aha/drivers/s390/cio/qdio_main.c
Jan Glauber e2910bcf8c [S390] qdio: continue polling if the queue is not finished
With commit c38f960809 polling was
stopped for the queue even if new data is available.

Return immediately after scheduling the queue tasklet if the queue
is not done.

Signed-off-by: Jan Glauber <jang@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2009-09-11 10:29:37 +02:00

1575 lines
38 KiB
C

/*
* linux/drivers/s390/cio/qdio_main.c
*
* Linux for s390 qdio support, buffer handling, qdio API and module support.
*
* Copyright 2000,2008 IBM Corp.
* Author(s): Utz Bacher <utz.bacher@de.ibm.com>
* Jan Glauber <jang@linux.vnet.ibm.com>
* 2.6 cio integration by Cornelia Huck <cornelia.huck@de.ibm.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/debug.h>
#include <asm/qdio.h>
#include "cio.h"
#include "css.h"
#include "device.h"
#include "qdio.h"
#include "qdio_debug.h"
#include "qdio_perf.h"
MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com>,"\
"Jan Glauber <jang@linux.vnet.ibm.com>");
MODULE_DESCRIPTION("QDIO base support");
MODULE_LICENSE("GPL");
static inline int do_siga_sync(struct subchannel_id schid,
unsigned int out_mask, unsigned int in_mask)
{
register unsigned long __fc asm ("0") = 2;
register struct subchannel_id __schid asm ("1") = schid;
register unsigned long out asm ("2") = out_mask;
register unsigned long in asm ("3") = in_mask;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: "d" (__fc), "d" (__schid), "d" (out), "d" (in) : "cc");
return cc;
}
static inline int do_siga_input(struct subchannel_id schid, unsigned int mask)
{
register unsigned long __fc asm ("0") = 1;
register struct subchannel_id __schid asm ("1") = schid;
register unsigned long __mask asm ("2") = mask;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: "d" (__fc), "d" (__schid), "d" (__mask) : "cc", "memory");
return cc;
}
/**
* do_siga_output - perform SIGA-w/wt function
* @schid: subchannel id or in case of QEBSM the subchannel token
* @mask: which output queues to process
* @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer
* @fc: function code to perform
*
* Returns cc or QDIO_ERROR_SIGA_ACCESS_EXCEPTION.
* Note: For IQDC unicast queues only the highest priority queue is processed.
*/
static inline int do_siga_output(unsigned long schid, unsigned long mask,
unsigned int *bb, unsigned int fc)
{
register unsigned long __fc asm("0") = fc;
register unsigned long __schid asm("1") = schid;
register unsigned long __mask asm("2") = mask;
int cc = QDIO_ERROR_SIGA_ACCESS_EXCEPTION;
asm volatile(
" siga 0\n"
"0: ipm %0\n"
" srl %0,28\n"
"1:\n"
EX_TABLE(0b, 1b)
: "+d" (cc), "+d" (__fc), "+d" (__schid), "+d" (__mask)
: : "cc", "memory");
*bb = ((unsigned int) __fc) >> 31;
return cc;
}
static inline int qdio_check_ccq(struct qdio_q *q, unsigned int ccq)
{
/* all done or next buffer state different */
if (ccq == 0 || ccq == 32)
return 0;
/* not all buffers processed */
if (ccq == 96 || ccq == 97)
return 1;
/* notify devices immediately */
DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq);
return -EIO;
}
/**
* qdio_do_eqbs - extract buffer states for QEBSM
* @q: queue to manipulate
* @state: state of the extracted buffers
* @start: buffer number to start at
* @count: count of buffers to examine
* @auto_ack: automatically acknowledge buffers
*
* Returns the number of successfully extracted equal buffer states.
* Stops processing if a state is different from the last buffers state.
*/
static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state,
int start, int count, int auto_ack)
{
unsigned int ccq = 0;
int tmp_count = count, tmp_start = start;
int nr = q->nr;
int rc;
BUG_ON(!q->irq_ptr->sch_token);
qdio_perf_stat_inc(&perf_stats.debug_eqbs_all);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count,
auto_ack);
rc = qdio_check_ccq(q, ccq);
/* At least one buffer was processed, return and extract the remaining
* buffers later.
*/
if ((ccq == 96) && (count != tmp_count)) {
qdio_perf_stat_inc(&perf_stats.debug_eqbs_incomplete);
return (count - tmp_count);
}
if (rc == 1) {
DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq);
goto again;
}
if (rc < 0) {
DBF_ERROR("%4x EQBS ERROR", SCH_NO(q));
DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
q->handler(q->irq_ptr->cdev,
QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
0, -1, -1, q->irq_ptr->int_parm);
return 0;
}
return count - tmp_count;
}
/**
* qdio_do_sqbs - set buffer states for QEBSM
* @q: queue to manipulate
* @state: new state of the buffers
* @start: first buffer number to change
* @count: how many buffers to change
*
* Returns the number of successfully changed buffers.
* Does retrying until the specified count of buffer states is set or an
* error occurs.
*/
static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start,
int count)
{
unsigned int ccq = 0;
int tmp_count = count, tmp_start = start;
int nr = q->nr;
int rc;
if (!count)
return 0;
BUG_ON(!q->irq_ptr->sch_token);
qdio_perf_stat_inc(&perf_stats.debug_sqbs_all);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count);
rc = qdio_check_ccq(q, ccq);
if (rc == 1) {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq);
qdio_perf_stat_inc(&perf_stats.debug_sqbs_incomplete);
goto again;
}
if (rc < 0) {
DBF_ERROR("%4x SQBS ERROR", SCH_NO(q));
DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
q->handler(q->irq_ptr->cdev,
QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
0, -1, -1, q->irq_ptr->int_parm);
return 0;
}
WARN_ON(tmp_count);
return count - tmp_count;
}
/* returns number of examined buffers and their common state in *state */
static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, unsigned int count,
int auto_ack)
{
unsigned char __state = 0;
int i;
BUG_ON(bufnr > QDIO_MAX_BUFFERS_MASK);
BUG_ON(count > QDIO_MAX_BUFFERS_PER_Q);
if (is_qebsm(q))
return qdio_do_eqbs(q, state, bufnr, count, auto_ack);
for (i = 0; i < count; i++) {
if (!__state)
__state = q->slsb.val[bufnr];
else if (q->slsb.val[bufnr] != __state)
break;
bufnr = next_buf(bufnr);
}
*state = __state;
return i;
}
static inline int get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, int auto_ack)
{
return get_buf_states(q, bufnr, state, 1, auto_ack);
}
/* wrap-around safe setting of slsb states, returns number of changed buffers */
static inline int set_buf_states(struct qdio_q *q, int bufnr,
unsigned char state, int count)
{
int i;
BUG_ON(bufnr > QDIO_MAX_BUFFERS_MASK);
BUG_ON(count > QDIO_MAX_BUFFERS_PER_Q);
if (is_qebsm(q))
return qdio_do_sqbs(q, state, bufnr, count);
for (i = 0; i < count; i++) {
xchg(&q->slsb.val[bufnr], state);
bufnr = next_buf(bufnr);
}
return count;
}
static inline int set_buf_state(struct qdio_q *q, int bufnr,
unsigned char state)
{
return set_buf_states(q, bufnr, state, 1);
}
/* set slsb states to initial state */
void qdio_init_buf_states(struct qdio_irq *irq_ptr)
{
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
for_each_output_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
}
static inline int qdio_siga_sync(struct qdio_q *q, unsigned int output,
unsigned int input)
{
int cc;
if (!need_siga_sync(q))
return 0;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-s:%1d", q->nr);
qdio_perf_stat_inc(&perf_stats.siga_sync);
cc = do_siga_sync(q->irq_ptr->schid, output, input);
if (cc)
DBF_ERROR("%4x SIGA-S:%2d", SCH_NO(q), cc);
return cc;
}
static inline int qdio_siga_sync_q(struct qdio_q *q)
{
if (q->is_input_q)
return qdio_siga_sync(q, 0, q->mask);
else
return qdio_siga_sync(q, q->mask, 0);
}
static inline int qdio_siga_sync_out(struct qdio_q *q)
{
return qdio_siga_sync(q, ~0U, 0);
}
static inline int qdio_siga_sync_all(struct qdio_q *q)
{
return qdio_siga_sync(q, ~0U, ~0U);
}
static int qdio_siga_output(struct qdio_q *q, unsigned int *busy_bit)
{
unsigned long schid;
unsigned int fc = 0;
u64 start_time = 0;
int cc;
if (q->u.out.use_enh_siga)
fc = 3;
if (is_qebsm(q)) {
schid = q->irq_ptr->sch_token;
fc |= 0x80;
}
else
schid = *((u32 *)&q->irq_ptr->schid);
again:
cc = do_siga_output(schid, q->mask, busy_bit, fc);
/* hipersocket busy condition */
if (*busy_bit) {
WARN_ON(queue_type(q) != QDIO_IQDIO_QFMT || cc != 2);
if (!start_time) {
start_time = get_usecs();
goto again;
}
if ((get_usecs() - start_time) < QDIO_BUSY_BIT_PATIENCE)
goto again;
}
return cc;
}
static inline int qdio_siga_input(struct qdio_q *q)
{
int cc;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-r:%1d", q->nr);
qdio_perf_stat_inc(&perf_stats.siga_in);
cc = do_siga_input(q->irq_ptr->schid, q->mask);
if (cc)
DBF_ERROR("%4x SIGA-R:%2d", SCH_NO(q), cc);
return cc;
}
static inline void qdio_sync_after_thinint(struct qdio_q *q)
{
if (pci_out_supported(q)) {
if (need_siga_sync_thinint(q))
qdio_siga_sync_all(q);
else if (need_siga_sync_out_thinint(q))
qdio_siga_sync_out(q);
} else
qdio_siga_sync_q(q);
}
int debug_get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state)
{
qdio_siga_sync_q(q);
return get_buf_states(q, bufnr, state, 1, 0);
}
static inline void qdio_stop_polling(struct qdio_q *q)
{
if (!q->u.in.polling)
return;
q->u.in.polling = 0;
qdio_perf_stat_inc(&perf_stats.debug_stop_polling);
/* show the card that we are not polling anymore */
if (is_qebsm(q)) {
set_buf_states(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT,
q->u.in.ack_count);
q->u.in.ack_count = 0;
} else
set_buf_state(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT);
}
static void announce_buffer_error(struct qdio_q *q, int count)
{
q->qdio_error |= QDIO_ERROR_SLSB_STATE;
/* special handling for no target buffer empty */
if ((!q->is_input_q &&
(q->sbal[q->first_to_check]->element[15].flags & 0xff) == 0x10)) {
qdio_perf_stat_inc(&perf_stats.outbound_target_full);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "OUTFULL FTC:%3d",
q->first_to_check);
return;
}
DBF_ERROR("%4x BUF ERROR", SCH_NO(q));
DBF_ERROR((q->is_input_q) ? "IN:%2d" : "OUT:%2d", q->nr);
DBF_ERROR("FTC:%3d C:%3d", q->first_to_check, count);
DBF_ERROR("F14:%2x F15:%2x",
q->sbal[q->first_to_check]->element[14].flags & 0xff,
q->sbal[q->first_to_check]->element[15].flags & 0xff);
}
static inline void inbound_primed(struct qdio_q *q, int count)
{
int new;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in prim: %3d", count);
/* for QEBSM the ACK was already set by EQBS */
if (is_qebsm(q)) {
if (!q->u.in.polling) {
q->u.in.polling = 1;
q->u.in.ack_count = count;
q->u.in.ack_start = q->first_to_check;
return;
}
/* delete the previous ACK's */
set_buf_states(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT,
q->u.in.ack_count);
q->u.in.ack_count = count;
q->u.in.ack_start = q->first_to_check;
return;
}
/*
* ACK the newest buffer. The ACK will be removed in qdio_stop_polling
* or by the next inbound run.
*/
new = add_buf(q->first_to_check, count - 1);
if (q->u.in.polling) {
/* reset the previous ACK but first set the new one */
set_buf_state(q, new, SLSB_P_INPUT_ACK);
set_buf_state(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT);
} else {
q->u.in.polling = 1;
set_buf_state(q, new, SLSB_P_INPUT_ACK);
}
q->u.in.ack_start = new;
count--;
if (!count)
return;
}
static int get_inbound_buffer_frontier(struct qdio_q *q)
{
int count, stop;
unsigned char state;
/*
* Don't check 128 buffers, as otherwise qdio_inbound_q_moved
* would return 0.
*/
count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK);
stop = add_buf(q->first_to_check, count);
if (q->first_to_check == stop)
goto out;
/*
* No siga sync here, as a PCI or we after a thin interrupt
* already sync'ed the queues.
*/
count = get_buf_states(q, q->first_to_check, &state, count, 1);
if (!count)
goto out;
switch (state) {
case SLSB_P_INPUT_PRIMED:
inbound_primed(q, count);
q->first_to_check = add_buf(q->first_to_check, count);
atomic_sub(count, &q->nr_buf_used);
break;
case SLSB_P_INPUT_ERROR:
announce_buffer_error(q, count);
/* process the buffer, the upper layer will take care of it */
q->first_to_check = add_buf(q->first_to_check, count);
atomic_sub(count, &q->nr_buf_used);
break;
case SLSB_CU_INPUT_EMPTY:
case SLSB_P_INPUT_NOT_INIT:
case SLSB_P_INPUT_ACK:
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in nop");
break;
default:
BUG();
}
out:
return q->first_to_check;
}
static int qdio_inbound_q_moved(struct qdio_q *q)
{
int bufnr;
bufnr = get_inbound_buffer_frontier(q);
if ((bufnr != q->last_move) || q->qdio_error) {
q->last_move = bufnr;
if (!is_thinint_irq(q->irq_ptr) && !MACHINE_IS_VM)
q->u.in.timestamp = get_usecs();
return 1;
} else
return 0;
}
static inline int qdio_inbound_q_done(struct qdio_q *q)
{
unsigned char state = 0;
if (!atomic_read(&q->nr_buf_used))
return 1;
qdio_siga_sync_q(q);
get_buf_state(q, q->first_to_check, &state, 0);
if (state == SLSB_P_INPUT_PRIMED)
/* more work coming */
return 0;
if (is_thinint_irq(q->irq_ptr))
return 1;
/* don't poll under z/VM */
if (MACHINE_IS_VM)
return 1;
/*
* At this point we know, that inbound first_to_check
* has (probably) not moved (see qdio_inbound_processing).
*/
if (get_usecs() > q->u.in.timestamp + QDIO_INPUT_THRESHOLD) {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in done:%3d",
q->first_to_check);
return 1;
} else
return 0;
}
static void qdio_kick_handler(struct qdio_q *q)
{
int start = q->first_to_kick;
int end = q->first_to_check;
int count;
if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return;
count = sub_buf(end, start);
if (q->is_input_q) {
qdio_perf_stat_inc(&perf_stats.inbound_handler);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "kih s:%3d c:%3d", start, count);
} else {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "koh: nr:%1d", q->nr);
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "s:%3d c:%3d", start, count);
}
q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr, start, count,
q->irq_ptr->int_parm);
/* for the next time */
q->first_to_kick = end;
q->qdio_error = 0;
}
static void __qdio_inbound_processing(struct qdio_q *q)
{
qdio_perf_stat_inc(&perf_stats.tasklet_inbound);
again:
if (!qdio_inbound_q_moved(q))
return;
qdio_kick_handler(q);
if (!qdio_inbound_q_done(q))
/* means poll time is not yet over */
goto again;
qdio_stop_polling(q);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (!qdio_inbound_q_done(q))
goto again;
}
void qdio_inbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__qdio_inbound_processing(q);
}
static int get_outbound_buffer_frontier(struct qdio_q *q)
{
int count, stop;
unsigned char state;
if (((queue_type(q) != QDIO_IQDIO_QFMT) && !pci_out_supported(q)) ||
(queue_type(q) == QDIO_IQDIO_QFMT && multicast_outbound(q)))
qdio_siga_sync_q(q);
/*
* Don't check 128 buffers, as otherwise qdio_inbound_q_moved
* would return 0.
*/
count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK);
stop = add_buf(q->first_to_check, count);
if (q->first_to_check == stop)
return q->first_to_check;
count = get_buf_states(q, q->first_to_check, &state, count, 0);
if (!count)
return q->first_to_check;
switch (state) {
case SLSB_P_OUTPUT_EMPTY:
/* the adapter got it */
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out empty:%1d %3d", q->nr, count);
atomic_sub(count, &q->nr_buf_used);
q->first_to_check = add_buf(q->first_to_check, count);
break;
case SLSB_P_OUTPUT_ERROR:
announce_buffer_error(q, count);
/* process the buffer, the upper layer will take care of it */
q->first_to_check = add_buf(q->first_to_check, count);
atomic_sub(count, &q->nr_buf_used);
break;
case SLSB_CU_OUTPUT_PRIMED:
/* the adapter has not fetched the output yet */
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out primed:%1d", q->nr);
break;
case SLSB_P_OUTPUT_NOT_INIT:
case SLSB_P_OUTPUT_HALTED:
break;
default:
BUG();
}
return q->first_to_check;
}
/* all buffers processed? */
static inline int qdio_outbound_q_done(struct qdio_q *q)
{
return atomic_read(&q->nr_buf_used) == 0;
}
static inline int qdio_outbound_q_moved(struct qdio_q *q)
{
int bufnr;
bufnr = get_outbound_buffer_frontier(q);
if ((bufnr != q->last_move) || q->qdio_error) {
q->last_move = bufnr;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out moved:%1d", q->nr);
return 1;
} else
return 0;
}
static int qdio_kick_outbound_q(struct qdio_q *q)
{
unsigned int busy_bit;
int cc;
if (!need_siga_out(q))
return 0;
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w:%1d", q->nr);
qdio_perf_stat_inc(&perf_stats.siga_out);
cc = qdio_siga_output(q, &busy_bit);
switch (cc) {
case 0:
break;
case 2:
if (busy_bit) {
DBF_ERROR("%4x cc2 REP:%1d", SCH_NO(q), q->nr);
cc |= QDIO_ERROR_SIGA_BUSY;
} else
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w cc2:%1d", q->nr);
break;
case 1:
case 3:
DBF_ERROR("%4x SIGA-W:%1d", SCH_NO(q), cc);
break;
}
return cc;
}
static void __qdio_outbound_processing(struct qdio_q *q)
{
qdio_perf_stat_inc(&perf_stats.tasklet_outbound);
BUG_ON(atomic_read(&q->nr_buf_used) < 0);
if (qdio_outbound_q_moved(q))
qdio_kick_handler(q);
if (queue_type(q) == QDIO_ZFCP_QFMT)
if (!pci_out_supported(q) && !qdio_outbound_q_done(q))
goto sched;
/* bail out for HiperSockets unicast queues */
if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q))
return;
if ((queue_type(q) == QDIO_IQDIO_QFMT) &&
(atomic_read(&q->nr_buf_used)) > QDIO_IQDIO_POLL_LVL)
goto sched;
if (q->u.out.pci_out_enabled)
return;
/*
* Now we know that queue type is either qeth without pci enabled
* or HiperSockets multicast. Make sure buffer switch from PRIMED to
* EMPTY is noticed and outbound_handler is called after some time.
*/
if (qdio_outbound_q_done(q))
del_timer(&q->u.out.timer);
else {
if (!timer_pending(&q->u.out.timer)) {
mod_timer(&q->u.out.timer, jiffies + 10 * HZ);
qdio_perf_stat_inc(&perf_stats.debug_tl_out_timer);
}
}
return;
sched:
if (unlikely(q->irq_ptr->state == QDIO_IRQ_STATE_STOPPED))
return;
tasklet_schedule(&q->tasklet);
}
/* outbound tasklet */
void qdio_outbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__qdio_outbound_processing(q);
}
void qdio_outbound_timer(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
if (unlikely(q->irq_ptr->state == QDIO_IRQ_STATE_STOPPED))
return;
tasklet_schedule(&q->tasklet);
}
static inline void qdio_check_outbound_after_thinint(struct qdio_q *q)
{
struct qdio_q *out;
int i;
if (!pci_out_supported(q))
return;
for_each_output_queue(q->irq_ptr, out, i)
if (!qdio_outbound_q_done(out))
tasklet_schedule(&out->tasklet);
}
static void __tiqdio_inbound_processing(struct qdio_q *q)
{
qdio_perf_stat_inc(&perf_stats.thinint_inbound);
qdio_sync_after_thinint(q);
/*
* The interrupt could be caused by a PCI request. Check the
* PCI capable outbound queues.
*/
qdio_check_outbound_after_thinint(q);
if (!qdio_inbound_q_moved(q))
return;
qdio_kick_handler(q);
if (!qdio_inbound_q_done(q)) {
qdio_perf_stat_inc(&perf_stats.thinint_inbound_loop);
if (likely(q->irq_ptr->state != QDIO_IRQ_STATE_STOPPED)) {
tasklet_schedule(&q->tasklet);
return;
}
}
qdio_stop_polling(q);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (!qdio_inbound_q_done(q)) {
qdio_perf_stat_inc(&perf_stats.thinint_inbound_loop2);
if (likely(q->irq_ptr->state != QDIO_IRQ_STATE_STOPPED))
tasklet_schedule(&q->tasklet);
}
}
void tiqdio_inbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__tiqdio_inbound_processing(q);
}
static inline void qdio_set_state(struct qdio_irq *irq_ptr,
enum qdio_irq_states state)
{
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "newstate: %1d", state);
irq_ptr->state = state;
mb();
}
static void qdio_irq_check_sense(struct qdio_irq *irq_ptr, struct irb *irb)
{
if (irb->esw.esw0.erw.cons) {
DBF_ERROR("%4x sense:", irq_ptr->schid.sch_no);
DBF_ERROR_HEX(irb, 64);
DBF_ERROR_HEX(irb->ecw, 64);
}
}
/* PCI interrupt handler */
static void qdio_int_handler_pci(struct qdio_irq *irq_ptr)
{
int i;
struct qdio_q *q;
if (unlikely(irq_ptr->state == QDIO_IRQ_STATE_STOPPED))
return;
qdio_perf_stat_inc(&perf_stats.pci_int);
for_each_input_queue(irq_ptr, q, i)
tasklet_schedule(&q->tasklet);
if (!(irq_ptr->qib.ac & QIB_AC_OUTBOUND_PCI_SUPPORTED))
return;
for_each_output_queue(irq_ptr, q, i) {
if (qdio_outbound_q_done(q))
continue;
if (!siga_syncs_out_pci(q))
qdio_siga_sync_q(q);
tasklet_schedule(&q->tasklet);
}
}
static void qdio_handle_activate_check(struct ccw_device *cdev,
unsigned long intparm, int cstat, int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
DBF_ERROR("%4x ACT CHECK", irq_ptr->schid.sch_no);
DBF_ERROR("intp :%lx", intparm);
DBF_ERROR("ds: %2x cs:%2x", dstat, cstat);
if (irq_ptr->nr_input_qs) {
q = irq_ptr->input_qs[0];
} else if (irq_ptr->nr_output_qs) {
q = irq_ptr->output_qs[0];
} else {
dump_stack();
goto no_handler;
}
q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
0, -1, -1, irq_ptr->int_parm);
no_handler:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
}
static void qdio_establish_handle_irq(struct ccw_device *cdev, int cstat,
int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "qest irq");
if (cstat)
goto error;
if (dstat & ~(DEV_STAT_DEV_END | DEV_STAT_CHN_END))
goto error;
if (!(dstat & DEV_STAT_DEV_END))
goto error;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED);
return;
error:
DBF_ERROR("%4x EQ:error", irq_ptr->schid.sch_no);
DBF_ERROR("ds: %2x cs:%2x", dstat, cstat);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
}
/* qdio interrupt handler */
void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm,
struct irb *irb)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
int cstat, dstat;
qdio_perf_stat_inc(&perf_stats.qdio_int);
if (!intparm || !irq_ptr) {
DBF_ERROR("qint:%4x", cdev->private->schid.sch_no);
return;
}
if (IS_ERR(irb)) {
switch (PTR_ERR(irb)) {
case -EIO:
DBF_ERROR("%4x IO error", irq_ptr->schid.sch_no);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
wake_up(&cdev->private->wait_q);
return;
default:
WARN_ON(1);
return;
}
}
qdio_irq_check_sense(irq_ptr, irb);
cstat = irb->scsw.cmd.cstat;
dstat = irb->scsw.cmd.dstat;
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_INACTIVE:
qdio_establish_handle_irq(cdev, cstat, dstat);
break;
case QDIO_IRQ_STATE_CLEANUP:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
break;
case QDIO_IRQ_STATE_ESTABLISHED:
case QDIO_IRQ_STATE_ACTIVE:
if (cstat & SCHN_STAT_PCI) {
qdio_int_handler_pci(irq_ptr);
return;
}
if (cstat || dstat)
qdio_handle_activate_check(cdev, intparm, cstat,
dstat);
break;
default:
WARN_ON(1);
}
wake_up(&cdev->private->wait_q);
}
/**
* qdio_get_ssqd_desc - get qdio subchannel description
* @cdev: ccw device to get description for
* @data: where to store the ssqd
*
* Returns 0 or an error code. The results of the chsc are stored in the
* specified structure.
*/
int qdio_get_ssqd_desc(struct ccw_device *cdev,
struct qdio_ssqd_desc *data)
{
if (!cdev || !cdev->private)
return -EINVAL;
DBF_EVENT("get ssqd:%4x", cdev->private->schid.sch_no);
return qdio_setup_get_ssqd(NULL, &cdev->private->schid, data);
}
EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc);
/**
* qdio_cleanup - shutdown queues and free data structures
* @cdev: associated ccw device
* @how: use halt or clear to shutdown
*
* This function calls qdio_shutdown() for @cdev with method @how.
* and qdio_free(). The qdio_free() return value is ignored since
* !irq_ptr is already checked.
*/
int qdio_cleanup(struct ccw_device *cdev, int how)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
int rc;
if (!irq_ptr)
return -ENODEV;
rc = qdio_shutdown(cdev, how);
qdio_free(cdev);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_cleanup);
static void qdio_shutdown_queues(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
tasklet_kill(&q->tasklet);
for_each_output_queue(irq_ptr, q, i) {
del_timer(&q->u.out.timer);
tasklet_kill(&q->tasklet);
}
}
/**
* qdio_shutdown - shut down a qdio subchannel
* @cdev: associated ccw device
* @how: use halt or clear to shutdown
*/
int qdio_shutdown(struct ccw_device *cdev, int how)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
int rc;
unsigned long flags;
if (!irq_ptr)
return -ENODEV;
BUG_ON(irqs_disabled());
DBF_EVENT("qshutdown:%4x", cdev->private->schid.sch_no);
mutex_lock(&irq_ptr->setup_mutex);
/*
* Subchannel was already shot down. We cannot prevent being called
* twice since cio may trigger a shutdown asynchronously.
*/
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
mutex_unlock(&irq_ptr->setup_mutex);
return 0;
}
/*
* Indicate that the device is going down. Scheduling the queue
* tasklets is forbidden from here on.
*/
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
tiqdio_remove_input_queues(irq_ptr);
qdio_shutdown_queues(cdev);
qdio_shutdown_debug_entries(irq_ptr, cdev);
/* cleanup subchannel */
spin_lock_irqsave(get_ccwdev_lock(cdev), flags);
if (how & QDIO_FLAG_CLEANUP_USING_CLEAR)
rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP);
else
/* default behaviour is halt */
rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP);
if (rc) {
DBF_ERROR("%4x SHUTD ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4d", rc);
goto no_cleanup;
}
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_CLEANUP);
spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags);
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_INACTIVE ||
irq_ptr->state == QDIO_IRQ_STATE_ERR,
10 * HZ);
spin_lock_irqsave(get_ccwdev_lock(cdev), flags);
no_cleanup:
qdio_shutdown_thinint(irq_ptr);
/* restore interrupt handler */
if ((void *)cdev->handler == (void *)qdio_int_handler)
cdev->handler = irq_ptr->orig_handler;
spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
mutex_unlock(&irq_ptr->setup_mutex);
if (rc)
return rc;
return 0;
}
EXPORT_SYMBOL_GPL(qdio_shutdown);
/**
* qdio_free - free data structures for a qdio subchannel
* @cdev: associated ccw device
*/
int qdio_free(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
DBF_EVENT("qfree:%4x", cdev->private->schid.sch_no);
mutex_lock(&irq_ptr->setup_mutex);
if (irq_ptr->debug_area != NULL) {
debug_unregister(irq_ptr->debug_area);
irq_ptr->debug_area = NULL;
}
cdev->private->qdio_data = NULL;
mutex_unlock(&irq_ptr->setup_mutex);
qdio_release_memory(irq_ptr);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_free);
/**
* qdio_initialize - allocate and establish queues for a qdio subchannel
* @init_data: initialization data
*
* This function first allocates queues via qdio_allocate() and on success
* establishes them via qdio_establish().
*/
int qdio_initialize(struct qdio_initialize *init_data)
{
int rc;
rc = qdio_allocate(init_data);
if (rc)
return rc;
rc = qdio_establish(init_data);
if (rc)
qdio_free(init_data->cdev);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_initialize);
/**
* qdio_allocate - allocate qdio queues and associated data
* @init_data: initialization data
*/
int qdio_allocate(struct qdio_initialize *init_data)
{
struct qdio_irq *irq_ptr;
DBF_EVENT("qallocate:%4x", init_data->cdev->private->schid.sch_no);
if ((init_data->no_input_qs && !init_data->input_handler) ||
(init_data->no_output_qs && !init_data->output_handler))
return -EINVAL;
if ((init_data->no_input_qs > QDIO_MAX_QUEUES_PER_IRQ) ||
(init_data->no_output_qs > QDIO_MAX_QUEUES_PER_IRQ))
return -EINVAL;
if ((!init_data->input_sbal_addr_array) ||
(!init_data->output_sbal_addr_array))
return -EINVAL;
/* irq_ptr must be in GFP_DMA since it contains ccw1.cda */
irq_ptr = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr)
goto out_err;
mutex_init(&irq_ptr->setup_mutex);
qdio_allocate_dbf(init_data, irq_ptr);
/*
* Allocate a page for the chsc calls in qdio_establish.
* Must be pre-allocated since a zfcp recovery will call
* qdio_establish. In case of low memory and swap on a zfcp disk
* we may not be able to allocate memory otherwise.
*/
irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL);
if (!irq_ptr->chsc_page)
goto out_rel;
/* qdr is used in ccw1.cda which is u32 */
irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr->qdr)
goto out_rel;
WARN_ON((unsigned long)irq_ptr->qdr & 0xfff);
if (qdio_allocate_qs(irq_ptr, init_data->no_input_qs,
init_data->no_output_qs))
goto out_rel;
init_data->cdev->private->qdio_data = irq_ptr;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
return 0;
out_rel:
qdio_release_memory(irq_ptr);
out_err:
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(qdio_allocate);
/**
* qdio_establish - establish queues on a qdio subchannel
* @init_data: initialization data
*/
int qdio_establish(struct qdio_initialize *init_data)
{
struct qdio_irq *irq_ptr;
struct ccw_device *cdev = init_data->cdev;
unsigned long saveflags;
int rc;
DBF_EVENT("qestablish:%4x", cdev->private->schid.sch_no);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
if (cdev->private->state != DEV_STATE_ONLINE)
return -EINVAL;
mutex_lock(&irq_ptr->setup_mutex);
qdio_setup_irq(init_data);
rc = qdio_establish_thinint(irq_ptr);
if (rc) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return rc;
}
/* establish q */
irq_ptr->ccw.cmd_code = irq_ptr->equeue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->equeue.count;
irq_ptr->ccw.cda = (u32)((addr_t)irq_ptr->qdr);
spin_lock_irqsave(get_ccwdev_lock(cdev), saveflags);
ccw_device_set_options_mask(cdev, 0);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0);
if (rc) {
DBF_ERROR("%4x est IO ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4x", rc);
}
spin_unlock_irqrestore(get_ccwdev_lock(cdev), saveflags);
if (rc) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return rc;
}
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED ||
irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ);
if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return -EIO;
}
qdio_setup_ssqd_info(irq_ptr);
DBF_EVENT("qDmmwc:%2x", irq_ptr->ssqd_desc.mmwc);
DBF_EVENT("qib ac:%4x", irq_ptr->qib.ac);
/* qebsm is now setup if available, initialize buffer states */
qdio_init_buf_states(irq_ptr);
mutex_unlock(&irq_ptr->setup_mutex);
qdio_print_subchannel_info(irq_ptr, cdev);
qdio_setup_debug_entries(irq_ptr, cdev);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_establish);
/**
* qdio_activate - activate queues on a qdio subchannel
* @cdev: associated cdev
*/
int qdio_activate(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr;
int rc;
unsigned long saveflags;
DBF_EVENT("qactivate:%4x", cdev->private->schid.sch_no);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
if (cdev->private->state != DEV_STATE_ONLINE)
return -EINVAL;
mutex_lock(&irq_ptr->setup_mutex);
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
rc = -EBUSY;
goto out;
}
irq_ptr->ccw.cmd_code = irq_ptr->aqueue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->aqueue.count;
irq_ptr->ccw.cda = 0;
spin_lock_irqsave(get_ccwdev_lock(cdev), saveflags);
ccw_device_set_options(cdev, CCWDEV_REPORT_ALL);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ACTIVATE,
0, DOIO_DENY_PREFETCH);
if (rc) {
DBF_ERROR("%4x act IO ERR", irq_ptr->schid.sch_no);
DBF_ERROR("rc:%4x", rc);
}
spin_unlock_irqrestore(get_ccwdev_lock(cdev), saveflags);
if (rc)
goto out;
if (is_thinint_irq(irq_ptr))
tiqdio_add_input_queues(irq_ptr);
/* wait for subchannel to become active */
msleep(5);
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_STOPPED:
case QDIO_IRQ_STATE_ERR:
rc = -EIO;
break;
default:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE);
rc = 0;
}
out:
mutex_unlock(&irq_ptr->setup_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_activate);
static inline int buf_in_between(int bufnr, int start, int count)
{
int end = add_buf(start, count);
if (end > start) {
if (bufnr >= start && bufnr < end)
return 1;
else
return 0;
}
/* wrap-around case */
if ((bufnr >= start && bufnr <= QDIO_MAX_BUFFERS_PER_Q) ||
(bufnr < end))
return 1;
else
return 0;
}
/**
* handle_inbound - reset processed input buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are emptied
*/
static int handle_inbound(struct qdio_q *q, unsigned int callflags,
int bufnr, int count)
{
int used, diff;
if (!q->u.in.polling)
goto set;
/* protect against stop polling setting an ACK for an emptied slsb */
if (count == QDIO_MAX_BUFFERS_PER_Q) {
/* overwriting everything, just delete polling status */
q->u.in.polling = 0;
q->u.in.ack_count = 0;
goto set;
} else if (buf_in_between(q->u.in.ack_start, bufnr, count)) {
if (is_qebsm(q)) {
/* partial overwrite, just update ack_start */
diff = add_buf(bufnr, count);
diff = sub_buf(diff, q->u.in.ack_start);
q->u.in.ack_count -= diff;
if (q->u.in.ack_count <= 0) {
q->u.in.polling = 0;
q->u.in.ack_count = 0;
goto set;
}
q->u.in.ack_start = add_buf(q->u.in.ack_start, diff);
}
else
/* the only ACK will be deleted, so stop polling */
q->u.in.polling = 0;
}
set:
count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count);
used = atomic_add_return(count, &q->nr_buf_used) - count;
BUG_ON(used + count > QDIO_MAX_BUFFERS_PER_Q);
/* no need to signal as long as the adapter had free buffers */
if (used)
return 0;
if (need_siga_in(q))
return qdio_siga_input(q);
return 0;
}
/**
* handle_outbound - process filled outbound buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are filled
*/
static int handle_outbound(struct qdio_q *q, unsigned int callflags,
int bufnr, int count)
{
unsigned char state;
int used, rc = 0;
qdio_perf_stat_inc(&perf_stats.outbound_handler);
count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count);
used = atomic_add_return(count, &q->nr_buf_used);
BUG_ON(used > QDIO_MAX_BUFFERS_PER_Q);
if (callflags & QDIO_FLAG_PCI_OUT)
q->u.out.pci_out_enabled = 1;
else
q->u.out.pci_out_enabled = 0;
if (queue_type(q) == QDIO_IQDIO_QFMT) {
if (multicast_outbound(q))
rc = qdio_kick_outbound_q(q);
else
if ((q->irq_ptr->ssqd_desc.mmwc > 1) &&
(count > 1) &&
(count <= q->irq_ptr->ssqd_desc.mmwc)) {
/* exploit enhanced SIGA */
q->u.out.use_enh_siga = 1;
rc = qdio_kick_outbound_q(q);
} else {
/*
* One siga-w per buffer required for unicast
* HiperSockets.
*/
q->u.out.use_enh_siga = 0;
while (count--) {
rc = qdio_kick_outbound_q(q);
if (rc)
goto out;
}
}
goto out;
}
if (need_siga_sync(q)) {
qdio_siga_sync_q(q);
goto out;
}
/* try to fast requeue buffers */
get_buf_state(q, prev_buf(bufnr), &state, 0);
if (state != SLSB_CU_OUTPUT_PRIMED)
rc = qdio_kick_outbound_q(q);
else {
DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "fast-req");
qdio_perf_stat_inc(&perf_stats.fast_requeue);
}
out:
tasklet_schedule(&q->tasklet);
return rc;
}
/**
* do_QDIO - process input or output buffers
* @cdev: associated ccw_device for the qdio subchannel
* @callflags: input or output and special flags from the program
* @q_nr: queue number
* @bufnr: buffer number
* @count: how many buffers to process
*/
int do_QDIO(struct ccw_device *cdev, unsigned int callflags,
int q_nr, unsigned int bufnr, unsigned int count)
{
struct qdio_irq *irq_ptr;
if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q)
return -EINVAL;
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
if (callflags & QDIO_FLAG_SYNC_INPUT)
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "doQDIO input");
else
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "doQDIO output");
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "q:%1d flag:%4x", q_nr, callflags);
DBF_DEV_EVENT(DBF_INFO, irq_ptr, "buf:%2d cnt:%3d", bufnr, count);
if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)
return -EBUSY;
if (callflags & QDIO_FLAG_SYNC_INPUT)
return handle_inbound(irq_ptr->input_qs[q_nr],
callflags, bufnr, count);
else if (callflags & QDIO_FLAG_SYNC_OUTPUT)
return handle_outbound(irq_ptr->output_qs[q_nr],
callflags, bufnr, count);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(do_QDIO);
static int __init init_QDIO(void)
{
int rc;
rc = qdio_setup_init();
if (rc)
return rc;
rc = tiqdio_allocate_memory();
if (rc)
goto out_cache;
rc = qdio_debug_init();
if (rc)
goto out_ti;
rc = qdio_setup_perf_stats();
if (rc)
goto out_debug;
rc = tiqdio_register_thinints();
if (rc)
goto out_perf;
return 0;
out_perf:
qdio_remove_perf_stats();
out_debug:
qdio_debug_exit();
out_ti:
tiqdio_free_memory();
out_cache:
qdio_setup_exit();
return rc;
}
static void __exit exit_QDIO(void)
{
tiqdio_unregister_thinints();
tiqdio_free_memory();
qdio_remove_perf_stats();
qdio_debug_exit();
qdio_setup_exit();
}
module_init(init_QDIO);
module_exit(exit_QDIO);