mirror of
https://github.com/adulau/aha.git
synced 2025-01-01 05:36:24 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
557 lines
12 KiB
C
557 lines
12 KiB
C
/*
|
|
* linux/fs/partitions/acorn.c
|
|
*
|
|
* Copyright (c) 1996-2000 Russell King.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Scan ADFS partitions on hard disk drives. Unfortunately, there
|
|
* isn't a standard for partitioning drives on Acorn machines, so
|
|
* every single manufacturer of SCSI and IDE cards created their own
|
|
* method.
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/adfs_fs.h>
|
|
|
|
#include "check.h"
|
|
#include "acorn.h"
|
|
|
|
/*
|
|
* Partition types. (Oh for reusability)
|
|
*/
|
|
#define PARTITION_RISCIX_MFM 1
|
|
#define PARTITION_RISCIX_SCSI 2
|
|
#define PARTITION_LINUX 9
|
|
|
|
static struct adfs_discrecord *
|
|
adfs_partition(struct parsed_partitions *state, char *name, char *data,
|
|
unsigned long first_sector, int slot)
|
|
{
|
|
struct adfs_discrecord *dr;
|
|
unsigned int nr_sects;
|
|
|
|
if (adfs_checkbblk(data))
|
|
return NULL;
|
|
|
|
dr = (struct adfs_discrecord *)(data + 0x1c0);
|
|
|
|
if (dr->disc_size == 0 && dr->disc_size_high == 0)
|
|
return NULL;
|
|
|
|
nr_sects = (le32_to_cpu(dr->disc_size_high) << 23) |
|
|
(le32_to_cpu(dr->disc_size) >> 9);
|
|
|
|
if (name)
|
|
printk(" [%s]", name);
|
|
put_partition(state, slot, first_sector, nr_sects);
|
|
return dr;
|
|
}
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_RISCIX
|
|
|
|
struct riscix_part {
|
|
__le32 start;
|
|
__le32 length;
|
|
__le32 one;
|
|
char name[16];
|
|
};
|
|
|
|
struct riscix_record {
|
|
__le32 magic;
|
|
#define RISCIX_MAGIC cpu_to_le32(0x4a657320)
|
|
__le32 date;
|
|
struct riscix_part part[8];
|
|
};
|
|
|
|
static int
|
|
riscix_partition(struct parsed_partitions *state, struct block_device *bdev,
|
|
unsigned long first_sect, int slot, unsigned long nr_sects)
|
|
{
|
|
Sector sect;
|
|
struct riscix_record *rr;
|
|
|
|
rr = (struct riscix_record *)read_dev_sector(bdev, first_sect, §);
|
|
if (!rr)
|
|
return -1;
|
|
|
|
printk(" [RISCiX]");
|
|
|
|
|
|
if (rr->magic == RISCIX_MAGIC) {
|
|
unsigned long size = nr_sects > 2 ? 2 : nr_sects;
|
|
int part;
|
|
|
|
printk(" <");
|
|
|
|
put_partition(state, slot++, first_sect, size);
|
|
for (part = 0; part < 8; part++) {
|
|
if (rr->part[part].one &&
|
|
memcmp(rr->part[part].name, "All\0", 4)) {
|
|
put_partition(state, slot++,
|
|
le32_to_cpu(rr->part[part].start),
|
|
le32_to_cpu(rr->part[part].length));
|
|
printk("(%s)", rr->part[part].name);
|
|
}
|
|
}
|
|
|
|
printk(" >\n");
|
|
} else {
|
|
put_partition(state, slot++, first_sect, nr_sects);
|
|
}
|
|
|
|
put_dev_sector(sect);
|
|
return slot;
|
|
}
|
|
#endif
|
|
|
|
#define LINUX_NATIVE_MAGIC 0xdeafa1de
|
|
#define LINUX_SWAP_MAGIC 0xdeafab1e
|
|
|
|
struct linux_part {
|
|
__le32 magic;
|
|
__le32 start_sect;
|
|
__le32 nr_sects;
|
|
};
|
|
|
|
static int
|
|
linux_partition(struct parsed_partitions *state, struct block_device *bdev,
|
|
unsigned long first_sect, int slot, unsigned long nr_sects)
|
|
{
|
|
Sector sect;
|
|
struct linux_part *linuxp;
|
|
unsigned long size = nr_sects > 2 ? 2 : nr_sects;
|
|
|
|
printk(" [Linux]");
|
|
|
|
put_partition(state, slot++, first_sect, size);
|
|
|
|
linuxp = (struct linux_part *)read_dev_sector(bdev, first_sect, §);
|
|
if (!linuxp)
|
|
return -1;
|
|
|
|
printk(" <");
|
|
while (linuxp->magic == cpu_to_le32(LINUX_NATIVE_MAGIC) ||
|
|
linuxp->magic == cpu_to_le32(LINUX_SWAP_MAGIC)) {
|
|
if (slot == state->limit)
|
|
break;
|
|
put_partition(state, slot++, first_sect +
|
|
le32_to_cpu(linuxp->start_sect),
|
|
le32_to_cpu(linuxp->nr_sects));
|
|
linuxp ++;
|
|
}
|
|
printk(" >");
|
|
|
|
put_dev_sector(sect);
|
|
return slot;
|
|
}
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_CUMANA
|
|
int
|
|
adfspart_check_CUMANA(struct parsed_partitions *state, struct block_device *bdev)
|
|
{
|
|
unsigned long first_sector = 0;
|
|
unsigned int start_blk = 0;
|
|
Sector sect;
|
|
unsigned char *data;
|
|
char *name = "CUMANA/ADFS";
|
|
int first = 1;
|
|
int slot = 1;
|
|
|
|
/*
|
|
* Try Cumana style partitions - sector 6 contains ADFS boot block
|
|
* with pointer to next 'drive'.
|
|
*
|
|
* There are unknowns in this code - is the 'cylinder number' of the
|
|
* next partition relative to the start of this one - I'm assuming
|
|
* it is.
|
|
*
|
|
* Also, which ID did Cumana use?
|
|
*
|
|
* This is totally unfinished, and will require more work to get it
|
|
* going. Hence it is totally untested.
|
|
*/
|
|
do {
|
|
struct adfs_discrecord *dr;
|
|
unsigned int nr_sects;
|
|
|
|
data = read_dev_sector(bdev, start_blk * 2 + 6, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
if (slot == state->limit)
|
|
break;
|
|
|
|
dr = adfs_partition(state, name, data, first_sector, slot++);
|
|
if (!dr)
|
|
break;
|
|
|
|
name = NULL;
|
|
|
|
nr_sects = (data[0x1fd] + (data[0x1fe] << 8)) *
|
|
(dr->heads + (dr->lowsector & 0x40 ? 1 : 0)) *
|
|
dr->secspertrack;
|
|
|
|
if (!nr_sects)
|
|
break;
|
|
|
|
first = 0;
|
|
first_sector += nr_sects;
|
|
start_blk += nr_sects >> (BLOCK_SIZE_BITS - 9);
|
|
nr_sects = 0; /* hmm - should be partition size */
|
|
|
|
switch (data[0x1fc] & 15) {
|
|
case 0: /* No partition / ADFS? */
|
|
break;
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_RISCIX
|
|
case PARTITION_RISCIX_SCSI:
|
|
/* RISCiX - we don't know how to find the next one. */
|
|
slot = riscix_partition(state, bdev, first_sector,
|
|
slot, nr_sects);
|
|
break;
|
|
#endif
|
|
|
|
case PARTITION_LINUX:
|
|
slot = linux_partition(state, bdev, first_sector,
|
|
slot, nr_sects);
|
|
break;
|
|
}
|
|
put_dev_sector(sect);
|
|
if (slot == -1)
|
|
return -1;
|
|
} while (1);
|
|
put_dev_sector(sect);
|
|
return first ? 0 : 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_ADFS
|
|
/*
|
|
* Purpose: allocate ADFS partitions.
|
|
*
|
|
* Params : hd - pointer to gendisk structure to store partition info.
|
|
* dev - device number to access.
|
|
*
|
|
* Returns: -1 on error, 0 for no ADFS boot sector, 1 for ok.
|
|
*
|
|
* Alloc : hda = whole drive
|
|
* hda1 = ADFS partition on first drive.
|
|
* hda2 = non-ADFS partition.
|
|
*/
|
|
int
|
|
adfspart_check_ADFS(struct parsed_partitions *state, struct block_device *bdev)
|
|
{
|
|
unsigned long start_sect, nr_sects, sectscyl, heads;
|
|
Sector sect;
|
|
unsigned char *data;
|
|
struct adfs_discrecord *dr;
|
|
unsigned char id;
|
|
int slot = 1;
|
|
|
|
data = read_dev_sector(bdev, 6, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
dr = adfs_partition(state, "ADFS", data, 0, slot++);
|
|
if (!dr) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
|
|
heads = dr->heads + ((dr->lowsector >> 6) & 1);
|
|
sectscyl = dr->secspertrack * heads;
|
|
start_sect = ((data[0x1fe] << 8) + data[0x1fd]) * sectscyl;
|
|
id = data[0x1fc] & 15;
|
|
put_dev_sector(sect);
|
|
|
|
#ifdef CONFIG_BLK_DEV_MFM
|
|
if (MAJOR(bdev->bd_dev) == MFM_ACORN_MAJOR) {
|
|
extern void xd_set_geometry(struct block_device *,
|
|
unsigned char, unsigned char, unsigned int);
|
|
xd_set_geometry(bdev, dr->secspertrack, heads, 1);
|
|
invalidate_bdev(bdev, 1);
|
|
truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Work out start of non-adfs partition.
|
|
*/
|
|
nr_sects = (bdev->bd_inode->i_size >> 9) - start_sect;
|
|
|
|
if (start_sect) {
|
|
switch (id) {
|
|
#ifdef CONFIG_ACORN_PARTITION_RISCIX
|
|
case PARTITION_RISCIX_SCSI:
|
|
case PARTITION_RISCIX_MFM:
|
|
slot = riscix_partition(state, bdev, start_sect,
|
|
slot, nr_sects);
|
|
break;
|
|
#endif
|
|
|
|
case PARTITION_LINUX:
|
|
slot = linux_partition(state, bdev, start_sect,
|
|
slot, nr_sects);
|
|
break;
|
|
}
|
|
}
|
|
printk("\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_ICS
|
|
|
|
struct ics_part {
|
|
__le32 start;
|
|
__le32 size;
|
|
};
|
|
|
|
static int adfspart_check_ICSLinux(struct block_device *bdev, unsigned long block)
|
|
{
|
|
Sector sect;
|
|
unsigned char *data = read_dev_sector(bdev, block, §);
|
|
int result = 0;
|
|
|
|
if (data) {
|
|
if (memcmp(data, "LinuxPart", 9) == 0)
|
|
result = 1;
|
|
put_dev_sector(sect);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Check for a valid ICS partition using the checksum.
|
|
*/
|
|
static inline int valid_ics_sector(const unsigned char *data)
|
|
{
|
|
unsigned long sum;
|
|
int i;
|
|
|
|
for (i = 0, sum = 0x50617274; i < 508; i++)
|
|
sum += data[i];
|
|
|
|
sum -= le32_to_cpu(*(__le32 *)(&data[508]));
|
|
|
|
return sum == 0;
|
|
}
|
|
|
|
/*
|
|
* Purpose: allocate ICS partitions.
|
|
* Params : hd - pointer to gendisk structure to store partition info.
|
|
* dev - device number to access.
|
|
* Returns: -1 on error, 0 for no ICS table, 1 for partitions ok.
|
|
* Alloc : hda = whole drive
|
|
* hda1 = ADFS partition 0 on first drive.
|
|
* hda2 = ADFS partition 1 on first drive.
|
|
* ..etc..
|
|
*/
|
|
int
|
|
adfspart_check_ICS(struct parsed_partitions *state, struct block_device *bdev)
|
|
{
|
|
const unsigned char *data;
|
|
const struct ics_part *p;
|
|
int slot;
|
|
Sector sect;
|
|
|
|
/*
|
|
* Try ICS style partitions - sector 0 contains partition info.
|
|
*/
|
|
data = read_dev_sector(bdev, 0, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
if (!valid_ics_sector(data)) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
|
|
printk(" [ICS]");
|
|
|
|
for (slot = 1, p = (const struct ics_part *)data; p->size; p++) {
|
|
u32 start = le32_to_cpu(p->start);
|
|
s32 size = le32_to_cpu(p->size); /* yes, it's signed. */
|
|
|
|
if (slot == state->limit)
|
|
break;
|
|
|
|
/*
|
|
* Negative sizes tell the RISC OS ICS driver to ignore
|
|
* this partition - in effect it says that this does not
|
|
* contain an ADFS filesystem.
|
|
*/
|
|
if (size < 0) {
|
|
size = -size;
|
|
|
|
/*
|
|
* Our own extension - We use the first sector
|
|
* of the partition to identify what type this
|
|
* partition is. We must not make this visible
|
|
* to the filesystem.
|
|
*/
|
|
if (size > 1 && adfspart_check_ICSLinux(bdev, start)) {
|
|
start += 1;
|
|
size -= 1;
|
|
}
|
|
}
|
|
|
|
if (size)
|
|
put_partition(state, slot++, start, size);
|
|
}
|
|
|
|
put_dev_sector(sect);
|
|
printk("\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_POWERTEC
|
|
struct ptec_part {
|
|
__le32 unused1;
|
|
__le32 unused2;
|
|
__le32 start;
|
|
__le32 size;
|
|
__le32 unused5;
|
|
char type[8];
|
|
};
|
|
|
|
static inline int valid_ptec_sector(const unsigned char *data)
|
|
{
|
|
unsigned char checksum = 0x2a;
|
|
int i;
|
|
|
|
/*
|
|
* If it looks like a PC/BIOS partition, then it
|
|
* probably isn't PowerTec.
|
|
*/
|
|
if (data[510] == 0x55 && data[511] == 0xaa)
|
|
return 0;
|
|
|
|
for (i = 0; i < 511; i++)
|
|
checksum += data[i];
|
|
|
|
return checksum == data[511];
|
|
}
|
|
|
|
/*
|
|
* Purpose: allocate ICS partitions.
|
|
* Params : hd - pointer to gendisk structure to store partition info.
|
|
* dev - device number to access.
|
|
* Returns: -1 on error, 0 for no ICS table, 1 for partitions ok.
|
|
* Alloc : hda = whole drive
|
|
* hda1 = ADFS partition 0 on first drive.
|
|
* hda2 = ADFS partition 1 on first drive.
|
|
* ..etc..
|
|
*/
|
|
int
|
|
adfspart_check_POWERTEC(struct parsed_partitions *state, struct block_device *bdev)
|
|
{
|
|
Sector sect;
|
|
const unsigned char *data;
|
|
const struct ptec_part *p;
|
|
int slot = 1;
|
|
int i;
|
|
|
|
data = read_dev_sector(bdev, 0, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
if (!valid_ptec_sector(data)) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
|
|
printk(" [POWERTEC]");
|
|
|
|
for (i = 0, p = (const struct ptec_part *)data; i < 12; i++, p++) {
|
|
u32 start = le32_to_cpu(p->start);
|
|
u32 size = le32_to_cpu(p->size);
|
|
|
|
if (size)
|
|
put_partition(state, slot++, start, size);
|
|
}
|
|
|
|
put_dev_sector(sect);
|
|
printk("\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACORN_PARTITION_EESOX
|
|
struct eesox_part {
|
|
char magic[6];
|
|
char name[10];
|
|
__le32 start;
|
|
__le32 unused6;
|
|
__le32 unused7;
|
|
__le32 unused8;
|
|
};
|
|
|
|
/*
|
|
* Guess who created this format?
|
|
*/
|
|
static const char eesox_name[] = {
|
|
'N', 'e', 'i', 'l', ' ',
|
|
'C', 'r', 'i', 't', 'c', 'h', 'e', 'l', 'l', ' ', ' '
|
|
};
|
|
|
|
/*
|
|
* EESOX SCSI partition format.
|
|
*
|
|
* This is a goddamned awful partition format. We don't seem to store
|
|
* the size of the partition in this table, only the start addresses.
|
|
*
|
|
* There are two possibilities where the size comes from:
|
|
* 1. The individual ADFS boot block entries that are placed on the disk.
|
|
* 2. The start address of the next entry.
|
|
*/
|
|
int
|
|
adfspart_check_EESOX(struct parsed_partitions *state, struct block_device *bdev)
|
|
{
|
|
Sector sect;
|
|
const unsigned char *data;
|
|
unsigned char buffer[256];
|
|
struct eesox_part *p;
|
|
sector_t start = 0;
|
|
int i, slot = 1;
|
|
|
|
data = read_dev_sector(bdev, 7, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
/*
|
|
* "Decrypt" the partition table. God knows why...
|
|
*/
|
|
for (i = 0; i < 256; i++)
|
|
buffer[i] = data[i] ^ eesox_name[i & 15];
|
|
|
|
put_dev_sector(sect);
|
|
|
|
for (i = 0, p = (struct eesox_part *)buffer; i < 8; i++, p++) {
|
|
sector_t next;
|
|
|
|
if (memcmp(p->magic, "Eesox", 6))
|
|
break;
|
|
|
|
next = le32_to_cpu(p->start);
|
|
if (i)
|
|
put_partition(state, slot++, start, next - start);
|
|
start = next;
|
|
}
|
|
|
|
if (i != 0) {
|
|
sector_t size;
|
|
|
|
size = get_capacity(bdev->bd_disk);
|
|
put_partition(state, slot++, start, size - start);
|
|
printk("\n");
|
|
}
|
|
|
|
return i ? 1 : 0;
|
|
}
|
|
#endif
|