkI2cWaitIrq(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
SK_SENSOR *pSen;
|
|
SK_U64 StartTime;
|
|
SK_U32 IrqSrc;
|
|
|
|
pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens];
|
|
|
|
if (pSen->SenState == SK_SEN_IDLE) {
|
|
return;
|
|
}
|
|
|
|
StartTime = SkOsGetTime(pAC);
|
|
|
|
do {
|
|
if (SkOsGetTime(pAC) - StartTime > SK_TICKS_PER_SEC / 8) {
|
|
|
|
SK_I2C_STOP(IoC);
|
|
#ifndef SK_DIAG
|
|
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E016, SKERR_I2C_E016MSG);
|
|
#endif /* !SK_DIAG */
|
|
return;
|
|
}
|
|
|
|
SK_IN32(IoC, B0_ISRC, &IrqSrc);
|
|
|
|
} while ((IrqSrc & IS_I2C_READY) == 0);
|
|
|
|
pSen->SenState = SK_SEN_IDLE;
|
|
return;
|
|
} /* SkI2cWaitIrq */
|
|
|
|
/*
|
|
* writes a single byte or 4 bytes into the I2C device
|
|
*
|
|
* returns 0: success
|
|
* 1: error
|
|
*/
|
|
static int SkI2cWrite(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC, /* I/O Context */
|
|
SK_U32 I2cData, /* I2C Data to write */
|
|
int I2cDev, /* I2C Device Address */
|
|
int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */
|
|
int I2cReg, /* I2C Device Register Address */
|
|
int I2cBurst) /* I2C Burst Flag */
|
|
{
|
|
SK_OUT32(IoC, B2_I2C_DATA, I2cData);
|
|
|
|
SK_I2C_CTL(IoC, I2C_WRITE, I2cDev, I2cDevSize, I2cReg, I2cBurst);
|
|
|
|
return(SkI2cWait(pAC, IoC, I2C_WRITE));
|
|
} /* SkI2cWrite*/
|
|
|
|
|
|
#ifdef SK_DIAG
|
|
/*
|
|
* reads a single byte or 4 bytes from the I2C device
|
|
*
|
|
* returns the word read
|
|
*/
|
|
SK_U32 SkI2cRead(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC, /* I/O Context */
|
|
int I2cDev, /* I2C Device Address */
|
|
int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */
|
|
int I2cReg, /* I2C Device Register Address */
|
|
int I2cBurst) /* I2C Burst Flag */
|
|
{
|
|
SK_U32 Data;
|
|
|
|
SK_OUT32(IoC, B2_I2C_DATA, 0);
|
|
SK_I2C_CTL(IoC, I2C_READ, I2cDev, I2cDevSize, I2cReg, I2cBurst);
|
|
|
|
if (SkI2cWait(pAC, IoC, I2C_READ) != 0) {
|
|
w_print("%s\n", SKERR_I2C_E002MSG);
|
|
}
|
|
|
|
SK_IN32(IoC, B2_I2C_DATA, &Data);
|
|
|
|
return(Data);
|
|
} /* SkI2cRead */
|
|
#endif /* SK_DIAG */
|
|
|
|
|
|
/*
|
|
* read a sensor's value
|
|
*
|
|
* This function reads a sensor's value from the I2C sensor chip. The sensor
|
|
* is defined by its index into the sensors database in the struct pAC points
|
|
* to.
|
|
* Returns
|
|
* 1 if the read is completed
|
|
* 0 if the read must be continued (I2C Bus still allocated)
|
|
*/
|
|
static int SkI2cReadSensor(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC, /* I/O Context */
|
|
SK_SENSOR *pSen) /* Sensor to be read */
|
|
{
|
|
if (pSen->SenRead != NULL) {
|
|
return((*pSen->SenRead)(pAC, IoC, pSen));
|
|
}
|
|
else {
|
|
return(0); /* no success */
|
|
}
|
|
} /* SkI2cReadSensor */
|
|
|
|
/*
|
|
* Do the Init state 0 initialization
|
|
*/
|
|
static int SkI2cInit0(
|
|
SK_AC *pAC) /* Adapter Context */
|
|
{
|
|
int i;
|
|
|
|
/* Begin with first sensor */
|
|
pAC->I2c.CurrSens = 0;
|
|
|
|
/* Begin with timeout control for state machine */
|
|
pAC->I2c.TimerMode = SK_TIMER_WATCH_SM;
|
|
|
|
/* Set sensor number to zero */
|
|
pAC->I2c.MaxSens = 0;
|
|
|
|
#ifndef SK_DIAG
|
|
/* Initialize Number of Dummy Reads */
|
|
pAC->I2c.DummyReads = SK_MAX_SENSORS;
|
|
#endif
|
|
|
|
for (i = 0; i < SK_MAX_SENSORS; i++) {
|
|
pAC->I2c.SenTable[i].SenDesc = "unknown";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_UNKNOWN;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = 0;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = 0;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = 0;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = 0;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN;
|
|
pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_NONE;
|
|
pAC->I2c.SenTable[i].SenValue = 0;
|
|
pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_NOT_PRESENT;
|
|
pAC->I2c.SenTable[i].SenErrCts = 0;
|
|
pAC->I2c.SenTable[i].SenBegErrTS = 0;
|
|
pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE;
|
|
pAC->I2c.SenTable[i].SenRead = NULL;
|
|
pAC->I2c.SenTable[i].SenDev = 0;
|
|
}
|
|
|
|
/* Now we are "INIT data"ed */
|
|
pAC->I2c.InitLevel = SK_INIT_DATA;
|
|
return(0);
|
|
} /* SkI2cInit0*/
|
|
|
|
|
|
/*
|
|
* Do the init state 1 initialization
|
|
*
|
|
* initialize the following register of the LM80:
|
|
* Configuration register:
|
|
* - START, noINT, activeLOW, noINT#Clear, noRESET, noCI, noGPO#, noINIT
|
|
*
|
|
* Interrupt Mask Register 1:
|
|
* - all interrupts are Disabled (0xff)
|
|
*
|
|
* Interrupt Mask Register 2:
|
|
* - all interrupts are Disabled (0xff) Interrupt modi doesn't matter.
|
|
*
|
|
* Fan Divisor/RST_OUT register:
|
|
* - Divisors set to 1 (bits 00), all others 0s.
|
|
*
|
|
* OS# Configuration/Temperature resolution Register:
|
|
* - all 0s
|
|
*
|
|
*/
|
|
static int SkI2cInit1(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
int i;
|
|
SK_U8 I2cSwCtrl;
|
|
SK_GEPORT *pPrt; /* GIni Port struct pointer */
|
|
|
|
if (pAC->I2c.InitLevel != SK_INIT_DATA) {
|
|
/* ReInit not needed in I2C module */
|
|
return(0);
|
|
}
|
|
|
|
/* Set the Direction of I2C-Data Pin to IN */
|
|
SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA);
|
|
/* Check for 32-Bit Yukon with Low at I2C-Data Pin */
|
|
SK_I2C_GET_SW(IoC, &I2cSwCtrl);
|
|
|
|
if ((I2cSwCtrl & I2C_DATA) == 0) {
|
|
/* this is a 32-Bit board */
|
|
pAC->GIni.GIYukon32Bit = SK_TRUE;
|
|
return(0);
|
|
}
|
|
|
|
/* Check for 64 Bit Yukon without sensors */
|
|
if (SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_CFG, 0) != 0) {
|
|
return(0);
|
|
}
|
|
|
|
(void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_1, 0);
|
|
|
|
(void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_2, 0);
|
|
|
|
(void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_FAN_CTRL, 0);
|
|
|
|
(void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_TEMP_CTRL, 0);
|
|
|
|
(void)SkI2cWrite(pAC, IoC, (SK_U32)LM80_CFG_START, LM80_ADDR, I2C_025K_DEV,
|
|
LM80_CFG, 0);
|
|
|
|
/*
|
|
* MaxSens has to be updated here, because PhyType is not
|
|
* set when performing Init Level 0
|
|
*/
|
|
pAC->I2c.MaxSens = 5;
|
|
|
|
pPrt = &pAC->GIni.GP[0];
|
|
|
|
if (pAC->GIni.GIGenesis) {
|
|
if (pPrt->PhyType == SK_PHY_BCOM) {
|
|
if (pAC->GIni.GIMacsFound == 1) {
|
|
pAC->I2c.MaxSens += 1;
|
|
}
|
|
else {
|
|
pAC->I2c.MaxSens += 3;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
pAC->I2c.MaxSens += 3;
|
|
}
|
|
|
|
for (i = 0; i < pAC->I2c.MaxSens; i++) {
|
|
switch (i) {
|
|
case 0:
|
|
pAC->I2c.SenTable[i].SenDesc = "Temperature";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_TEMP;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_TEMP_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_TEMP_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_TEMP_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_TEMP_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_TEMP_IN;
|
|
break;
|
|
case 1:
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PCI";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_5V_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_5V_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_5V_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_5V_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT0_IN;
|
|
break;
|
|
case 2:
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PCI-IO";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_IO_5V_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_IO_5V_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_IO_3V3_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_IO_3V3_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT1_IN;
|
|
pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_PCI_IO;
|
|
break;
|
|
case 3:
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage ASIC";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VDD_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VDD_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VDD_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VDD_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT2_IN;
|
|
break;
|
|
case 4:
|
|
if (pAC->GIni.GIGenesis) {
|
|
if (pPrt->PhyType == SK_PHY_BCOM) {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PHY A PLL";
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR;
|
|
}
|
|
else {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PMA";
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR;
|
|
}
|
|
}
|
|
else {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage VAUX";
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VAUX_3V3_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VAUX_3V3_HIGH_WARN;
|
|
if (pAC->GIni.GIVauxAvail) {
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR;
|
|
}
|
|
else {
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_0V_WARN_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_0V_WARN_ERR;
|
|
}
|
|
}
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT3_IN;
|
|
break;
|
|
case 5:
|
|
if (pAC->GIni.GIGenesis) {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5";
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR;
|
|
}
|
|
else {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage Core 1V5";
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_CORE_1V5_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_CORE_1V5_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_CORE_1V5_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_CORE_1V5_LOW_ERR;
|
|
}
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT4_IN;
|
|
break;
|
|
case 6:
|
|
if (pAC->GIni.GIGenesis) {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PHY B PLL";
|
|
}
|
|
else {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 3V3";
|
|
}
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT5_IN;
|
|
break;
|
|
case 7:
|
|
if (pAC->GIni.GIGenesis) {
|
|
pAC->I2c.SenTable[i].SenDesc = "Speed Fan";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_FAN;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_FAN_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_FAN_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_FAN_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_FAN_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN;
|
|
}
|
|
else {
|
|
pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5";
|
|
pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT;
|
|
pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR;
|
|
pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN;
|
|
pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN;
|
|
pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR;
|
|
pAC->I2c.SenTable[i].SenReg = LM80_VT6_IN;
|
|
}
|
|
break;
|
|
default:
|
|
SK_ERR_LOG(pAC, SK_ERRCL_INIT | SK_ERRCL_SW,
|
|
SKERR_I2C_E001, SKERR_I2C_E001MSG);
|
|
break;
|
|
}
|
|
|
|
pAC->I2c.SenTable[i].SenValue = 0;
|
|
pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK;
|
|
pAC->I2c.SenTable[i].SenErrCts = 0;
|
|
pAC->I2c.SenTable[i].SenBegErrTS = 0;
|
|
pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE;
|
|
pAC->I2c.SenTable[i].SenRead = SkLm80ReadSensor;
|
|
pAC->I2c.SenTable[i].SenDev = LM80_ADDR;
|
|
}
|
|
|
|
#ifndef SK_DIAG
|
|
pAC->I2c.DummyReads = pAC->I2c.MaxSens;
|
|
#endif /* !SK_DIAG */
|
|
|
|
/* Clear I2C IRQ */
|
|
SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ);
|
|
|
|
/* Now we are I/O initialized */
|
|
pAC->I2c.InitLevel = SK_INIT_IO;
|
|
return(0);
|
|
} /* SkI2cInit1 */
|
|
|
|
|
|
/*
|
|
* Init level 2: Start first sensor read.
|
|
*/
|
|
static int SkI2cInit2(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
int ReadComplete;
|
|
SK_SENSOR *pSen;
|
|
|
|
if (pAC->I2c.InitLevel != SK_INIT_IO) {
|
|
/* ReInit not needed in I2C module */
|
|
/* Init0 and Init2 not permitted */
|
|
return(0);
|
|
}
|
|
|
|
pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens];
|
|
ReadComplete = SkI2cReadSensor(pAC, IoC, pSen);
|
|
|
|
if (ReadComplete) {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_INIT, SKERR_I2C_E008, SKERR_I2C_E008MSG);
|
|
}
|
|
|
|
/* Now we are correctly initialized */
|
|
pAC->I2c.InitLevel = SK_INIT_RUN;
|
|
|
|
return(0);
|
|
} /* SkI2cInit2*/
|
|
|
|
|
|
/*
|
|
* Initialize I2C devices
|
|
*
|
|
* Get the first voltage value and discard it.
|
|
* Go into temperature read mode. A default pointer is not set.
|
|
*
|
|
* The things to be done depend on the init level in the parameter list:
|
|
* Level 0:
|
|
* Initialize only the data structures. Do NOT access hardware.
|
|
* Level 1:
|
|
* Initialize hardware through SK_IN / SK_OUT commands. Do NOT use interrupts.
|
|
* Level 2:
|
|
* Everything is possible. Interrupts may be used from now on.
|
|
*
|
|
* return:
|
|
* 0 = success
|
|
* other = error.
|
|
*/
|
|
int SkI2cInit(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC, /* I/O Context needed in levels 1 and 2 */
|
|
int Level) /* Init Level */
|
|
{
|
|
|
|
switch (Level) {
|
|
case SK_INIT_DATA:
|
|
return(SkI2cInit0(pAC));
|
|
case SK_INIT_IO:
|
|
return(SkI2cInit1(pAC, IoC));
|
|
case SK_INIT_RUN:
|
|
return(SkI2cInit2(pAC, IoC));
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return(0);
|
|
} /* SkI2cInit */
|
|
|
|
|
|
#ifndef SK_DIAG
|
|
|
|
/*
|
|
* Interrupt service function for the I2C Interface
|
|
*
|
|
* Clears the Interrupt source
|
|
*
|
|
* Reads the register and check it for sending a trap.
|
|
*
|
|
* Starts the timer if necessary.
|
|
*/
|
|
void SkI2cIsr(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC) /* I/O Context */
|
|
{
|
|
SK_EVPARA Para;
|
|
|
|
/* Clear I2C IRQ */
|
|
SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ);
|
|
|
|
Para.Para64 = 0;
|
|
SkEventQueue(pAC, SKGE_I2C, SK_I2CEV_IRQ, Para);
|
|
} /* SkI2cIsr */
|
|
|
|
|
|
/*
|
|
* Check this sensors Value against the threshold and send events.
|
|
*/
|
|
static void SkI2cCheckSensor(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_SENSOR *pSen)
|
|
{
|
|
SK_EVPARA ParaLocal;
|
|
SK_BOOL TooHigh; /* Is sensor too high? */
|
|
SK_BOOL TooLow; /* Is sensor too low? */
|
|
SK_U64 CurrTime; /* Current Time */
|
|
SK_BOOL DoTrapSend; /* We need to send a trap */
|
|
SK_BOOL DoErrLog; /* We need to log the error */
|
|
SK_BOOL IsError; /* We need to log the error */
|
|
|
|
/* Check Dummy Reads first */
|
|
if (pAC->I2c.DummyReads > 0) {
|
|
pAC->I2c.DummyReads--;
|
|
return;
|
|
}
|
|
|
|
/* Get the current time */
|
|
CurrTime = SkOsGetTime(pAC);
|
|
|
|
/* Set para to the most useful setting: The current sensor. */
|
|
ParaLocal.Para64 = (SK_U64)pAC->I2c.CurrSens;
|
|
|
|
/* Check the Value against the thresholds. First: Error Thresholds */
|
|
TooHigh = (pSen->SenValue > pSen->SenThreErrHigh);
|
|
TooLow = (pSen->SenValue < pSen->SenThreErrLow);
|
|
|
|
IsError = SK_FALSE;
|
|
if (TooHigh || TooLow) {
|
|
/* Error condition is satisfied */
|
|
DoTrapSend = SK_TRUE;
|
|
DoErrLog = SK_TRUE;
|
|
|
|
/* Now error condition is satisfied */
|
|
IsError = SK_TRUE;
|
|
|
|
if (pSen->SenErrFlag == SK_SEN_ERR_ERR) {
|
|
/* This state is the former one */
|
|
|
|
/* So check first whether we have to send a trap */
|
|
if (pSen->SenLastErrTrapTS + SK_SEN_ERR_TR_HOLD >
|
|
CurrTime) {
|
|
/*
|
|
* Do NOT send the Trap. The hold back time
|
|
* has to run out first.
|
|
*/
|
|
DoTrapSend = SK_FALSE;
|
|
}
|
|
|
|
/* Check now whether we have to log an Error */
|
|
if (pSen->SenLastErrLogTS + SK_SEN_ERR_LOG_HOLD >
|
|
CurrTime) {
|
|
/*
|
|
* Do NOT log the error. The hold back time
|
|
* has to run out first.
|
|
*/
|
|
DoErrLog = SK_FALSE;
|
|
}
|
|
}
|
|
else {
|
|
/* We came from a different state -> Set Begin Time Stamp */
|
|
pSen->SenBegErrTS = CurrTime;
|
|
pSen->SenErrFlag = SK_SEN_ERR_ERR;
|
|
}
|
|
|
|
if (DoTrapSend) {
|
|
/* Set current Time */
|
|
pSen->SenLastErrTrapTS = CurrTime;
|
|
pSen->SenErrCts++;
|
|
|
|
/* Queue PNMI Event */
|
|
SkEventQueue(pAC, SKGE_PNMI, (TooHigh ?
|
|
SK_PNMI_EVT_SEN_ERR_UPP :
|
|
SK_PNMI_EVT_SEN_ERR_LOW),
|
|
ParaLocal);
|
|
}
|
|
|
|
if (DoErrLog) {
|
|
/* Set current Time */
|
|
pSen->SenLastErrLogTS = CurrTime;
|
|
|
|
if (pSen->SenType == SK_SEN_TEMP) {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E011, SKERR_I2C_E011MSG);
|
|
}
|
|
else if (pSen->SenType == SK_SEN_VOLT) {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E012, SKERR_I2C_E012MSG);
|
|
}
|
|
else {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E015, SKERR_I2C_E015MSG);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check the Value against the thresholds */
|
|
/* 2nd: Warning thresholds */
|
|
TooHigh = (pSen->SenValue > pSen->SenThreWarnHigh);
|
|
TooLow = (pSen->SenValue < pSen->SenThreWarnLow);
|
|
|
|
if (!IsError && (TooHigh || TooLow)) {
|
|
/* Error condition is satisfied */
|
|
DoTrapSend = SK_TRUE;
|
|
DoErrLog = SK_TRUE;
|
|
|
|
if (pSen->SenErrFlag == SK_SEN_ERR_WARN) {
|
|
/* This state is the former one */
|
|
|
|
/* So check first whether we have to send a trap */
|
|
if (pSen->SenLastWarnTrapTS + SK_SEN_WARN_TR_HOLD > CurrTime) {
|
|
/*
|
|
* Do NOT send the Trap. The hold back time
|
|
* has to run out first.
|
|
*/
|
|
DoTrapSend = SK_FALSE;
|
|
}
|
|
|
|
/* Check now whether we have to log an Error */
|
|
if (pSen->SenLastWarnLogTS + SK_SEN_WARN_LOG_HOLD > CurrTime) {
|
|
/*
|
|
* Do NOT log the error. The hold back time
|
|
* has to run out first.
|
|
*/
|
|
DoErrLog = SK_FALSE;
|
|
}
|
|
}
|
|
else {
|
|
/* We came from a different state -> Set Begin Time Stamp */
|
|
pSen->SenBegWarnTS = CurrTime;
|
|
pSen->SenErrFlag = SK_SEN_ERR_WARN;
|
|
}
|
|
|
|
if (DoTrapSend) {
|
|
/* Set current Time */
|
|
pSen->SenLastWarnTrapTS = CurrTime;
|
|
pSen->SenWarnCts++;
|
|
|
|
/* Queue PNMI Event */
|
|
SkEventQueue(pAC, SKGE_PNMI, (TooHigh ?
|
|
SK_PNMI_EVT_SEN_WAR_UPP :
|
|
SK_PNMI_EVT_SEN_WAR_LOW),
|
|
ParaLocal);
|
|
}
|
|
|
|
if (DoErrLog) {
|
|
/* Set current Time */
|
|
pSen->SenLastWarnLogTS = CurrTime;
|
|
|
|
if (pSen->SenType == SK_SEN_TEMP) {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E009, SKERR_I2C_E009MSG);
|
|
}
|
|
else if (pSen->SenType == SK_SEN_VOLT) {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E010, SKERR_I2C_E010MSG);
|
|
}
|
|
else {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E014, SKERR_I2C_E014MSG);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check for NO error at all */
|
|
if (!IsError && !TooHigh && !TooLow) {
|
|
/* Set o.k. Status if no error and no warning condition */
|
|
pSen->SenErrFlag = SK_SEN_ERR_OK;
|
|
}
|
|
|
|
/* End of check against the thresholds */
|
|
|
|
/* Bug fix AF: 16.Aug.2001: Correct the init base
|
|
* of LM80 sensor.
|
|
*/
|
|
if (pSen->SenInit == SK_SEN_DYN_INIT_PCI_IO) {
|
|
|
|
pSen->SenInit = SK_SEN_DYN_INIT_NONE;
|
|
|
|
if (pSen->SenValue > SK_SEN_PCI_IO_RANGE_LIMITER) {
|
|
/* 5V PCI-IO Voltage */
|
|
pSen->SenThreWarnLow = SK_SEN_PCI_IO_5V_LOW_WARN;
|
|
pSen->SenThreErrLow = SK_SEN_PCI_IO_5V_LOW_ERR;
|
|
}
|
|
else {
|
|
/* 3.3V PCI-IO Voltage */
|
|
pSen->SenThreWarnHigh = SK_SEN_PCI_IO_3V3_HIGH_WARN;
|
|
pSen->SenThreErrHigh = SK_SEN_PCI_IO_3V3_HIGH_ERR;
|
|
}
|
|
}
|
|
|
|
#ifdef TEST_ONLY
|
|
/* Dynamic thresholds also for VAUX of LM80 sensor */
|
|
if (pSen->SenInit == SK_SEN_DYN_INIT_VAUX) {
|
|
|
|
pSen->SenInit = SK_SEN_DYN_INIT_NONE;
|
|
|
|
/* 3.3V VAUX Voltage */
|
|
if (pSen->SenValue > SK_SEN_VAUX_RANGE_LIMITER) {
|
|
pSen->SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN;
|
|
pSen->SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR;
|
|
}
|
|
/* 0V VAUX Voltage */
|
|
else {
|
|
pSen->SenThreWarnHigh = SK_SEN_VAUX_0V_WARN_ERR;
|
|
pSen->SenThreErrHigh = SK_SEN_VAUX_0V_WARN_ERR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check initialization state:
|
|
* The VIO Thresholds need adaption
|
|
*/
|
|
if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN &&
|
|
pSen->SenValue > SK_SEN_WARNLOW2C &&
|
|
pSen->SenValue < SK_SEN_WARNHIGH2) {
|
|
pSen->SenThreErrLow = SK_SEN_ERRLOW2C;
|
|
pSen->SenThreWarnLow = SK_SEN_WARNLOW2C;
|
|
pSen->SenInit = SK_TRUE;
|
|
}
|
|
|
|
if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN &&
|
|
pSen->SenValue > SK_SEN_WARNLOW2 &&
|
|
pSen->SenValue < SK_SEN_WARNHIGH2C) {
|
|
pSen->SenThreErrHigh = SK_SEN_ERRHIGH2C;
|
|
pSen->SenThreWarnHigh = SK_SEN_WARNHIGH2C;
|
|
pSen->SenInit = SK_TRUE;
|
|
}
|
|
#endif
|
|
|
|
if (pSen->SenInit != SK_SEN_DYN_INIT_NONE) {
|
|
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E013, SKERR_I2C_E013MSG);
|
|
}
|
|
} /* SkI2cCheckSensor */
|
|
|
|
|
|
/*
|
|
* The only Event to be served is the timeout event
|
|
*
|
|
*/
|
|
int SkI2cEvent(
|
|
SK_AC *pAC, /* Adapter Context */
|
|
SK_IOC IoC, /* I/O Context */
|
|
SK_U32 Event, /* Module specific Event */
|
|
SK_EVPARA Para) /* Event specific Parameter */
|
|
{
|
|
int ReadComplete;
|
|
SK_SENSOR *pSen;
|
|
SK_U32 Time;
|
|
SK_EVPARA ParaLocal;
|
|
int i;
|
|
|
|
/* New case: no sensors */
|
|
if (pAC->I2c.MaxSens == 0) {
|
|
return(0);
|
|
}
|
|
|
|
switch (Event) {
|
|
case SK_I2CEV_IRQ:
|
|
pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens];
|
|
ReadComplete = SkI2cReadSensor(pAC, IoC, pSen);
|
|
|
|
if (ReadComplete) {
|
|
/* Check sensor against defined thresholds */
|
|
SkI2cCheckSensor(pAC, pSen);
|
|
|
|
/* Increment Current sensor and set appropriate Timeout */
|
|
pAC->I2c.CurrSens++;
|
|
if (pAC->I2c.CurrSens >= pAC->I2c.MaxSens) {
|
|
pAC->I2c.CurrSens = 0;
|
|
Time = SK_I2C_TIM_LONG;
|
|
}
|
|
else {
|
|
Time = SK_I2C_TIM_SHORT;
|
|
}
|
|
|
|
/* Start Timer */
|
|
ParaLocal.Para64 = (SK_U64)0;
|
|
|
|
pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING;
|
|
|
|
SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time,
|
|
SKGE_I2C, SK_I2CEV_TIM, ParaLocal);
|
|
}
|
|
else {
|
|
/* Start Timer */
|
|
ParaLocal.Para64 = (SK_U64)0;
|
|
|
|
pAC->I2c.TimerMode = SK_TIMER_WATCH_SM;
|
|
|
|
SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, SK_I2C_TIM_WATCH,
|
|
SKGE_I2C, SK_I2CEV_TIM, ParaLocal);
|
|
}
|
|
break;
|
|
case SK_I2CEV_TIM:
|
|
if (pAC->I2c.TimerMode == SK_TIMER_NEW_GAUGING) {
|
|
|
|
ParaLocal.Para64 = (SK_U64)0;
|
|
SkTimerStop(pAC, IoC, &pAC->I2c.SenTimer);
|
|
|
|
pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens];
|
|
ReadComplete = SkI2cReadSensor(pAC, IoC, pSen);
|
|
|
|
if (ReadComplete) {
|
|
/* Check sensor against defined thresholds */
|
|
SkI2cCheckSensor(pAC, pSen);
|
|
|
|
/* Increment Current sensor and set appropriate Timeout */
|
|
pAC->I2c.CurrSens++;
|
|
if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) {
|
|
pAC->I2c.CurrSens = 0;
|
|
Time = SK_I2C_TIM_LONG;
|
|
}
|
|
else {
|
|
Time = SK_I2C_TIM_SHORT;
|
|
}
|
|
|
|
/* Start Timer */
|
|
ParaLocal.Para64 = (SK_U64)0;
|
|
|
|
pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING;
|
|
|
|
SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time,
|
|
SKGE_I2C, SK_I2CEV_TIM, ParaLocal);
|
|
}
|
|
}
|
|
else {
|
|
pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens];
|
|
pSen->SenErrFlag = SK_SEN_ERR_FAULTY;
|
|
SK_I2C_STOP(IoC);
|
|
|
|
/* Increment Current sensor and set appropriate Timeout */
|
|
pAC->I2c.CurrSens++;
|
|
if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) {
|
|
pAC->I2c.CurrSens = 0;
|
|
Time = SK_I2C_TIM_LONG;
|
|
}
|
|
else {
|
|
Time = SK_I2C_TIM_SHORT;
|
|
}
|
|
|
|
/* Start Timer */
|
|
ParaLocal.Para64 = (SK_U64)0;
|
|
|
|
pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING;
|
|
|
|
SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time,
|
|
SKGE_I2C, SK_I2CEV_TIM, ParaLocal);
|
|
}
|
|
break;
|
|
case SK_I2CEV_CLEAR:
|
|
for (i = 0; i < SK_MAX_SENSORS; i++) {
|
|
pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK;
|
|
pAC->I2c.SenTable[i].SenErrCts = 0;
|
|
pAC->I2c.SenTable[i].SenWarnCts = 0;
|
|
pAC->I2c.SenTable[i].SenBegErrTS = 0;
|
|
pAC->I2c.SenTable[i].SenBegWarnTS = 0;
|
|
pAC->I2c.SenTable[i].SenLastErrTrapTS = (SK_U64)0;
|
|
pAC->I2c.SenTable[i].SenLastErrLogTS = (SK_U64)0;
|
|
pAC->I2c.SenTable[i].SenLastWarnTrapTS = (SK_U64)0;
|
|
pAC->I2c.SenTable[i].SenLastWarnLogTS = (SK_U64)0;
|
|
}
|
|
break;
|
|
default:
|
|
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E006, SKERR_I2C_E006MSG);
|
|
}
|
|
|
|
return(0);
|
|
} /* SkI2cEvent*/
|
|
|
|
#endif /* !SK_DIAG */
|