aha/drivers/net/fec_8xx/fec_main.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

1273 lines
29 KiB
C

/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
*
* Released under the GPL
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/commproc.h>
#include "fec_8xx.h"
/*************************************************/
#define FEC_MAX_MULTICAST_ADDRS 64
/*************************************************/
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
MODULE_LICENSE("GPL");
int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
module_param(fec_8xx_debug, int, 0);
MODULE_PARM_DESC(fec_8xx_debug,
"FEC 8xx bitmapped debugging message enable value");
/*************************************************/
/*
* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY 50
/*****************************************************************************************/
static void fec_whack_reset(fec_t * fecp)
{
int i;
/*
* Whack a reset. We should wait for this.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
for (i = 0;
(FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY;
i++)
udelay(1);
if (i == FEC_RESET_DELAY)
printk(KERN_WARNING "FEC Reset timeout!\n");
}
/****************************************************************************/
/*
* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)
/****************************************************************************/
/*
* Returns the CRC needed when filling in the hash table for
* multicast group filtering
* pAddr must point to a MAC address (6 bytes)
*/
static __u32 fec_mulicast_calc_crc(char *pAddr)
{
u8 byte;
int byte_count;
int bit_count;
__u32 crc = 0xffffffff;
u8 msb;
for (byte_count = 0; byte_count < 6; byte_count++) {
byte = pAddr[byte_count];
for (bit_count = 0; bit_count < 8; bit_count++) {
msb = crc >> 31;
crc <<= 1;
if (msb ^ (byte & 0x1)) {
crc ^= FEC_CRC_POLY;
}
byte >>= 1;
}
}
return (crc);
}
/*
* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void fec_set_multicast_list(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
struct dev_mc_list *pmc;
__u32 crc;
int temp;
__u32 csrVal;
int hash_index;
__u32 hthi, htlo;
unsigned long flags;
if ((dev->flags & IFF_PROMISC) != 0) {
spin_lock_irqsave(&fep->lock, flags);
FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
spin_unlock_irqrestore(&fep->lock, flags);
/*
* Log any net taps.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s: Promiscuous mode enabled.\n", dev->name);
return;
}
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
/*
* Catch all multicast addresses, set the filter to all 1's.
*/
hthi = 0xffffffffU;
htlo = 0xffffffffU;
} else {
hthi = 0;
htlo = 0;
/*
* Now populate the hash table
*/
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) {
crc = fec_mulicast_calc_crc(pmc->dmi_addr);
temp = (crc & 0x3f) >> 1;
hash_index = ((temp & 0x01) << 4) |
((temp & 0x02) << 2) |
((temp & 0x04)) |
((temp & 0x08) >> 2) |
((temp & 0x10) >> 4);
csrVal = (1 << hash_index);
if (crc & 1)
hthi |= csrVal;
else
htlo |= csrVal;
}
}
spin_lock_irqsave(&fep->lock, flags);
FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
FW(fecp, hash_table_high, hthi);
FW(fecp, hash_table_low, htlo);
spin_unlock_irqrestore(&fep->lock, flags);
}
static int fec_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *mac = addr;
struct fec_enet_private *fep = netdev_priv(dev);
struct fec *fecp = fep->fecp;
int i;
__u32 addrhi, addrlo;
unsigned long flags;
/* Get pointer to SCC area in parameter RAM. */
for (i = 0; i < 6; i++)
dev->dev_addr[i] = mac->sa_data[i];
/*
* Set station address.
*/
addrhi = ((__u32) dev->dev_addr[0] << 24) |
((__u32) dev->dev_addr[1] << 16) |
((__u32) dev->dev_addr[2] << 8) |
(__u32) dev->dev_addr[3];
addrlo = ((__u32) dev->dev_addr[4] << 24) |
((__u32) dev->dev_addr[5] << 16);
spin_lock_irqsave(&fep->lock, flags);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
spin_unlock_irqrestore(&fep->lock, flags);
return 0;
}
/*
* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
void fec_restart(struct net_device *dev, int duplex, int speed)
{
#ifdef CONFIG_DUET
immap_t *immap = (immap_t *) IMAP_ADDR;
__u32 cptr;
#endif
struct fec_enet_private *fep = netdev_priv(dev);
struct fec *fecp = fep->fecp;
const struct fec_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb;
int i;
__u32 addrhi, addrlo;
fec_whack_reset(fep->fecp);
/*
* Set station address.
*/
addrhi = ((__u32) dev->dev_addr[0] << 24) |
((__u32) dev->dev_addr[1] << 16) |
((__u32) dev->dev_addr[2] << 8) |
(__u32) dev->dev_addr[3];
addrlo = ((__u32) dev->dev_addr[4] << 24) |
((__u32) dev->dev_addr[5] << 16);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
/*
* Reset all multicast.
*/
FW(fecp, hash_table_high, 0);
FW(fecp, hash_table_low, 0);
/*
* Set maximum receive buffer size.
*/
FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
FW(fecp, r_hash, PKT_MAXBUF_SIZE);
/*
* Set receive and transmit descriptor base.
*/
FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base)));
FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base)));
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = fep->tx_ring;
fep->cur_rx = fep->rx_bd_base;
/*
* Reset SKB receive buffers
*/
for (i = 0; i < fep->rx_ring; i++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Initialize the receive buffer descriptors.
*/
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
skb = dev_alloc_skb(ENET_RX_FRSIZE);
if (skb == NULL) {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, unable to allocate skb\n",
dev->name);
fep->stats.rx_dropped++;
break;
}
fep->rx_skbuff[i] = skb;
skb->dev = dev;
CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0); /* zero */
CBDW_SC(bdp, BD_ENET_RX_EMPTY |
((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
}
/*
* if we failed, fillup remainder
*/
for (; i < fep->rx_ring; i++, bdp++) {
fep->rx_skbuff[i] = NULL;
CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* Reset SKB transmit buffers.
*/
for (i = 0; i < fep->tx_ring; i++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* ...and the same for transmit.
*/
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
fep->tx_skbuff[i] = NULL;
CBDW_BUFADDR(bdp, virt_to_bus(NULL));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
}
/*
* Enable big endian and don't care about SDMA FC.
*/
FW(fecp, fun_code, 0x78000000);
/*
* Set MII speed.
*/
FW(fecp, mii_speed, fep->fec_phy_speed);
/*
* Clear any outstanding interrupt.
*/
FW(fecp, ievent, 0xffc0);
FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
/*
* adjust to speed (only for DUET & RMII)
*/
#ifdef CONFIG_DUET
cptr = in_be32(&immap->im_cpm.cp_cptr);
switch (fpi->fec_no) {
case 0:
/*
* check if in RMII mode
*/
if ((cptr & 0x100) == 0)
break;
if (speed == 10)
cptr |= 0x0000010;
else if (speed == 100)
cptr &= ~0x0000010;
break;
case 1:
/*
* check if in RMII mode
*/
if ((cptr & 0x80) == 0)
break;
if (speed == 10)
cptr |= 0x0000008;
else if (speed == 100)
cptr &= ~0x0000008;
break;
default:
break;
}
out_be32(&immap->im_cpm.cp_cptr, cptr);
#endif
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
/*
* adjust to duplex mode
*/
if (duplex) {
FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
} else {
FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
}
/*
* Enable interrupts we wish to service.
*/
FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB);
/*
* And last, enable the transmit and receive processing.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, r_des_active, 0x01000000);
}
void fec_stop(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
struct sk_buff *skb;
int i;
if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
return; /* already down */
FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
i < FEC_RESET_DELAY; i++)
udelay(1);
if (i == FEC_RESET_DELAY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC timeout on graceful transmit stop\n",
dev->name);
/*
* Disable FEC. Let only MII interrupts.
*/
FW(fecp, imask, 0);
FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN);
/*
* Reset SKB transmit buffers.
*/
for (i = 0; i < fep->tx_ring; i++) {
if ((skb = fep->tx_skbuff[i]) == NULL)
continue;
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
/*
* Reset SKB receive buffers
*/
for (i = 0; i < fep->rx_ring; i++) {
if ((skb = fep->rx_skbuff[i]) == NULL)
continue;
fep->rx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
}
/* common receive function */
static int fec_enet_rx_common(struct net_device *dev, int *budget)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
const struct fec_platform_info *fpi = fep->fpi;
cbd_t *bdp;
struct sk_buff *skb, *skbn, *skbt;
int received = 0;
__u16 pkt_len, sc;
int curidx;
int rx_work_limit;
if (fpi->use_napi) {
rx_work_limit = min(dev->quota, *budget);
if (!netif_running(dev))
return 0;
}
/*
* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
/* clear RX status bits for napi*/
if (fpi->use_napi)
FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB);
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
curidx = bdp - fep->rx_bd_base;
/*
* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((sc & BD_ENET_RX_LAST) == 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s rcv is not +last\n",
dev->name);
/*
* Check for errors.
*/
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
fep->stats.rx_errors++;
/* Frame too long or too short. */
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
fep->stats.rx_length_errors++;
/* Frame alignment */
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
fep->stats.rx_frame_errors++;
/* CRC Error */
if (sc & BD_ENET_RX_CR)
fep->stats.rx_crc_errors++;
/* FIFO overrun */
if (sc & BD_ENET_RX_OV)
fep->stats.rx_crc_errors++;
skbn = fep->rx_skbuff[curidx];
BUG_ON(skbn == NULL);
} else {
/* napi, got packet but no quota */
if (fpi->use_napi && --rx_work_limit < 0)
break;
skb = fep->rx_skbuff[curidx];
BUG_ON(skb == NULL);
/*
* Process the incoming frame.
*/
fep->stats.rx_packets++;
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
fep->stats.rx_bytes += pkt_len + 4;
if (pkt_len <= fpi->rx_copybreak) {
/* +2 to make IP header L1 cache aligned */
skbn = dev_alloc_skb(pkt_len + 2);
if (skbn != NULL) {
skb_reserve(skbn, 2); /* align IP header */
memcpy(skbn->data, skb->data, pkt_len);
/* swap */
skbt = skb;
skb = skbn;
skbn = skbt;
}
} else
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
if (skbn != NULL) {
skb->dev = dev;
skb_put(skb, pkt_len); /* Make room */
skb->protocol = eth_type_trans(skb, dev);
received++;
if (!fpi->use_napi)
netif_rx(skb);
else
netif_receive_skb(skb);
} else {
printk(KERN_WARNING DRV_MODULE_NAME
": %s Memory squeeze, dropping packet.\n",
dev->name);
fep->stats.rx_dropped++;
skbn = skb;
}
}
fep->rx_skbuff[curidx] = skbn;
CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data,
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE));
CBDW_DATLEN(bdp, 0);
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
/*
* Update BD pointer to next entry.
*/
if ((sc & BD_ENET_RX_WRAP) == 0)
bdp++;
else
bdp = fep->rx_bd_base;
/*
* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
FW(fecp, r_des_active, 0x01000000);
}
fep->cur_rx = bdp;
if (fpi->use_napi) {
dev->quota -= received;
*budget -= received;
if (rx_work_limit < 0)
return 1; /* not done */
/* done */
netif_rx_complete(dev);
/* enable RX interrupt bits */
FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
}
return 0;
}
static void fec_enet_tx(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
cbd_t *bdp;
struct sk_buff *skb;
int dirtyidx, do_wake;
__u16 sc;
spin_lock(&fep->lock);
bdp = fep->dirty_tx;
do_wake = 0;
while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
dirtyidx = bdp - fep->tx_bd_base;
if (fep->tx_free == fep->tx_ring)
break;
skb = fep->tx_skbuff[dirtyidx];
/*
* Check for errors.
*/
if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
fep->stats.tx_errors++;
if (sc & BD_ENET_TX_HB) /* No heartbeat */
fep->stats.tx_heartbeat_errors++;
if (sc & BD_ENET_TX_LC) /* Late collision */
fep->stats.tx_window_errors++;
if (sc & BD_ENET_TX_RL) /* Retrans limit */
fep->stats.tx_aborted_errors++;
if (sc & BD_ENET_TX_UN) /* Underrun */
fep->stats.tx_fifo_errors++;
if (sc & BD_ENET_TX_CSL) /* Carrier lost */
fep->stats.tx_carrier_errors++;
} else
fep->stats.tx_packets++;
if (sc & BD_ENET_TX_READY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s HEY! Enet xmit interrupt and TX_READY.\n",
dev->name);
/*
* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (sc & BD_ENET_TX_DEF)
fep->stats.collisions++;
/*
* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(skb);
fep->tx_skbuff[dirtyidx] = NULL;
/*
* Update pointer to next buffer descriptor to be transmitted.
*/
if ((sc & BD_ENET_TX_WRAP) == 0)
bdp++;
else
bdp = fep->tx_bd_base;
/*
* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!fep->tx_free++)
do_wake = 1;
}
fep->dirty_tx = bdp;
spin_unlock(&fep->lock);
if (do_wake && netif_queue_stopped(dev))
netif_wake_queue(dev);
}
/*
* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep;
const struct fec_platform_info *fpi;
fec_t *fecp;
__u32 int_events;
__u32 int_events_napi;
if (unlikely(dev == NULL))
return IRQ_NONE;
fep = netdev_priv(dev);
fecp = fep->fecp;
fpi = fep->fpi;
/*
* Get the interrupt events that caused us to be here.
*/
while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) {
if (!fpi->use_napi)
FW(fecp, ievent, int_events);
else {
int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB);
FW(fecp, ievent, int_events_napi);
}
if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC ERROR(s) 0x%x\n",
dev->name, int_events);
if ((int_events & FEC_ENET_RXF) != 0) {
if (!fpi->use_napi)
fec_enet_rx_common(dev, NULL);
else {
if (netif_rx_schedule_prep(dev)) {
/* disable rx interrupts */
FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
__netif_rx_schedule(dev);
} else {
printk(KERN_ERR DRV_MODULE_NAME
": %s driver bug! interrupt while in poll!\n",
dev->name);
FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
}
}
}
if ((int_events & FEC_ENET_TXF) != 0)
fec_enet_tx(dev);
}
return IRQ_HANDLED;
}
/* This interrupt occurs when the PHY detects a link change. */
static irqreturn_t
fec_mii_link_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep;
const struct fec_platform_info *fpi;
if (unlikely(dev == NULL))
return IRQ_NONE;
fep = netdev_priv(dev);
fpi = fep->fpi;
if (!fpi->use_mdio)
return IRQ_NONE;
/*
* Acknowledge the interrupt if possible. If we have not
* found the PHY yet we can't process or acknowledge the
* interrupt now. Instead we ignore this interrupt for now,
* which we can do since it is edge triggered. It will be
* acknowledged later by fec_enet_open().
*/
if (!fep->phy)
return IRQ_NONE;
fec_mii_ack_int(dev);
fec_mii_link_status_change_check(dev, 0);
return IRQ_HANDLED;
}
/**********************************************************************************/
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
cbd_t *bdp;
int curidx;
unsigned long flags;
spin_lock_irqsave(&fep->tx_lock, flags);
/*
* Fill in a Tx ring entry
*/
bdp = fep->cur_tx;
if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&fep->tx_lock, flags);
/*
* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk(KERN_WARNING DRV_MODULE_NAME
": %s tx queue full!.\n", dev->name);
return 1;
}
curidx = bdp - fep->tx_bd_base;
/*
* Clear all of the status flags.
*/
CBDC_SC(bdp, BD_ENET_TX_STATS);
/*
* Save skb pointer.
*/
fep->tx_skbuff[curidx] = skb;
fep->stats.tx_bytes += skb->len;
/*
* Push the data cache so the CPM does not get stale memory data.
*/
CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
skb->len, DMA_TO_DEVICE));
CBDW_DATLEN(bdp, skb->len);
dev->trans_start = jiffies;
/*
* If this was the last BD in the ring, start at the beginning again.
*/
if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
fep->cur_tx++;
else
fep->cur_tx = fep->tx_bd_base;
if (!--fep->tx_free)
netif_stop_queue(dev);
/*
* Trigger transmission start
*/
CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR |
BD_ENET_TX_LAST | BD_ENET_TX_TC);
FW(fecp, x_des_active, 0x01000000);
spin_unlock_irqrestore(&fep->tx_lock, flags);
return 0;
}
static void fec_timeout(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fep->stats.tx_errors++;
if (fep->tx_free)
netif_wake_queue(dev);
/* check link status again */
fec_mii_link_status_change_check(dev, 0);
}
static int fec_enet_open(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
const struct fec_platform_info *fpi = fep->fpi;
unsigned long flags;
/* Install our interrupt handler. */
if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate FEC IRQ!", dev->name);
return -EINVAL;
}
/* Install our phy interrupt handler */
if (fpi->phy_irq != -1 &&
request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy",
dev) != 0) {
printk(KERN_ERR DRV_MODULE_NAME
": %s Could not allocate PHY IRQ!", dev->name);
free_irq(fpi->fec_irq, dev);
return -EINVAL;
}
if (fpi->use_mdio) {
fec_mii_startup(dev);
netif_carrier_off(dev);
fec_mii_link_status_change_check(dev, 1);
} else {
spin_lock_irqsave(&fep->lock, flags);
fec_restart(dev, 1, 100); /* XXX this sucks */
spin_unlock_irqrestore(&fep->lock, flags);
netif_carrier_on(dev);
netif_start_queue(dev);
}
return 0;
}
static int fec_enet_close(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
const struct fec_platform_info *fpi = fep->fpi;
unsigned long flags;
netif_stop_queue(dev);
netif_carrier_off(dev);
if (fpi->use_mdio)
fec_mii_shutdown(dev);
spin_lock_irqsave(&fep->lock, flags);
fec_stop(dev);
spin_unlock_irqrestore(&fep->lock, flags);
/* release any irqs */
if (fpi->phy_irq != -1)
free_irq(fpi->phy_irq, dev);
free_irq(fpi->fec_irq, dev);
return 0;
}
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return &fep->stats;
}
static int fec_enet_poll(struct net_device *dev, int *budget)
{
return fec_enet_rx_common(dev, budget);
}
/*************************************************************************/
static void fec_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
}
static int fec_get_regs_len(struct net_device *dev)
{
return sizeof(fec_t);
}
static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long flags;
if (regs->len < sizeof(fec_t))
return;
regs->version = 0;
spin_lock_irqsave(&fep->lock, flags);
memcpy_fromio(p, fep->fecp, sizeof(fec_t));
spin_unlock_irqrestore(&fep->lock, flags);
}
static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&fep->lock, flags);
rc = mii_ethtool_gset(&fep->mii_if, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&fep->lock, flags);
rc = mii_ethtool_sset(&fep->mii_if, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
static int fec_nway_reset(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return mii_nway_restart(&fep->mii_if);
}
static __u32 fec_get_msglevel(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
return fep->msg_enable;
}
static void fec_set_msglevel(struct net_device *dev, __u32 value)
{
struct fec_enet_private *fep = netdev_priv(dev);
fep->msg_enable = value;
}
static const struct ethtool_ops fec_ethtool_ops = {
.get_drvinfo = fec_get_drvinfo,
.get_regs_len = fec_get_regs_len,
.get_settings = fec_get_settings,
.set_settings = fec_set_settings,
.nway_reset = fec_nway_reset,
.get_link = ethtool_op_get_link,
.get_msglevel = fec_get_msglevel,
.set_msglevel = fec_set_msglevel,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum, /* local! */
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_regs = fec_get_regs,
};
static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
unsigned long flags;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irqsave(&fep->lock, flags);
rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
}
int fec_8xx_init_one(const struct fec_platform_info *fpi,
struct net_device **devp)
{
immap_t *immap = (immap_t *) IMAP_ADDR;
static int fec_8xx_version_printed = 0;
struct net_device *dev = NULL;
struct fec_enet_private *fep = NULL;
fec_t *fecp = NULL;
int i;
int err = 0;
int registered = 0;
__u32 siel;
*devp = NULL;
switch (fpi->fec_no) {
case 0:
fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec;
break;
#ifdef CONFIG_DUET
case 1:
fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2;
break;
#endif
default:
return -EINVAL;
}
if (fec_8xx_version_printed++ == 0)
printk(KERN_INFO "%s", version);
i = sizeof(*fep) + (sizeof(struct sk_buff **) *
(fpi->rx_ring + fpi->tx_ring));
dev = alloc_etherdev(i);
if (!dev) {
err = -ENOMEM;
goto err;
}
SET_MODULE_OWNER(dev);
fep = netdev_priv(dev);
/* partial reset of FEC */
fec_whack_reset(fecp);
/* point rx_skbuff, tx_skbuff */
fep->rx_skbuff = (struct sk_buff **)&fep[1];
fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
fep->fecp = fecp;
fep->fpi = fpi;
/* init locks */
spin_lock_init(&fep->lock);
spin_lock_init(&fep->tx_lock);
/*
* Set the Ethernet address.
*/
for (i = 0; i < 6; i++)
dev->dev_addr[i] = fpi->macaddr[i];
fep->ring_base = dma_alloc_coherent(NULL,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL) {
printk(KERN_ERR DRV_MODULE_NAME
": %s dma alloc failed.\n", dev->name);
err = -ENOMEM;
goto err;
}
/*
* Set receive and transmit descriptor base.
*/
fep->rx_bd_base = fep->ring_base;
fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
/* initialize ring size variables */
fep->tx_ring = fpi->tx_ring;
fep->rx_ring = fpi->rx_ring;
/* SIU interrupt */
if (fpi->phy_irq != -1 &&
(fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) {
siel = in_be32(&immap->im_siu_conf.sc_siel);
if ((fpi->phy_irq & 1) == 0)
siel |= (0x80000000 >> fpi->phy_irq);
else
siel &= ~(0x80000000 >> (fpi->phy_irq & ~1));
out_be32(&immap->im_siu_conf.sc_siel, siel);
}
/*
* The FEC Ethernet specific entries in the device structure.
*/
dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit;
dev->tx_timeout = fec_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = fec_enet_close;
dev->get_stats = fec_enet_get_stats;
dev->set_multicast_list = fec_set_multicast_list;
dev->set_mac_address = fec_set_mac_address;
if (fpi->use_napi) {
dev->poll = fec_enet_poll;
dev->weight = fpi->napi_weight;
}
dev->ethtool_ops = &fec_ethtool_ops;
dev->do_ioctl = fec_ioctl;
fep->fec_phy_speed =
((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1;
init_timer(&fep->phy_timer_list);
/* partial reset of FEC so that only MII works */
FW(fecp, mii_speed, fep->fec_phy_speed);
FW(fecp, ievent, 0xffc0);
FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
FW(fecp, imask, 0);
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
netif_carrier_off(dev);
err = register_netdev(dev);
if (err != 0)
goto err;
registered = 1;
if (fpi->use_mdio) {
fep->mii_if.dev = dev;
fep->mii_if.mdio_read = fec_mii_read;
fep->mii_if.mdio_write = fec_mii_write;
fep->mii_if.phy_id_mask = 0x1f;
fep->mii_if.reg_num_mask = 0x1f;
fep->mii_if.phy_id = fec_mii_phy_id_detect(dev);
}
*devp = dev;
return 0;
err:
if (dev != NULL) {
if (fecp != NULL)
fec_whack_reset(fecp);
if (registered)
unregister_netdev(dev);
if (fep != NULL) {
if (fep->ring_base)
dma_free_coherent(NULL,
(fpi->tx_ring +
fpi->rx_ring) *
sizeof(cbd_t), fep->ring_base,
fep->ring_mem_addr);
}
free_netdev(dev);
}
return err;
}
int fec_8xx_cleanup_one(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_t *fecp = fep->fecp;
const struct fec_platform_info *fpi = fep->fpi;
fec_whack_reset(fecp);
unregister_netdev(dev);
dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
fep->ring_base, fep->ring_mem_addr);
free_netdev(dev);
return 0;
}
/**************************************************************************************/
/**************************************************************************************/
/**************************************************************************************/
static int __init fec_8xx_init(void)
{
return fec_8xx_platform_init();
}
static void __exit fec_8xx_cleanup(void)
{
fec_8xx_platform_cleanup();
}
/**************************************************************************************/
/**************************************************************************************/
/**************************************************************************************/
module_init(fec_8xx_init);
module_exit(fec_8xx_cleanup);