aha/ipc/sem.c
Pierre Peiffer b1ed88b47f IPC: fix error check in all new xxx_lock() and xxx_exit_ns() functions
In the new implementation of the [sem|shm|msg]_lock[_check]() routines, we
use the return value of ipc_lock() in container_of() without any check.
But ipc_lock may return a errcode.  The use of this errcode in
container_of() may alter this errcode, and we don't want this.

And in xxx_exit_ns, the pointer return by idr_find is of type 'struct
kern_ipc_per'...

Today, the code will work as is because the member used in these
container_of() is the first member of its container (offset == 0), the
errcode isn't changed then.  But in the general case, we can't count on
this assumption and this may lead later to a real bug if we don't correct
this.

Again, the proposed solution is simple and correct.  But, as pointed by
Nadia, with this solution, the same check will be done several times (in
all sub-callers...), what is not very funny/optimal...

Signed-off-by: Pierre Peiffer <pierre.peiffer@bull.net>
Cc: Nadia Derbey <Nadia.Derbey@bull.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:01 -08:00

1428 lines
34 KiB
C

/*
* linux/ipc/sem.c
* Copyright (C) 1992 Krishna Balasubramanian
* Copyright (C) 1995 Eric Schenk, Bruno Haible
*
* IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
* This code underwent a massive rewrite in order to solve some problems
* with the original code. In particular the original code failed to
* wake up processes that were waiting for semval to go to 0 if the
* value went to 0 and was then incremented rapidly enough. In solving
* this problem I have also modified the implementation so that it
* processes pending operations in a FIFO manner, thus give a guarantee
* that processes waiting for a lock on the semaphore won't starve
* unless another locking process fails to unlock.
* In addition the following two changes in behavior have been introduced:
* - The original implementation of semop returned the value
* last semaphore element examined on success. This does not
* match the manual page specifications, and effectively
* allows the user to read the semaphore even if they do not
* have read permissions. The implementation now returns 0
* on success as stated in the manual page.
* - There is some confusion over whether the set of undo adjustments
* to be performed at exit should be done in an atomic manner.
* That is, if we are attempting to decrement the semval should we queue
* up and wait until we can do so legally?
* The original implementation attempted to do this.
* The current implementation does not do so. This is because I don't
* think it is the right thing (TM) to do, and because I couldn't
* see a clean way to get the old behavior with the new design.
* The POSIX standard and SVID should be consulted to determine
* what behavior is mandated.
*
* Further notes on refinement (Christoph Rohland, December 1998):
* - The POSIX standard says, that the undo adjustments simply should
* redo. So the current implementation is o.K.
* - The previous code had two flaws:
* 1) It actively gave the semaphore to the next waiting process
* sleeping on the semaphore. Since this process did not have the
* cpu this led to many unnecessary context switches and bad
* performance. Now we only check which process should be able to
* get the semaphore and if this process wants to reduce some
* semaphore value we simply wake it up without doing the
* operation. So it has to try to get it later. Thus e.g. the
* running process may reacquire the semaphore during the current
* time slice. If it only waits for zero or increases the semaphore,
* we do the operation in advance and wake it up.
* 2) It did not wake up all zero waiting processes. We try to do
* better but only get the semops right which only wait for zero or
* increase. If there are decrement operations in the operations
* array we do the same as before.
*
* With the incarnation of O(1) scheduler, it becomes unnecessary to perform
* check/retry algorithm for waking up blocked processes as the new scheduler
* is better at handling thread switch than the old one.
*
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
*
* SMP-threaded, sysctl's added
* (c) 1999 Manfred Spraul <manfred@colorfullife.com>
* Enforced range limit on SEM_UNDO
* (c) 2001 Red Hat Inc <alan@redhat.com>
* Lockless wakeup
* (c) 2003 Manfred Spraul <manfred@colorfullife.com>
*
* support for audit of ipc object properties and permission changes
* Dustin Kirkland <dustin.kirkland@us.ibm.com>
*
* namespaces support
* OpenVZ, SWsoft Inc.
* Pavel Emelianov <xemul@openvz.org>
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/seq_file.h>
#include <linux/rwsem.h>
#include <linux/nsproxy.h>
#include <asm/uaccess.h>
#include "util.h"
#define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS]))
#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
#define sem_buildid(id, seq) ipc_buildid(id, seq)
static struct ipc_ids init_sem_ids;
static int newary(struct ipc_namespace *, struct ipc_params *);
static void freeary(struct ipc_namespace *, struct sem_array *);
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
#endif
#define SEMMSL_FAST 256 /* 512 bytes on stack */
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
/*
* linked list protection:
* sem_undo.id_next,
* sem_array.sem_pending{,last},
* sem_array.sem_undo: sem_lock() for read/write
* sem_undo.proc_next: only "current" is allowed to read/write that field.
*
*/
#define sc_semmsl sem_ctls[0]
#define sc_semmns sem_ctls[1]
#define sc_semopm sem_ctls[2]
#define sc_semmni sem_ctls[3]
static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
{
ns->ids[IPC_SEM_IDS] = ids;
ns->sc_semmsl = SEMMSL;
ns->sc_semmns = SEMMNS;
ns->sc_semopm = SEMOPM;
ns->sc_semmni = SEMMNI;
ns->used_sems = 0;
ipc_init_ids(ids);
}
int sem_init_ns(struct ipc_namespace *ns)
{
struct ipc_ids *ids;
ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
if (ids == NULL)
return -ENOMEM;
__sem_init_ns(ns, ids);
return 0;
}
void sem_exit_ns(struct ipc_namespace *ns)
{
struct sem_array *sma;
struct kern_ipc_perm *perm;
int next_id;
int total, in_use;
down_write(&sem_ids(ns).rw_mutex);
in_use = sem_ids(ns).in_use;
for (total = 0, next_id = 0; total < in_use; next_id++) {
perm = idr_find(&sem_ids(ns).ipcs_idr, next_id);
if (perm == NULL)
continue;
ipc_lock_by_ptr(perm);
sma = container_of(perm, struct sem_array, sem_perm);
freeary(ns, sma);
total++;
}
up_write(&sem_ids(ns).rw_mutex);
kfree(ns->ids[IPC_SEM_IDS]);
ns->ids[IPC_SEM_IDS] = NULL;
}
void __init sem_init (void)
{
__sem_init_ns(&init_ipc_ns, &init_sem_ids);
ipc_init_proc_interface("sysvipc/sem",
" key semid perms nsems uid gid cuid cgid otime ctime\n",
IPC_SEM_IDS, sysvipc_sem_proc_show);
}
/*
* This routine is called in the paths where the rw_mutex is held to protect
* access to the idr tree.
*/
static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
int id)
{
struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return (struct sem_array *)ipcp;
return container_of(ipcp, struct sem_array, sem_perm);
}
/*
* sem_lock_(check_) routines are called in the paths where the rw_mutex
* is not held.
*/
static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
{
struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return (struct sem_array *)ipcp;
return container_of(ipcp, struct sem_array, sem_perm);
}
static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
int id)
{
struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return (struct sem_array *)ipcp;
return container_of(ipcp, struct sem_array, sem_perm);
}
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
{
ipc_rmid(&sem_ids(ns), &s->sem_perm);
}
/*
* Lockless wakeup algorithm:
* Without the check/retry algorithm a lockless wakeup is possible:
* - queue.status is initialized to -EINTR before blocking.
* - wakeup is performed by
* * unlinking the queue entry from sma->sem_pending
* * setting queue.status to IN_WAKEUP
* This is the notification for the blocked thread that a
* result value is imminent.
* * call wake_up_process
* * set queue.status to the final value.
* - the previously blocked thread checks queue.status:
* * if it's IN_WAKEUP, then it must wait until the value changes
* * if it's not -EINTR, then the operation was completed by
* update_queue. semtimedop can return queue.status without
* performing any operation on the sem array.
* * otherwise it must acquire the spinlock and check what's up.
*
* The two-stage algorithm is necessary to protect against the following
* races:
* - if queue.status is set after wake_up_process, then the woken up idle
* thread could race forward and try (and fail) to acquire sma->lock
* before update_queue had a chance to set queue.status
* - if queue.status is written before wake_up_process and if the
* blocked process is woken up by a signal between writing
* queue.status and the wake_up_process, then the woken up
* process could return from semtimedop and die by calling
* sys_exit before wake_up_process is called. Then wake_up_process
* will oops, because the task structure is already invalid.
* (yes, this happened on s390 with sysv msg).
*
*/
#define IN_WAKEUP 1
/**
* newary - Create a new semaphore set
* @ns: namespace
* @params: ptr to the structure that contains key, semflg and nsems
*
* Called with sem_ids.rw_mutex held (as a writer)
*/
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
{
int id;
int retval;
struct sem_array *sma;
int size;
key_t key = params->key;
int nsems = params->u.nsems;
int semflg = params->flg;
if (!nsems)
return -EINVAL;
if (ns->used_sems + nsems > ns->sc_semmns)
return -ENOSPC;
size = sizeof (*sma) + nsems * sizeof (struct sem);
sma = ipc_rcu_alloc(size);
if (!sma) {
return -ENOMEM;
}
memset (sma, 0, size);
sma->sem_perm.mode = (semflg & S_IRWXUGO);
sma->sem_perm.key = key;
sma->sem_perm.security = NULL;
retval = security_sem_alloc(sma);
if (retval) {
ipc_rcu_putref(sma);
return retval;
}
id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
if (id < 0) {
security_sem_free(sma);
ipc_rcu_putref(sma);
return id;
}
ns->used_sems += nsems;
sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq);
sma->sem_base = (struct sem *) &sma[1];
/* sma->sem_pending = NULL; */
sma->sem_pending_last = &sma->sem_pending;
/* sma->undo = NULL; */
sma->sem_nsems = nsems;
sma->sem_ctime = get_seconds();
sem_unlock(sma);
return sma->sem_perm.id;
}
/*
* Called with sem_ids.rw_mutex and ipcp locked.
*/
static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
{
struct sem_array *sma;
sma = container_of(ipcp, struct sem_array, sem_perm);
return security_sem_associate(sma, semflg);
}
/*
* Called with sem_ids.rw_mutex and ipcp locked.
*/
static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
struct ipc_params *params)
{
struct sem_array *sma;
sma = container_of(ipcp, struct sem_array, sem_perm);
if (params->u.nsems > sma->sem_nsems)
return -EINVAL;
return 0;
}
asmlinkage long sys_semget(key_t key, int nsems, int semflg)
{
struct ipc_namespace *ns;
struct ipc_ops sem_ops;
struct ipc_params sem_params;
ns = current->nsproxy->ipc_ns;
if (nsems < 0 || nsems > ns->sc_semmsl)
return -EINVAL;
sem_ops.getnew = newary;
sem_ops.associate = sem_security;
sem_ops.more_checks = sem_more_checks;
sem_params.key = key;
sem_params.flg = semflg;
sem_params.u.nsems = nsems;
return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
}
/* Manage the doubly linked list sma->sem_pending as a FIFO:
* insert new queue elements at the tail sma->sem_pending_last.
*/
static inline void append_to_queue (struct sem_array * sma,
struct sem_queue * q)
{
*(q->prev = sma->sem_pending_last) = q;
*(sma->sem_pending_last = &q->next) = NULL;
}
static inline void prepend_to_queue (struct sem_array * sma,
struct sem_queue * q)
{
q->next = sma->sem_pending;
*(q->prev = &sma->sem_pending) = q;
if (q->next)
q->next->prev = &q->next;
else /* sma->sem_pending_last == &sma->sem_pending */
sma->sem_pending_last = &q->next;
}
static inline void remove_from_queue (struct sem_array * sma,
struct sem_queue * q)
{
*(q->prev) = q->next;
if (q->next)
q->next->prev = q->prev;
else /* sma->sem_pending_last == &q->next */
sma->sem_pending_last = q->prev;
q->prev = NULL; /* mark as removed */
}
/*
* Determine whether a sequence of semaphore operations would succeed
* all at once. Return 0 if yes, 1 if need to sleep, else return error code.
*/
static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
int nsops, struct sem_undo *un, int pid)
{
int result, sem_op;
struct sembuf *sop;
struct sem * curr;
for (sop = sops; sop < sops + nsops; sop++) {
curr = sma->sem_base + sop->sem_num;
sem_op = sop->sem_op;
result = curr->semval;
if (!sem_op && result)
goto would_block;
result += sem_op;
if (result < 0)
goto would_block;
if (result > SEMVMX)
goto out_of_range;
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
/*
* Exceeding the undo range is an error.
*/
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
goto out_of_range;
}
curr->semval = result;
}
sop--;
while (sop >= sops) {
sma->sem_base[sop->sem_num].sempid = pid;
if (sop->sem_flg & SEM_UNDO)
un->semadj[sop->sem_num] -= sop->sem_op;
sop--;
}
sma->sem_otime = get_seconds();
return 0;
out_of_range:
result = -ERANGE;
goto undo;
would_block:
if (sop->sem_flg & IPC_NOWAIT)
result = -EAGAIN;
else
result = 1;
undo:
sop--;
while (sop >= sops) {
sma->sem_base[sop->sem_num].semval -= sop->sem_op;
sop--;
}
return result;
}
/* Go through the pending queue for the indicated semaphore
* looking for tasks that can be completed.
*/
static void update_queue (struct sem_array * sma)
{
int error;
struct sem_queue * q;
q = sma->sem_pending;
while(q) {
error = try_atomic_semop(sma, q->sops, q->nsops,
q->undo, q->pid);
/* Does q->sleeper still need to sleep? */
if (error <= 0) {
struct sem_queue *n;
remove_from_queue(sma,q);
q->status = IN_WAKEUP;
/*
* Continue scanning. The next operation
* that must be checked depends on the type of the
* completed operation:
* - if the operation modified the array, then
* restart from the head of the queue and
* check for threads that might be waiting
* for semaphore values to become 0.
* - if the operation didn't modify the array,
* then just continue.
*/
if (q->alter)
n = sma->sem_pending;
else
n = q->next;
wake_up_process(q->sleeper);
/* hands-off: q will disappear immediately after
* writing q->status.
*/
smp_wmb();
q->status = error;
q = n;
} else {
q = q->next;
}
}
}
/* The following counts are associated to each semaphore:
* semncnt number of tasks waiting on semval being nonzero
* semzcnt number of tasks waiting on semval being zero
* This model assumes that a task waits on exactly one semaphore.
* Since semaphore operations are to be performed atomically, tasks actually
* wait on a whole sequence of semaphores simultaneously.
* The counts we return here are a rough approximation, but still
* warrant that semncnt+semzcnt>0 if the task is on the pending queue.
*/
static int count_semncnt (struct sem_array * sma, ushort semnum)
{
int semncnt;
struct sem_queue * q;
semncnt = 0;
for (q = sma->sem_pending; q; q = q->next) {
struct sembuf * sops = q->sops;
int nsops = q->nsops;
int i;
for (i = 0; i < nsops; i++)
if (sops[i].sem_num == semnum
&& (sops[i].sem_op < 0)
&& !(sops[i].sem_flg & IPC_NOWAIT))
semncnt++;
}
return semncnt;
}
static int count_semzcnt (struct sem_array * sma, ushort semnum)
{
int semzcnt;
struct sem_queue * q;
semzcnt = 0;
for (q = sma->sem_pending; q; q = q->next) {
struct sembuf * sops = q->sops;
int nsops = q->nsops;
int i;
for (i = 0; i < nsops; i++)
if (sops[i].sem_num == semnum
&& (sops[i].sem_op == 0)
&& !(sops[i].sem_flg & IPC_NOWAIT))
semzcnt++;
}
return semzcnt;
}
/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
* as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
* remains locked on exit.
*/
static void freeary(struct ipc_namespace *ns, struct sem_array *sma)
{
struct sem_undo *un;
struct sem_queue *q;
/* Invalidate the existing undo structures for this semaphore set.
* (They will be freed without any further action in exit_sem()
* or during the next semop.)
*/
for (un = sma->undo; un; un = un->id_next)
un->semid = -1;
/* Wake up all pending processes and let them fail with EIDRM. */
q = sma->sem_pending;
while(q) {
struct sem_queue *n;
/* lazy remove_from_queue: we are killing the whole queue */
q->prev = NULL;
n = q->next;
q->status = IN_WAKEUP;
wake_up_process(q->sleeper); /* doesn't sleep */
smp_wmb();
q->status = -EIDRM; /* hands-off q */
q = n;
}
/* Remove the semaphore set from the IDR */
sem_rmid(ns, sma);
sem_unlock(sma);
ns->used_sems -= sma->sem_nsems;
security_sem_free(sma);
ipc_rcu_putref(sma);
}
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
{
switch(version) {
case IPC_64:
return copy_to_user(buf, in, sizeof(*in));
case IPC_OLD:
{
struct semid_ds out;
ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
out.sem_otime = in->sem_otime;
out.sem_ctime = in->sem_ctime;
out.sem_nsems = in->sem_nsems;
return copy_to_user(buf, &out, sizeof(out));
}
default:
return -EINVAL;
}
}
static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
int cmd, int version, union semun arg)
{
int err = -EINVAL;
struct sem_array *sma;
switch(cmd) {
case IPC_INFO:
case SEM_INFO:
{
struct seminfo seminfo;
int max_id;
err = security_sem_semctl(NULL, cmd);
if (err)
return err;
memset(&seminfo,0,sizeof(seminfo));
seminfo.semmni = ns->sc_semmni;
seminfo.semmns = ns->sc_semmns;
seminfo.semmsl = ns->sc_semmsl;
seminfo.semopm = ns->sc_semopm;
seminfo.semvmx = SEMVMX;
seminfo.semmnu = SEMMNU;
seminfo.semmap = SEMMAP;
seminfo.semume = SEMUME;
down_read(&sem_ids(ns).rw_mutex);
if (cmd == SEM_INFO) {
seminfo.semusz = sem_ids(ns).in_use;
seminfo.semaem = ns->used_sems;
} else {
seminfo.semusz = SEMUSZ;
seminfo.semaem = SEMAEM;
}
max_id = ipc_get_maxid(&sem_ids(ns));
up_read(&sem_ids(ns).rw_mutex);
if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
return -EFAULT;
return (max_id < 0) ? 0: max_id;
}
case SEM_STAT:
{
struct semid64_ds tbuf;
int id;
sma = sem_lock(ns, semid);
if (IS_ERR(sma))
return PTR_ERR(sma);
err = -EACCES;
if (ipcperms (&sma->sem_perm, S_IRUGO))
goto out_unlock;
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
id = sma->sem_perm.id;
memset(&tbuf, 0, sizeof(tbuf));
kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
tbuf.sem_otime = sma->sem_otime;
tbuf.sem_ctime = sma->sem_ctime;
tbuf.sem_nsems = sma->sem_nsems;
sem_unlock(sma);
if (copy_semid_to_user (arg.buf, &tbuf, version))
return -EFAULT;
return id;
}
default:
return -EINVAL;
}
return err;
out_unlock:
sem_unlock(sma);
return err;
}
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int cmd, int version, union semun arg)
{
struct sem_array *sma;
struct sem* curr;
int err;
ushort fast_sem_io[SEMMSL_FAST];
ushort* sem_io = fast_sem_io;
int nsems;
sma = sem_lock_check(ns, semid);
if (IS_ERR(sma))
return PTR_ERR(sma);
nsems = sma->sem_nsems;
err = -EACCES;
if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
goto out_unlock;
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
err = -EACCES;
switch (cmd) {
case GETALL:
{
ushort __user *array = arg.array;
int i;
if(nsems > SEMMSL_FAST) {
ipc_rcu_getref(sma);
sem_unlock(sma);
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
return -ENOMEM;
}
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
err = -EIDRM;
goto out_free;
}
}
for (i = 0; i < sma->sem_nsems; i++)
sem_io[i] = sma->sem_base[i].semval;
sem_unlock(sma);
err = 0;
if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
err = -EFAULT;
goto out_free;
}
case SETALL:
{
int i;
struct sem_undo *un;
ipc_rcu_getref(sma);
sem_unlock(sma);
if(nsems > SEMMSL_FAST) {
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
return -ENOMEM;
}
}
if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
err = -EFAULT;
goto out_free;
}
for (i = 0; i < nsems; i++) {
if (sem_io[i] > SEMVMX) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
err = -ERANGE;
goto out_free;
}
}
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
err = -EIDRM;
goto out_free;
}
for (i = 0; i < nsems; i++)
sma->sem_base[i].semval = sem_io[i];
for (un = sma->undo; un; un = un->id_next)
for (i = 0; i < nsems; i++)
un->semadj[i] = 0;
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
update_queue(sma);
err = 0;
goto out_unlock;
}
case IPC_STAT:
{
struct semid64_ds tbuf;
memset(&tbuf,0,sizeof(tbuf));
kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
tbuf.sem_otime = sma->sem_otime;
tbuf.sem_ctime = sma->sem_ctime;
tbuf.sem_nsems = sma->sem_nsems;
sem_unlock(sma);
if (copy_semid_to_user (arg.buf, &tbuf, version))
return -EFAULT;
return 0;
}
/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
}
err = -EINVAL;
if(semnum < 0 || semnum >= nsems)
goto out_unlock;
curr = &sma->sem_base[semnum];
switch (cmd) {
case GETVAL:
err = curr->semval;
goto out_unlock;
case GETPID:
err = curr->sempid;
goto out_unlock;
case GETNCNT:
err = count_semncnt(sma,semnum);
goto out_unlock;
case GETZCNT:
err = count_semzcnt(sma,semnum);
goto out_unlock;
case SETVAL:
{
int val = arg.val;
struct sem_undo *un;
err = -ERANGE;
if (val > SEMVMX || val < 0)
goto out_unlock;
for (un = sma->undo; un; un = un->id_next)
un->semadj[semnum] = 0;
curr->semval = val;
curr->sempid = task_tgid_vnr(current);
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
update_queue(sma);
err = 0;
goto out_unlock;
}
}
out_unlock:
sem_unlock(sma);
out_free:
if(sem_io != fast_sem_io)
ipc_free(sem_io, sizeof(ushort)*nsems);
return err;
}
struct sem_setbuf {
uid_t uid;
gid_t gid;
mode_t mode;
};
static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
{
switch(version) {
case IPC_64:
{
struct semid64_ds tbuf;
if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
return -EFAULT;
out->uid = tbuf.sem_perm.uid;
out->gid = tbuf.sem_perm.gid;
out->mode = tbuf.sem_perm.mode;
return 0;
}
case IPC_OLD:
{
struct semid_ds tbuf_old;
if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
return -EFAULT;
out->uid = tbuf_old.sem_perm.uid;
out->gid = tbuf_old.sem_perm.gid;
out->mode = tbuf_old.sem_perm.mode;
return 0;
}
default:
return -EINVAL;
}
}
static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
int cmd, int version, union semun arg)
{
struct sem_array *sma;
int err;
struct sem_setbuf uninitialized_var(setbuf);
struct kern_ipc_perm *ipcp;
if(cmd == IPC_SET) {
if(copy_semid_from_user (&setbuf, arg.buf, version))
return -EFAULT;
}
sma = sem_lock_check_down(ns, semid);
if (IS_ERR(sma))
return PTR_ERR(sma);
ipcp = &sma->sem_perm;
err = audit_ipc_obj(ipcp);
if (err)
goto out_unlock;
if (cmd == IPC_SET) {
err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
if (err)
goto out_unlock;
}
if (current->euid != ipcp->cuid &&
current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
err=-EPERM;
goto out_unlock;
}
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
switch(cmd){
case IPC_RMID:
freeary(ns, sma);
err = 0;
break;
case IPC_SET:
ipcp->uid = setbuf.uid;
ipcp->gid = setbuf.gid;
ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
| (setbuf.mode & S_IRWXUGO);
sma->sem_ctime = get_seconds();
sem_unlock(sma);
err = 0;
break;
default:
sem_unlock(sma);
err = -EINVAL;
break;
}
return err;
out_unlock:
sem_unlock(sma);
return err;
}
asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
{
int err = -EINVAL;
int version;
struct ipc_namespace *ns;
if (semid < 0)
return -EINVAL;
version = ipc_parse_version(&cmd);
ns = current->nsproxy->ipc_ns;
switch(cmd) {
case IPC_INFO:
case SEM_INFO:
case SEM_STAT:
err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
return err;
case GETALL:
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case IPC_STAT:
case SETVAL:
case SETALL:
err = semctl_main(ns,semid,semnum,cmd,version,arg);
return err;
case IPC_RMID:
case IPC_SET:
down_write(&sem_ids(ns).rw_mutex);
err = semctl_down(ns,semid,semnum,cmd,version,arg);
up_write(&sem_ids(ns).rw_mutex);
return err;
default:
return -EINVAL;
}
}
/* If the task doesn't already have a undo_list, then allocate one
* here. We guarantee there is only one thread using this undo list,
* and current is THE ONE
*
* If this allocation and assignment succeeds, but later
* portions of this code fail, there is no need to free the sem_undo_list.
* Just let it stay associated with the task, and it'll be freed later
* at exit time.
*
* This can block, so callers must hold no locks.
*/
static inline int get_undo_list(struct sem_undo_list **undo_listp)
{
struct sem_undo_list *undo_list;
undo_list = current->sysvsem.undo_list;
if (!undo_list) {
undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
if (undo_list == NULL)
return -ENOMEM;
spin_lock_init(&undo_list->lock);
atomic_set(&undo_list->refcnt, 1);
current->sysvsem.undo_list = undo_list;
}
*undo_listp = undo_list;
return 0;
}
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo **last, *un;
last = &ulp->proc_list;
un = *last;
while(un != NULL) {
if(un->semid==semid)
break;
if(un->semid==-1) {
*last=un->proc_next;
kfree(un);
} else {
last=&un->proc_next;
}
un=*last;
}
return un;
}
static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
{
struct sem_array *sma;
struct sem_undo_list *ulp;
struct sem_undo *un, *new;
int nsems;
int error;
error = get_undo_list(&ulp);
if (error)
return ERR_PTR(error);
spin_lock(&ulp->lock);
un = lookup_undo(ulp, semid);
spin_unlock(&ulp->lock);
if (likely(un!=NULL))
goto out;
/* no undo structure around - allocate one. */
sma = sem_lock_check(ns, semid);
if (IS_ERR(sma))
return ERR_PTR(PTR_ERR(sma));
nsems = sma->sem_nsems;
ipc_rcu_getref(sma);
sem_unlock(sma);
new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
if (!new) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
return ERR_PTR(-ENOMEM);
}
new->semadj = (short *) &new[1];
new->semid = semid;
spin_lock(&ulp->lock);
un = lookup_undo(ulp, semid);
if (un) {
spin_unlock(&ulp->lock);
kfree(new);
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
goto out;
}
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
spin_unlock(&ulp->lock);
kfree(new);
un = ERR_PTR(-EIDRM);
goto out;
}
new->proc_next = ulp->proc_list;
ulp->proc_list = new;
new->id_next = sma->undo;
sma->undo = new;
sem_unlock(sma);
un = new;
spin_unlock(&ulp->lock);
out:
return un;
}
asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
unsigned nsops, const struct timespec __user *timeout)
{
int error = -EINVAL;
struct sem_array *sma;
struct sembuf fast_sops[SEMOPM_FAST];
struct sembuf* sops = fast_sops, *sop;
struct sem_undo *un;
int undos = 0, alter = 0, max;
struct sem_queue queue;
unsigned long jiffies_left = 0;
struct ipc_namespace *ns;
ns = current->nsproxy->ipc_ns;
if (nsops < 1 || semid < 0)
return -EINVAL;
if (nsops > ns->sc_semopm)
return -E2BIG;
if(nsops > SEMOPM_FAST) {
sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
if(sops==NULL)
return -ENOMEM;
}
if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
error=-EFAULT;
goto out_free;
}
if (timeout) {
struct timespec _timeout;
if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
error = -EFAULT;
goto out_free;
}
if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
_timeout.tv_nsec >= 1000000000L) {
error = -EINVAL;
goto out_free;
}
jiffies_left = timespec_to_jiffies(&_timeout);
}
max = 0;
for (sop = sops; sop < sops + nsops; sop++) {
if (sop->sem_num >= max)
max = sop->sem_num;
if (sop->sem_flg & SEM_UNDO)
undos = 1;
if (sop->sem_op != 0)
alter = 1;
}
retry_undos:
if (undos) {
un = find_undo(ns, semid);
if (IS_ERR(un)) {
error = PTR_ERR(un);
goto out_free;
}
} else
un = NULL;
sma = sem_lock_check(ns, semid);
if (IS_ERR(sma)) {
error = PTR_ERR(sma);
goto out_free;
}
/*
* semid identifiers are not unique - find_undo may have
* allocated an undo structure, it was invalidated by an RMID
* and now a new array with received the same id. Check and retry.
*/
if (un && un->semid == -1) {
sem_unlock(sma);
goto retry_undos;
}
error = -EFBIG;
if (max >= sma->sem_nsems)
goto out_unlock_free;
error = -EACCES;
if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
goto out_unlock_free;
error = security_sem_semop(sma, sops, nsops, alter);
if (error)
goto out_unlock_free;
error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
if (error <= 0) {
if (alter && error == 0)
update_queue (sma);
goto out_unlock_free;
}
/* We need to sleep on this operation, so we put the current
* task into the pending queue and go to sleep.
*/
queue.sma = sma;
queue.sops = sops;
queue.nsops = nsops;
queue.undo = un;
queue.pid = task_tgid_vnr(current);
queue.id = semid;
queue.alter = alter;
if (alter)
append_to_queue(sma ,&queue);
else
prepend_to_queue(sma ,&queue);
queue.status = -EINTR;
queue.sleeper = current;
current->state = TASK_INTERRUPTIBLE;
sem_unlock(sma);
if (timeout)
jiffies_left = schedule_timeout(jiffies_left);
else
schedule();
error = queue.status;
while(unlikely(error == IN_WAKEUP)) {
cpu_relax();
error = queue.status;
}
if (error != -EINTR) {
/* fast path: update_queue already obtained all requested
* resources */
goto out_free;
}
sma = sem_lock(ns, semid);
if (IS_ERR(sma)) {
BUG_ON(queue.prev != NULL);
error = -EIDRM;
goto out_free;
}
/*
* If queue.status != -EINTR we are woken up by another process
*/
error = queue.status;
if (error != -EINTR) {
goto out_unlock_free;
}
/*
* If an interrupt occurred we have to clean up the queue
*/
if (timeout && jiffies_left == 0)
error = -EAGAIN;
remove_from_queue(sma,&queue);
goto out_unlock_free;
out_unlock_free:
sem_unlock(sma);
out_free:
if(sops != fast_sops)
kfree(sops);
return error;
}
asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
{
return sys_semtimedop(semid, tsops, nsops, NULL);
}
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
* parent and child tasks.
*/
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
int error;
if (clone_flags & CLONE_SYSVSEM) {
error = get_undo_list(&undo_list);
if (error)
return error;
atomic_inc(&undo_list->refcnt);
tsk->sysvsem.undo_list = undo_list;
} else
tsk->sysvsem.undo_list = NULL;
return 0;
}
/*
* add semadj values to semaphores, free undo structures.
* undo structures are not freed when semaphore arrays are destroyed
* so some of them may be out of date.
* IMPLEMENTATION NOTE: There is some confusion over whether the
* set of adjustments that needs to be done should be done in an atomic
* manner or not. That is, if we are attempting to decrement the semval
* should we queue up and wait until we can do so legally?
* The original implementation attempted to do this (queue and wait).
* The current implementation does not do so. The POSIX standard
* and SVID should be consulted to determine what behavior is mandated.
*/
void exit_sem(struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
struct sem_undo *u, **up;
struct ipc_namespace *ns;
undo_list = tsk->sysvsem.undo_list;
if (!undo_list)
return;
if (!atomic_dec_and_test(&undo_list->refcnt))
return;
ns = tsk->nsproxy->ipc_ns;
/* There's no need to hold the semundo list lock, as current
* is the last task exiting for this undo list.
*/
for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
struct sem_array *sma;
int nsems, i;
struct sem_undo *un, **unp;
int semid;
semid = u->semid;
if(semid == -1)
continue;
sma = sem_lock(ns, semid);
if (IS_ERR(sma))
continue;
if (u->semid == -1)
goto next_entry;
BUG_ON(sem_checkid(sma, u->semid));
/* remove u from the sma->undo list */
for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
if (u == un)
goto found;
}
printk ("exit_sem undo list error id=%d\n", u->semid);
goto next_entry;
found:
*unp = un->id_next;
/* perform adjustments registered in u */
nsems = sma->sem_nsems;
for (i = 0; i < nsems; i++) {
struct sem * semaphore = &sma->sem_base[i];
if (u->semadj[i]) {
semaphore->semval += u->semadj[i];
/*
* Range checks of the new semaphore value,
* not defined by sus:
* - Some unices ignore the undo entirely
* (e.g. HP UX 11i 11.22, Tru64 V5.1)
* - some cap the value (e.g. FreeBSD caps
* at 0, but doesn't enforce SEMVMX)
*
* Linux caps the semaphore value, both at 0
* and at SEMVMX.
*
* Manfred <manfred@colorfullife.com>
*/
if (semaphore->semval < 0)
semaphore->semval = 0;
if (semaphore->semval > SEMVMX)
semaphore->semval = SEMVMX;
semaphore->sempid = task_tgid_vnr(current);
}
}
sma->sem_otime = get_seconds();
/* maybe some queued-up processes were waiting for this */
update_queue(sma);
next_entry:
sem_unlock(sma);
}
kfree(undo_list);
}
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
{
struct sem_array *sma = it;
return seq_printf(s,
"%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
sma->sem_perm.key,
sma->sem_perm.id,
sma->sem_perm.mode,
sma->sem_nsems,
sma->sem_perm.uid,
sma->sem_perm.gid,
sma->sem_perm.cuid,
sma->sem_perm.cgid,
sma->sem_otime,
sma->sem_ctime);
}
#endif