aha/sound/i2c/other/ak4xxx-adda.c
Jochen Voss 30ba6e207a [ALSA] Revolution 5.1 - complete the AK5365 support
Complete the AK5365 support.
This adds a boolean control to toggle the soft mute feature of the
AK5365 chip.

Signed-off-by: Jochen Voss <voss@seehuhn.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-09-23 10:40:27 +02:00

757 lines
21 KiB
C

/*
* ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
* AD and DA converters
*
* Copyright (c) 2000-2004 Jaroslav Kysela <perex@suse.cz>,
* Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/ak4xxx-adda.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
MODULE_LICENSE("GPL");
void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg,
unsigned char val)
{
ak->ops.lock(ak, chip);
ak->ops.write(ak, chip, reg, val);
/* save the data */
if (ak->type == SND_AK4524 || ak->type == SND_AK4528) {
if ((reg != 0x04 && reg != 0x05) || (val & 0x80) == 0)
snd_akm4xxx_set(ak, chip, reg, val);
else
snd_akm4xxx_set_ipga(ak, chip, reg, val);
} else {
/* AK4529, or else */
snd_akm4xxx_set(ak, chip, reg, val);
}
ak->ops.unlock(ak, chip);
}
EXPORT_SYMBOL(snd_akm4xxx_write);
/* reset procedure for AK4524 and AK4528 */
static void ak4524_reset(struct snd_akm4xxx *ak, int state)
{
unsigned int chip;
unsigned char reg, maxreg;
if (ak->type == SND_AK4528)
maxreg = 0x06;
else
maxreg = 0x08;
for (chip = 0; chip < ak->num_dacs/2; chip++) {
snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
if (state)
continue;
/* DAC volumes */
for (reg = 0x04; reg < maxreg; reg++)
snd_akm4xxx_write(ak, chip, reg,
snd_akm4xxx_get(ak, chip, reg));
if (ak->type == SND_AK4528)
continue;
/* IPGA */
for (reg = 0x04; reg < 0x06; reg++)
snd_akm4xxx_write(ak, chip, reg,
snd_akm4xxx_get_ipga(ak, chip, reg));
}
}
/* reset procedure for AK4355 and AK4358 */
static void ak4355_reset(struct snd_akm4xxx *ak, int state)
{
unsigned char reg;
if (state) {
snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
return;
}
for (reg = 0x00; reg < 0x0b; reg++)
if (reg != 0x01)
snd_akm4xxx_write(ak, 0, reg,
snd_akm4xxx_get(ak, 0, reg));
snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
}
/* reset procedure for AK4381 */
static void ak4381_reset(struct snd_akm4xxx *ak, int state)
{
unsigned int chip;
unsigned char reg;
for (chip = 0; chip < ak->num_dacs/2; chip++) {
snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
if (state)
continue;
for (reg = 0x01; reg < 0x05; reg++)
snd_akm4xxx_write(ak, chip, reg,
snd_akm4xxx_get(ak, chip, reg));
}
}
/*
* reset the AKM codecs
* @state: 1 = reset codec, 0 = restore the registers
*
* assert the reset operation and restores the register values to the chips.
*/
void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state)
{
switch (ak->type) {
case SND_AK4524:
case SND_AK4528:
ak4524_reset(ak, state);
break;
case SND_AK4529:
/* FIXME: needed for ak4529? */
break;
case SND_AK4355:
case SND_AK4358:
ak4355_reset(ak, state);
break;
case SND_AK4381:
ak4381_reset(ak, state);
break;
}
}
EXPORT_SYMBOL(snd_akm4xxx_reset);
/*
* initialize all the ak4xxx chips
*/
void snd_akm4xxx_init(struct snd_akm4xxx *ak)
{
static unsigned char inits_ak4524[] = {
0x00, 0x07, /* 0: all power up */
0x01, 0x00, /* 1: ADC/DAC reset */
0x02, 0x60, /* 2: 24bit I2S */
0x03, 0x19, /* 3: deemphasis off */
0x01, 0x03, /* 1: ADC/DAC enable */
0x04, 0x00, /* 4: ADC left muted */
0x05, 0x00, /* 5: ADC right muted */
0x04, 0x80, /* 4: ADC IPGA gain 0dB */
0x05, 0x80, /* 5: ADC IPGA gain 0dB */
0x06, 0x00, /* 6: DAC left muted */
0x07, 0x00, /* 7: DAC right muted */
0xff, 0xff
};
static unsigned char inits_ak4528[] = {
0x00, 0x07, /* 0: all power up */
0x01, 0x00, /* 1: ADC/DAC reset */
0x02, 0x60, /* 2: 24bit I2S */
0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
0x01, 0x03, /* 1: ADC/DAC enable */
0x04, 0x00, /* 4: ADC left muted */
0x05, 0x00, /* 5: ADC right muted */
0xff, 0xff
};
static unsigned char inits_ak4529[] = {
0x09, 0x01, /* 9: ATS=0, RSTN=1 */
0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
0x02, 0xff, /* 2: LOUT1 muted */
0x03, 0xff, /* 3: ROUT1 muted */
0x04, 0xff, /* 4: LOUT2 muted */
0x05, 0xff, /* 5: ROUT2 muted */
0x06, 0xff, /* 6: LOUT3 muted */
0x07, 0xff, /* 7: ROUT3 muted */
0x0b, 0xff, /* B: LOUT4 muted */
0x0c, 0xff, /* C: ROUT4 muted */
0x08, 0x55, /* 8: deemphasis all off */
0xff, 0xff
};
static unsigned char inits_ak4355[] = {
0x01, 0x02, /* 1: reset and soft-mute */
0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
* disable DZF, sharp roll-off, RSTN#=0 */
0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
// 0x02, 0x2e, /* quad speed */
0x03, 0x01, /* 3: de-emphasis off */
0x04, 0x00, /* 4: LOUT1 volume muted */
0x05, 0x00, /* 5: ROUT1 volume muted */
0x06, 0x00, /* 6: LOUT2 volume muted */
0x07, 0x00, /* 7: ROUT2 volume muted */
0x08, 0x00, /* 8: LOUT3 volume muted */
0x09, 0x00, /* 9: ROUT3 volume muted */
0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
0x01, 0x01, /* 1: un-reset, unmute */
0xff, 0xff
};
static unsigned char inits_ak4358[] = {
0x01, 0x02, /* 1: reset and soft-mute */
0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
* disable DZF, sharp roll-off, RSTN#=0 */
0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
// 0x02, 0x2e, /* quad speed */
0x03, 0x01, /* 3: de-emphasis off */
0x04, 0x00, /* 4: LOUT1 volume muted */
0x05, 0x00, /* 5: ROUT1 volume muted */
0x06, 0x00, /* 6: LOUT2 volume muted */
0x07, 0x00, /* 7: ROUT2 volume muted */
0x08, 0x00, /* 8: LOUT3 volume muted */
0x09, 0x00, /* 9: ROUT3 volume muted */
0x0b, 0x00, /* b: LOUT4 volume muted */
0x0c, 0x00, /* c: ROUT4 volume muted */
0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
0x01, 0x01, /* 1: un-reset, unmute */
0xff, 0xff
};
static unsigned char inits_ak4381[] = {
0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
0x01, 0x02, /* 1: de-emphasis off, normal speed,
* sharp roll-off, DZF off */
// 0x01, 0x12, /* quad speed */
0x02, 0x00, /* 2: DZF disabled */
0x03, 0x00, /* 3: LATT 0 */
0x04, 0x00, /* 4: RATT 0 */
0x00, 0x0f, /* 0: power-up, un-reset */
0xff, 0xff
};
int chip, num_chips;
unsigned char *ptr, reg, data, *inits;
switch (ak->type) {
case SND_AK4524:
inits = inits_ak4524;
num_chips = ak->num_dacs / 2;
break;
case SND_AK4528:
inits = inits_ak4528;
num_chips = ak->num_dacs / 2;
break;
case SND_AK4529:
inits = inits_ak4529;
num_chips = 1;
break;
case SND_AK4355:
inits = inits_ak4355;
num_chips = 1;
break;
case SND_AK4358:
inits = inits_ak4358;
num_chips = 1;
break;
case SND_AK4381:
inits = inits_ak4381;
num_chips = ak->num_dacs / 2;
break;
default:
snd_BUG();
return;
}
for (chip = 0; chip < num_chips; chip++) {
ptr = inits;
while (*ptr != 0xff) {
reg = *ptr++;
data = *ptr++;
snd_akm4xxx_write(ak, chip, reg, data);
}
}
}
EXPORT_SYMBOL(snd_akm4xxx_init);
#define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
#define AK_GET_ADDR(val) ((val) & 0xff)
#define AK_GET_SHIFT(val) (((val) >> 16) & 0x7f)
#define AK_GET_INVERT(val) (((val) >> 23) & 1)
#define AK_GET_MASK(val) (((val) >> 24) & 0xff)
#define AK_COMPOSE(chip,addr,shift,mask) \
(((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
#define AK_INVERT (1<<23)
static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
unsigned char val = snd_akm4xxx_get(ak, chip, addr);
ucontrol->value.integer.value[0] = invert ? mask - val : val;
return 0;
}
static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
int change;
if (invert)
nval = mask - nval;
change = snd_akm4xxx_get(ak, chip, addr) != nval;
if (change)
snd_akm4xxx_write(ak, chip, addr, nval);
return change;
}
static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
unsigned char val = snd_akm4xxx_get(ak, chip, addr);
ucontrol->value.integer.value[0] = invert ? mask - val : val;
val = snd_akm4xxx_get(ak, chip, addr+1);
ucontrol->value.integer.value[1] = invert ? mask - val : val;
return 0;
}
static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned int mask = AK_GET_MASK(kcontrol->private_value);
unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
int change0, change1;
if (invert)
nval = mask - nval;
change0 = snd_akm4xxx_get(ak, chip, addr) != nval;
if (change0)
snd_akm4xxx_write(ak, chip, addr, nval);
nval = ucontrol->value.integer.value[1] % (mask+1);
if (invert)
nval = mask - nval;
change1 = snd_akm4xxx_get(ak, chip, addr+1) != nval;
if (change1)
snd_akm4xxx_write(ak, chip, addr+1, nval);
return change0 || change1;
}
static int snd_akm4xxx_ipga_gain_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 36;
return 0;
}
static int snd_akm4xxx_ipga_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
ucontrol->value.integer.value[0] =
snd_akm4xxx_get_ipga(ak, chip, addr) & 0x7f;
return 0;
}
static int snd_akm4xxx_ipga_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
unsigned char nval = (ucontrol->value.integer.value[0] % 37) | 0x80;
int change = snd_akm4xxx_get_ipga(ak, chip, addr) != nval;
if (change)
snd_akm4xxx_write(ak, chip, addr, nval);
return change;
}
static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[4] = {
"44.1kHz", "Off", "48kHz", "32kHz",
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 4;
if (uinfo->value.enumerated.item >= 4)
uinfo->value.enumerated.item = 3;
strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]);
return 0;
}
static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int shift = AK_GET_SHIFT(kcontrol->private_value);
ucontrol->value.enumerated.item[0] =
(snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
return 0;
}
static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int shift = AK_GET_SHIFT(kcontrol->private_value);
unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
int change;
nval = (nval << shift) |
(snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
change = snd_akm4xxx_get(ak, chip, addr) != nval;
if (change)
snd_akm4xxx_write(ak, chip, addr, nval);
return change;
}
static int ak4xxx_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int shift = AK_GET_SHIFT(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
unsigned char val = snd_akm4xxx_get(ak, chip, addr);
if (invert)
val = ! val;
ucontrol->value.integer.value[0] = (val & (1<<shift)) != 0;
return 0;
}
static int ak4xxx_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
int chip = AK_GET_CHIP(kcontrol->private_value);
int addr = AK_GET_ADDR(kcontrol->private_value);
int shift = AK_GET_SHIFT(kcontrol->private_value);
int invert = AK_GET_INVERT(kcontrol->private_value);
long flag = ucontrol->value.integer.value[0];
unsigned char val, oval;
int change;
if (invert)
flag = ! flag;
oval = snd_akm4xxx_get(ak, chip, addr);
if (flag)
val = oval | (1<<shift);
else
val = oval & ~(1<<shift);
change = (oval != val);
if (change)
snd_akm4xxx_write(ak, chip, addr, val);
return change;
}
/*
* build AK4xxx controls
*/
int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak)
{
unsigned int idx, num_emphs;
struct snd_kcontrol *ctl;
int err;
int mixer_ch = 0;
int num_stereo;
ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
if (! ctl)
return -ENOMEM;
for (idx = 0; idx < ak->num_dacs; ) {
memset(ctl, 0, sizeof(*ctl));
if (ak->channel_names == NULL) {
strcpy(ctl->id.name, "DAC Volume");
num_stereo = 1;
ctl->id.index = mixer_ch + ak->idx_offset * 2;
} else {
strcpy(ctl->id.name, ak->channel_names[mixer_ch]);
num_stereo = ak->num_stereo[mixer_ch];
ctl->id.index = 0;
}
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
if (num_stereo == 2) {
ctl->info = snd_akm4xxx_stereo_volume_info;
ctl->get = snd_akm4xxx_stereo_volume_get;
ctl->put = snd_akm4xxx_stereo_volume_put;
} else {
ctl->info = snd_akm4xxx_volume_info;
ctl->get = snd_akm4xxx_volume_get;
ctl->put = snd_akm4xxx_volume_put;
}
switch (ak->type) {
case SND_AK4524:
/* register 6 & 7 */
ctl->private_value =
AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127);
break;
case SND_AK4528:
/* register 4 & 5 */
ctl->private_value =
AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127);
break;
case SND_AK4529: {
/* registers 2-7 and b,c */
int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb;
ctl->private_value =
AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
break;
}
case SND_AK4355:
/* register 4-9, chip #0 only */
ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255);
break;
case SND_AK4358:
if (idx >= 6)
/* register 4-9, chip #0 only */
ctl->private_value =
AK_COMPOSE(0, idx + 5, 0, 255);
else
/* register 4-9, chip #0 only */
ctl->private_value =
AK_COMPOSE(0, idx + 4, 0, 255);
break;
case SND_AK4381:
/* register 3 & 4 */
ctl->private_value =
AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255);
break;
default:
err = -EINVAL;
goto __error;
}
ctl->private_data = ak;
err = snd_ctl_add(ak->card,
snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
SNDRV_CTL_ELEM_ACCESS_WRITE));
if (err < 0)
goto __error;
idx += num_stereo;
mixer_ch++;
}
for (idx = 0; idx < ak->num_adcs && ak->type == SND_AK4524; ++idx) {
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "ADC Volume");
ctl->id.index = idx + ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_volume_info;
ctl->get = snd_akm4xxx_volume_get;
ctl->put = snd_akm4xxx_volume_put;
/* register 4 & 5 */
ctl->private_value =
AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127);
ctl->private_data = ak;
err = snd_ctl_add(ak->card,
snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
SNDRV_CTL_ELEM_ACCESS_WRITE));
if (err < 0)
goto __error;
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "IPGA Analog Capture Volume");
ctl->id.index = idx + ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_ipga_gain_info;
ctl->get = snd_akm4xxx_ipga_gain_get;
ctl->put = snd_akm4xxx_ipga_gain_put;
/* register 4 & 5 */
ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 0);
ctl->private_data = ak;
err = snd_ctl_add(ak->card,
snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
SNDRV_CTL_ELEM_ACCESS_WRITE));
if (err < 0)
goto __error;
}
if (ak->type == SND_AK5365) {
memset(ctl, 0, sizeof(*ctl));
if (ak->channel_names == NULL)
strcpy(ctl->id.name, "Capture Volume");
else
strcpy(ctl->id.name, ak->channel_names[0]);
ctl->id.index = ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_stereo_volume_info;
ctl->get = snd_akm4xxx_stereo_volume_get;
ctl->put = snd_akm4xxx_stereo_volume_put;
/* Registers 4 & 5 (see AK5365 data sheet, pages 34 and 35):
* valid values are from 0x00 (mute) to 0x98 (+12dB). */
ctl->private_value =
AK_COMPOSE(0, 4, 0, 0x98);
ctl->private_data = ak;
err = snd_ctl_add(ak->card,
snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
SNDRV_CTL_ELEM_ACCESS_WRITE));
if (err < 0)
goto __error;
memset(ctl, 0, sizeof(*ctl));
if (ak->channel_names == NULL)
strcpy(ctl->id.name, "Capture Switch");
else
strcpy(ctl->id.name, ak->channel_names[1]);
ctl->id.index = ak->idx_offset * 2;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = ak4xxx_switch_info;
ctl->get = ak4xxx_switch_get;
ctl->put = ak4xxx_switch_put;
/* register 2, bit 0 (SMUTE): 0 = normal operation, 1 = mute */
ctl->private_value =
AK_COMPOSE(0, 2, 0, 0) | AK_INVERT;
ctl->private_data = ak;
err = snd_ctl_add(ak->card,
snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
SNDRV_CTL_ELEM_ACCESS_WRITE));
if (err < 0)
goto __error;
}
if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
num_emphs = 1;
else
num_emphs = ak->num_dacs / 2;
for (idx = 0; idx < num_emphs; idx++) {
memset(ctl, 0, sizeof(*ctl));
strcpy(ctl->id.name, "Deemphasis");
ctl->id.index = idx + ak->idx_offset;
ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
ctl->count = 1;
ctl->info = snd_akm4xxx_deemphasis_info;
ctl->get = snd_akm4xxx_deemphasis_get;
ctl->put = snd_akm4xxx_deemphasis_put;
switch (ak->type) {
case SND_AK4524:
case SND_AK4528:
/* register 3 */
ctl->private_value = AK_COMPOSE(idx, 3, 0, 0);
break;
case SND_AK4529: {
int shift = idx == 3 ? 6 : (2 - idx) * 2;
/* register 8 with shift */
ctl->private_value = AK_COMPOSE(0, 8, shift, 0);
break;
}
case SND_AK4355:
case SND_AK4358:
ctl->private_value = AK_COMPOSE(idx, 3, 0, 0);
break;
case SND_AK4381:
ctl->private_value = AK_COMPOSE(idx, 1, 1, 0);
break;
}
ctl->private_data = ak;
err = snd_ctl_add(ak->card,
snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
SNDRV_CTL_ELEM_ACCESS_WRITE));
if (err < 0)
goto __error;
}
err = 0;
__error:
kfree(ctl);
return err;
}
EXPORT_SYMBOL(snd_akm4xxx_build_controls);
static int __init alsa_akm4xxx_module_init(void)
{
return 0;
}
static void __exit alsa_akm4xxx_module_exit(void)
{
}
module_init(alsa_akm4xxx_module_init)
module_exit(alsa_akm4xxx_module_exit)