mirror of
https://github.com/adulau/aha.git
synced 2025-01-02 14:13:18 +00:00
5044eed488
There's a really rare and obscure bug in CFQ, that causes a crash in cfq_dispatch_insert() due to rq == NULL. One example of the resulting oops is seen here: http://lkml.org/lkml/2007/4/15/41 Neil correctly diagnosed the situation for how this can happen: if two concurrent requests with the exact same sector number (due to direct IO or aliasing between MD and the raw device access), the alias handling will add the request to the sortlist, but next_rq remains NULL. Read the more complete analysis at: http://lkml.org/lkml/2007/4/25/57 This looks like it requires md to trigger, even though it should potentially be possible to due with O_DIRECT (at least if you edit the kernel and doctor some of the unplug calls). The fix is to move the ->next_rq update to when we add a request to the rbtree. Then we remove the possibility for a request to exist in the rbtree code, but not have ->next_rq correctly updated. Signed-off-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2235 lines
53 KiB
C
2235 lines
53 KiB
C
/*
|
|
* CFQ, or complete fairness queueing, disk scheduler.
|
|
*
|
|
* Based on ideas from a previously unfinished io
|
|
* scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
|
|
*
|
|
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/elevator.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/ioprio.h>
|
|
|
|
/*
|
|
* tunables
|
|
*/
|
|
static const int cfq_quantum = 4; /* max queue in one round of service */
|
|
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
|
|
static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
|
|
static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
|
|
|
|
static const int cfq_slice_sync = HZ / 10;
|
|
static int cfq_slice_async = HZ / 25;
|
|
static const int cfq_slice_async_rq = 2;
|
|
static int cfq_slice_idle = HZ / 125;
|
|
|
|
#define CFQ_IDLE_GRACE (HZ / 10)
|
|
#define CFQ_SLICE_SCALE (5)
|
|
|
|
#define CFQ_KEY_ASYNC (0)
|
|
|
|
/*
|
|
* for the hash of cfqq inside the cfqd
|
|
*/
|
|
#define CFQ_QHASH_SHIFT 6
|
|
#define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
|
|
#define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
|
|
|
|
#define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
|
|
|
|
#define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
|
|
#define RQ_CFQQ(rq) ((rq)->elevator_private2)
|
|
|
|
static struct kmem_cache *cfq_pool;
|
|
static struct kmem_cache *cfq_ioc_pool;
|
|
|
|
static DEFINE_PER_CPU(unsigned long, ioc_count);
|
|
static struct completion *ioc_gone;
|
|
|
|
#define CFQ_PRIO_LISTS IOPRIO_BE_NR
|
|
#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
|
|
#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
|
|
|
|
#define ASYNC (0)
|
|
#define SYNC (1)
|
|
|
|
#define cfq_cfqq_dispatched(cfqq) \
|
|
((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
|
|
|
|
#define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
|
|
|
|
#define cfq_cfqq_sync(cfqq) \
|
|
(cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
|
|
|
|
#define sample_valid(samples) ((samples) > 80)
|
|
|
|
/*
|
|
* Per block device queue structure
|
|
*/
|
|
struct cfq_data {
|
|
request_queue_t *queue;
|
|
|
|
/*
|
|
* rr list of queues with requests and the count of them
|
|
*/
|
|
struct list_head rr_list[CFQ_PRIO_LISTS];
|
|
struct list_head busy_rr;
|
|
struct list_head cur_rr;
|
|
struct list_head idle_rr;
|
|
unsigned int busy_queues;
|
|
|
|
/*
|
|
* cfqq lookup hash
|
|
*/
|
|
struct hlist_head *cfq_hash;
|
|
|
|
int rq_in_driver;
|
|
int hw_tag;
|
|
|
|
/*
|
|
* idle window management
|
|
*/
|
|
struct timer_list idle_slice_timer;
|
|
struct work_struct unplug_work;
|
|
|
|
struct cfq_queue *active_queue;
|
|
struct cfq_io_context *active_cic;
|
|
int cur_prio, cur_end_prio;
|
|
unsigned int dispatch_slice;
|
|
|
|
struct timer_list idle_class_timer;
|
|
|
|
sector_t last_sector;
|
|
unsigned long last_end_request;
|
|
|
|
/*
|
|
* tunables, see top of file
|
|
*/
|
|
unsigned int cfq_quantum;
|
|
unsigned int cfq_fifo_expire[2];
|
|
unsigned int cfq_back_penalty;
|
|
unsigned int cfq_back_max;
|
|
unsigned int cfq_slice[2];
|
|
unsigned int cfq_slice_async_rq;
|
|
unsigned int cfq_slice_idle;
|
|
|
|
struct list_head cic_list;
|
|
};
|
|
|
|
/*
|
|
* Per process-grouping structure
|
|
*/
|
|
struct cfq_queue {
|
|
/* reference count */
|
|
atomic_t ref;
|
|
/* parent cfq_data */
|
|
struct cfq_data *cfqd;
|
|
/* cfqq lookup hash */
|
|
struct hlist_node cfq_hash;
|
|
/* hash key */
|
|
unsigned int key;
|
|
/* member of the rr/busy/cur/idle cfqd list */
|
|
struct list_head cfq_list;
|
|
/* sorted list of pending requests */
|
|
struct rb_root sort_list;
|
|
/* if fifo isn't expired, next request to serve */
|
|
struct request *next_rq;
|
|
/* requests queued in sort_list */
|
|
int queued[2];
|
|
/* currently allocated requests */
|
|
int allocated[2];
|
|
/* pending metadata requests */
|
|
int meta_pending;
|
|
/* fifo list of requests in sort_list */
|
|
struct list_head fifo;
|
|
|
|
unsigned long slice_end;
|
|
unsigned long service_last;
|
|
long slice_resid;
|
|
|
|
/* number of requests that are on the dispatch list */
|
|
int on_dispatch[2];
|
|
|
|
/* io prio of this group */
|
|
unsigned short ioprio, org_ioprio;
|
|
unsigned short ioprio_class, org_ioprio_class;
|
|
|
|
/* various state flags, see below */
|
|
unsigned int flags;
|
|
};
|
|
|
|
enum cfqq_state_flags {
|
|
CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
|
|
CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
|
|
CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
|
|
CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
|
|
CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
|
|
CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
|
|
CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
|
|
CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
|
|
CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
|
|
CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
|
|
};
|
|
|
|
#define CFQ_CFQQ_FNS(name) \
|
|
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
|
|
{ \
|
|
cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
|
|
} \
|
|
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
|
|
{ \
|
|
cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
|
|
} \
|
|
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
|
|
{ \
|
|
return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
|
|
}
|
|
|
|
CFQ_CFQQ_FNS(on_rr);
|
|
CFQ_CFQQ_FNS(wait_request);
|
|
CFQ_CFQQ_FNS(must_alloc);
|
|
CFQ_CFQQ_FNS(must_alloc_slice);
|
|
CFQ_CFQQ_FNS(must_dispatch);
|
|
CFQ_CFQQ_FNS(fifo_expire);
|
|
CFQ_CFQQ_FNS(idle_window);
|
|
CFQ_CFQQ_FNS(prio_changed);
|
|
CFQ_CFQQ_FNS(queue_new);
|
|
CFQ_CFQQ_FNS(slice_new);
|
|
#undef CFQ_CFQQ_FNS
|
|
|
|
static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
|
|
static void cfq_dispatch_insert(request_queue_t *, struct request *);
|
|
static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
|
|
|
|
/*
|
|
* scheduler run of queue, if there are requests pending and no one in the
|
|
* driver that will restart queueing
|
|
*/
|
|
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
|
|
{
|
|
if (cfqd->busy_queues)
|
|
kblockd_schedule_work(&cfqd->unplug_work);
|
|
}
|
|
|
|
static int cfq_queue_empty(request_queue_t *q)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
|
|
return !cfqd->busy_queues;
|
|
}
|
|
|
|
static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
|
|
{
|
|
/*
|
|
* Use the per-process queue, for read requests and syncronous writes
|
|
*/
|
|
if (!(rw & REQ_RW) || is_sync)
|
|
return task->pid;
|
|
|
|
return CFQ_KEY_ASYNC;
|
|
}
|
|
|
|
/*
|
|
* Scale schedule slice based on io priority. Use the sync time slice only
|
|
* if a queue is marked sync and has sync io queued. A sync queue with async
|
|
* io only, should not get full sync slice length.
|
|
*/
|
|
static inline int
|
|
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
|
|
|
|
WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
|
|
|
|
return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
|
|
}
|
|
|
|
static inline void
|
|
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
|
|
cfqq->slice_end += cfqq->slice_resid;
|
|
|
|
/*
|
|
* Don't carry over residual for more than one slice, we only want
|
|
* to slightly correct the fairness. Carrying over forever would
|
|
* easily introduce oscillations.
|
|
*/
|
|
cfqq->slice_resid = 0;
|
|
}
|
|
|
|
/*
|
|
* We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
|
|
* isn't valid until the first request from the dispatch is activated
|
|
* and the slice time set.
|
|
*/
|
|
static inline int cfq_slice_used(struct cfq_queue *cfqq)
|
|
{
|
|
if (cfq_cfqq_slice_new(cfqq))
|
|
return 0;
|
|
if (time_before(jiffies, cfqq->slice_end))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
|
|
* We choose the request that is closest to the head right now. Distance
|
|
* behind the head is penalized and only allowed to a certain extent.
|
|
*/
|
|
static struct request *
|
|
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
|
|
{
|
|
sector_t last, s1, s2, d1 = 0, d2 = 0;
|
|
unsigned long back_max;
|
|
#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
|
|
#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
|
|
unsigned wrap = 0; /* bit mask: requests behind the disk head? */
|
|
|
|
if (rq1 == NULL || rq1 == rq2)
|
|
return rq2;
|
|
if (rq2 == NULL)
|
|
return rq1;
|
|
|
|
if (rq_is_sync(rq1) && !rq_is_sync(rq2))
|
|
return rq1;
|
|
else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
|
|
return rq2;
|
|
if (rq_is_meta(rq1) && !rq_is_meta(rq2))
|
|
return rq1;
|
|
else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
|
|
return rq2;
|
|
|
|
s1 = rq1->sector;
|
|
s2 = rq2->sector;
|
|
|
|
last = cfqd->last_sector;
|
|
|
|
/*
|
|
* by definition, 1KiB is 2 sectors
|
|
*/
|
|
back_max = cfqd->cfq_back_max * 2;
|
|
|
|
/*
|
|
* Strict one way elevator _except_ in the case where we allow
|
|
* short backward seeks which are biased as twice the cost of a
|
|
* similar forward seek.
|
|
*/
|
|
if (s1 >= last)
|
|
d1 = s1 - last;
|
|
else if (s1 + back_max >= last)
|
|
d1 = (last - s1) * cfqd->cfq_back_penalty;
|
|
else
|
|
wrap |= CFQ_RQ1_WRAP;
|
|
|
|
if (s2 >= last)
|
|
d2 = s2 - last;
|
|
else if (s2 + back_max >= last)
|
|
d2 = (last - s2) * cfqd->cfq_back_penalty;
|
|
else
|
|
wrap |= CFQ_RQ2_WRAP;
|
|
|
|
/* Found required data */
|
|
|
|
/*
|
|
* By doing switch() on the bit mask "wrap" we avoid having to
|
|
* check two variables for all permutations: --> faster!
|
|
*/
|
|
switch (wrap) {
|
|
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
|
|
if (d1 < d2)
|
|
return rq1;
|
|
else if (d2 < d1)
|
|
return rq2;
|
|
else {
|
|
if (s1 >= s2)
|
|
return rq1;
|
|
else
|
|
return rq2;
|
|
}
|
|
|
|
case CFQ_RQ2_WRAP:
|
|
return rq1;
|
|
case CFQ_RQ1_WRAP:
|
|
return rq2;
|
|
case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
|
|
default:
|
|
/*
|
|
* Since both rqs are wrapped,
|
|
* start with the one that's further behind head
|
|
* (--> only *one* back seek required),
|
|
* since back seek takes more time than forward.
|
|
*/
|
|
if (s1 <= s2)
|
|
return rq1;
|
|
else
|
|
return rq2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* would be nice to take fifo expire time into account as well
|
|
*/
|
|
static struct request *
|
|
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
struct request *last)
|
|
{
|
|
struct rb_node *rbnext = rb_next(&last->rb_node);
|
|
struct rb_node *rbprev = rb_prev(&last->rb_node);
|
|
struct request *next = NULL, *prev = NULL;
|
|
|
|
BUG_ON(RB_EMPTY_NODE(&last->rb_node));
|
|
|
|
if (rbprev)
|
|
prev = rb_entry_rq(rbprev);
|
|
|
|
if (rbnext)
|
|
next = rb_entry_rq(rbnext);
|
|
else {
|
|
rbnext = rb_first(&cfqq->sort_list);
|
|
if (rbnext && rbnext != &last->rb_node)
|
|
next = rb_entry_rq(rbnext);
|
|
}
|
|
|
|
return cfq_choose_req(cfqd, next, prev);
|
|
}
|
|
|
|
static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
|
|
{
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
struct list_head *list, *n;
|
|
struct cfq_queue *__cfqq;
|
|
|
|
/*
|
|
* Resorting requires the cfqq to be on the RR list already.
|
|
*/
|
|
if (!cfq_cfqq_on_rr(cfqq))
|
|
return;
|
|
|
|
list_del(&cfqq->cfq_list);
|
|
|
|
if (cfq_class_rt(cfqq))
|
|
list = &cfqd->cur_rr;
|
|
else if (cfq_class_idle(cfqq))
|
|
list = &cfqd->idle_rr;
|
|
else {
|
|
/*
|
|
* if cfqq has requests in flight, don't allow it to be
|
|
* found in cfq_set_active_queue before it has finished them.
|
|
* this is done to increase fairness between a process that
|
|
* has lots of io pending vs one that only generates one
|
|
* sporadically or synchronously
|
|
*/
|
|
if (cfq_cfqq_dispatched(cfqq))
|
|
list = &cfqd->busy_rr;
|
|
else
|
|
list = &cfqd->rr_list[cfqq->ioprio];
|
|
}
|
|
|
|
if (preempted || cfq_cfqq_queue_new(cfqq)) {
|
|
/*
|
|
* If this queue was preempted or is new (never been serviced),
|
|
* let it be added first for fairness but beind other new
|
|
* queues.
|
|
*/
|
|
n = list;
|
|
while (n->next != list) {
|
|
__cfqq = list_entry_cfqq(n->next);
|
|
if (!cfq_cfqq_queue_new(__cfqq))
|
|
break;
|
|
|
|
n = n->next;
|
|
}
|
|
list_add_tail(&cfqq->cfq_list, n);
|
|
} else if (!cfq_cfqq_class_sync(cfqq)) {
|
|
/*
|
|
* async queue always goes to the end. this wont be overly
|
|
* unfair to writes, as the sort of the sync queue wont be
|
|
* allowed to pass the async queue again.
|
|
*/
|
|
list_add_tail(&cfqq->cfq_list, list);
|
|
} else {
|
|
/*
|
|
* sort by last service, but don't cross a new or async
|
|
* queue. we don't cross a new queue because it hasn't been
|
|
* service before, and we don't cross an async queue because
|
|
* it gets added to the end on expire.
|
|
*/
|
|
n = list;
|
|
while ((n = n->prev) != list) {
|
|
struct cfq_queue *__cfqq = list_entry_cfqq(n);
|
|
|
|
if (!cfq_cfqq_class_sync(cfqq) || !__cfqq->service_last)
|
|
break;
|
|
if (time_before(__cfqq->service_last, cfqq->service_last))
|
|
break;
|
|
}
|
|
list_add(&cfqq->cfq_list, n);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add to busy list of queues for service, trying to be fair in ordering
|
|
* the pending list according to last request service
|
|
*/
|
|
static inline void
|
|
cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
BUG_ON(cfq_cfqq_on_rr(cfqq));
|
|
cfq_mark_cfqq_on_rr(cfqq);
|
|
cfqd->busy_queues++;
|
|
|
|
cfq_resort_rr_list(cfqq, 0);
|
|
}
|
|
|
|
static inline void
|
|
cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
BUG_ON(!cfq_cfqq_on_rr(cfqq));
|
|
cfq_clear_cfqq_on_rr(cfqq);
|
|
list_del_init(&cfqq->cfq_list);
|
|
|
|
BUG_ON(!cfqd->busy_queues);
|
|
cfqd->busy_queues--;
|
|
}
|
|
|
|
/*
|
|
* rb tree support functions
|
|
*/
|
|
static inline void cfq_del_rq_rb(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
const int sync = rq_is_sync(rq);
|
|
|
|
BUG_ON(!cfqq->queued[sync]);
|
|
cfqq->queued[sync]--;
|
|
|
|
elv_rb_del(&cfqq->sort_list, rq);
|
|
|
|
if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
cfq_del_cfqq_rr(cfqd, cfqq);
|
|
}
|
|
|
|
static void cfq_add_rq_rb(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
struct request *__alias;
|
|
|
|
cfqq->queued[rq_is_sync(rq)]++;
|
|
|
|
/*
|
|
* looks a little odd, but the first insert might return an alias.
|
|
* if that happens, put the alias on the dispatch list
|
|
*/
|
|
while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
|
|
cfq_dispatch_insert(cfqd->queue, __alias);
|
|
|
|
if (!cfq_cfqq_on_rr(cfqq))
|
|
cfq_add_cfqq_rr(cfqd, cfqq);
|
|
|
|
/*
|
|
* check if this request is a better next-serve candidate
|
|
*/
|
|
cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
|
|
BUG_ON(!cfqq->next_rq);
|
|
}
|
|
|
|
static inline void
|
|
cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
|
|
{
|
|
elv_rb_del(&cfqq->sort_list, rq);
|
|
cfqq->queued[rq_is_sync(rq)]--;
|
|
cfq_add_rq_rb(rq);
|
|
}
|
|
|
|
static struct request *
|
|
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
|
|
struct cfq_queue *cfqq;
|
|
|
|
cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
|
|
if (cfqq) {
|
|
sector_t sector = bio->bi_sector + bio_sectors(bio);
|
|
|
|
return elv_rb_find(&cfqq->sort_list, sector);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void cfq_activate_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
|
|
cfqd->rq_in_driver++;
|
|
|
|
/*
|
|
* If the depth is larger 1, it really could be queueing. But lets
|
|
* make the mark a little higher - idling could still be good for
|
|
* low queueing, and a low queueing number could also just indicate
|
|
* a SCSI mid layer like behaviour where limit+1 is often seen.
|
|
*/
|
|
if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
|
|
cfqd->hw_tag = 1;
|
|
}
|
|
|
|
static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
|
|
WARN_ON(!cfqd->rq_in_driver);
|
|
cfqd->rq_in_driver--;
|
|
}
|
|
|
|
static void cfq_remove_request(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
if (cfqq->next_rq == rq)
|
|
cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
|
|
|
|
list_del_init(&rq->queuelist);
|
|
cfq_del_rq_rb(rq);
|
|
|
|
if (rq_is_meta(rq)) {
|
|
WARN_ON(!cfqq->meta_pending);
|
|
cfqq->meta_pending--;
|
|
}
|
|
}
|
|
|
|
static int
|
|
cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct request *__rq;
|
|
|
|
__rq = cfq_find_rq_fmerge(cfqd, bio);
|
|
if (__rq && elv_rq_merge_ok(__rq, bio)) {
|
|
*req = __rq;
|
|
return ELEVATOR_FRONT_MERGE;
|
|
}
|
|
|
|
return ELEVATOR_NO_MERGE;
|
|
}
|
|
|
|
static void cfq_merged_request(request_queue_t *q, struct request *req,
|
|
int type)
|
|
{
|
|
if (type == ELEVATOR_FRONT_MERGE) {
|
|
struct cfq_queue *cfqq = RQ_CFQQ(req);
|
|
|
|
cfq_reposition_rq_rb(cfqq, req);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cfq_merged_requests(request_queue_t *q, struct request *rq,
|
|
struct request *next)
|
|
{
|
|
/*
|
|
* reposition in fifo if next is older than rq
|
|
*/
|
|
if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
|
|
time_before(next->start_time, rq->start_time))
|
|
list_move(&rq->queuelist, &next->queuelist);
|
|
|
|
cfq_remove_request(next);
|
|
}
|
|
|
|
static int cfq_allow_merge(request_queue_t *q, struct request *rq,
|
|
struct bio *bio)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
const int rw = bio_data_dir(bio);
|
|
struct cfq_queue *cfqq;
|
|
pid_t key;
|
|
|
|
/*
|
|
* Disallow merge of a sync bio into an async request.
|
|
*/
|
|
if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
|
|
return 0;
|
|
|
|
/*
|
|
* Lookup the cfqq that this bio will be queued with. Allow
|
|
* merge only if rq is queued there.
|
|
*/
|
|
key = cfq_queue_pid(current, rw, bio_sync(bio));
|
|
cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
|
|
|
|
if (cfqq == RQ_CFQQ(rq))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
if (cfqq) {
|
|
/*
|
|
* stop potential idle class queues waiting service
|
|
*/
|
|
del_timer(&cfqd->idle_class_timer);
|
|
|
|
cfqq->slice_end = 0;
|
|
cfq_clear_cfqq_must_alloc_slice(cfqq);
|
|
cfq_clear_cfqq_fifo_expire(cfqq);
|
|
cfq_mark_cfqq_slice_new(cfqq);
|
|
}
|
|
|
|
cfqd->active_queue = cfqq;
|
|
}
|
|
|
|
/*
|
|
* current cfqq expired its slice (or was too idle), select new one
|
|
*/
|
|
static void
|
|
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
int preempted, int timed_out)
|
|
{
|
|
if (cfq_cfqq_wait_request(cfqq))
|
|
del_timer(&cfqd->idle_slice_timer);
|
|
|
|
cfq_clear_cfqq_must_dispatch(cfqq);
|
|
cfq_clear_cfqq_wait_request(cfqq);
|
|
cfq_clear_cfqq_queue_new(cfqq);
|
|
|
|
/*
|
|
* store what was left of this slice, if the queue idled out
|
|
* or was preempted
|
|
*/
|
|
if (timed_out && !cfq_cfqq_slice_new(cfqq))
|
|
cfqq->slice_resid = cfqq->slice_end - jiffies;
|
|
|
|
cfq_resort_rr_list(cfqq, preempted);
|
|
|
|
if (cfqq == cfqd->active_queue)
|
|
cfqd->active_queue = NULL;
|
|
|
|
if (cfqd->active_cic) {
|
|
put_io_context(cfqd->active_cic->ioc);
|
|
cfqd->active_cic = NULL;
|
|
}
|
|
|
|
cfqd->dispatch_slice = 0;
|
|
}
|
|
|
|
static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
|
|
int timed_out)
|
|
{
|
|
struct cfq_queue *cfqq = cfqd->active_queue;
|
|
|
|
if (cfqq)
|
|
__cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
|
|
}
|
|
|
|
/*
|
|
* 0
|
|
* 0,1
|
|
* 0,1,2
|
|
* 0,1,2,3
|
|
* 0,1,2,3,4
|
|
* 0,1,2,3,4,5
|
|
* 0,1,2,3,4,5,6
|
|
* 0,1,2,3,4,5,6,7
|
|
*/
|
|
static int cfq_get_next_prio_level(struct cfq_data *cfqd)
|
|
{
|
|
int prio, wrap;
|
|
|
|
prio = -1;
|
|
wrap = 0;
|
|
do {
|
|
int p;
|
|
|
|
for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
|
|
if (!list_empty(&cfqd->rr_list[p])) {
|
|
prio = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (prio != -1)
|
|
break;
|
|
cfqd->cur_prio = 0;
|
|
if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
|
|
cfqd->cur_end_prio = 0;
|
|
if (wrap)
|
|
break;
|
|
wrap = 1;
|
|
}
|
|
} while (1);
|
|
|
|
if (unlikely(prio == -1))
|
|
return -1;
|
|
|
|
BUG_ON(prio >= CFQ_PRIO_LISTS);
|
|
|
|
list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
|
|
|
|
cfqd->cur_prio = prio + 1;
|
|
if (cfqd->cur_prio > cfqd->cur_end_prio) {
|
|
cfqd->cur_end_prio = cfqd->cur_prio;
|
|
cfqd->cur_prio = 0;
|
|
}
|
|
if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
|
|
cfqd->cur_prio = 0;
|
|
cfqd->cur_end_prio = 0;
|
|
}
|
|
|
|
return prio;
|
|
}
|
|
|
|
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq = NULL;
|
|
|
|
if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
|
|
/*
|
|
* if current list is non-empty, grab first entry. if it is
|
|
* empty, get next prio level and grab first entry then if any
|
|
* are spliced
|
|
*/
|
|
cfqq = list_entry_cfqq(cfqd->cur_rr.next);
|
|
} else if (!list_empty(&cfqd->busy_rr)) {
|
|
/*
|
|
* If no new queues are available, check if the busy list has
|
|
* some before falling back to idle io.
|
|
*/
|
|
cfqq = list_entry_cfqq(cfqd->busy_rr.next);
|
|
} else if (!list_empty(&cfqd->idle_rr)) {
|
|
/*
|
|
* if we have idle queues and no rt or be queues had pending
|
|
* requests, either allow immediate service if the grace period
|
|
* has passed or arm the idle grace timer
|
|
*/
|
|
unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
|
|
|
|
if (time_after_eq(jiffies, end))
|
|
cfqq = list_entry_cfqq(cfqd->idle_rr.next);
|
|
else
|
|
mod_timer(&cfqd->idle_class_timer, end);
|
|
}
|
|
|
|
__cfq_set_active_queue(cfqd, cfqq);
|
|
return cfqq;
|
|
}
|
|
|
|
#define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
|
|
|
|
static int cfq_arm_slice_timer(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq = cfqd->active_queue;
|
|
struct cfq_io_context *cic;
|
|
unsigned long sl;
|
|
|
|
WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
|
|
|
|
/*
|
|
* idle is disabled, either manually or by past process history
|
|
*/
|
|
if (!cfqd->cfq_slice_idle)
|
|
return 0;
|
|
if (!cfq_cfqq_idle_window(cfqq))
|
|
return 0;
|
|
/*
|
|
* task has exited, don't wait
|
|
*/
|
|
cic = cfqd->active_cic;
|
|
if (!cic || !cic->ioc->task)
|
|
return 0;
|
|
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
cfq_mark_cfqq_wait_request(cfqq);
|
|
|
|
sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
|
|
|
|
/*
|
|
* we don't want to idle for seeks, but we do want to allow
|
|
* fair distribution of slice time for a process doing back-to-back
|
|
* seeks. so allow a little bit of time for him to submit a new rq
|
|
*/
|
|
if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
|
|
sl = min(sl, msecs_to_jiffies(2));
|
|
|
|
mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
|
|
return 1;
|
|
}
|
|
|
|
static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
cfq_remove_request(rq);
|
|
cfqq->on_dispatch[rq_is_sync(rq)]++;
|
|
elv_dispatch_sort(q, rq);
|
|
|
|
rq = list_entry(q->queue_head.prev, struct request, queuelist);
|
|
cfqd->last_sector = rq->sector + rq->nr_sectors;
|
|
}
|
|
|
|
/*
|
|
* return expired entry, or NULL to just start from scratch in rbtree
|
|
*/
|
|
static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
|
|
{
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
struct request *rq;
|
|
int fifo;
|
|
|
|
if (cfq_cfqq_fifo_expire(cfqq))
|
|
return NULL;
|
|
|
|
cfq_mark_cfqq_fifo_expire(cfqq);
|
|
|
|
if (list_empty(&cfqq->fifo))
|
|
return NULL;
|
|
|
|
fifo = cfq_cfqq_class_sync(cfqq);
|
|
rq = rq_entry_fifo(cfqq->fifo.next);
|
|
|
|
if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
|
|
return rq;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline int
|
|
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
const int base_rq = cfqd->cfq_slice_async_rq;
|
|
|
|
WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
|
|
|
|
return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
|
|
}
|
|
|
|
/*
|
|
* get next queue for service
|
|
*/
|
|
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq;
|
|
|
|
cfqq = cfqd->active_queue;
|
|
if (!cfqq)
|
|
goto new_queue;
|
|
|
|
/*
|
|
* slice has expired
|
|
*/
|
|
if (!cfq_cfqq_must_dispatch(cfqq) && cfq_slice_used(cfqq))
|
|
goto expire;
|
|
|
|
/*
|
|
* if queue has requests, dispatch one. if not, check if
|
|
* enough slice is left to wait for one
|
|
*/
|
|
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
goto keep_queue;
|
|
else if (cfq_cfqq_slice_new(cfqq) || cfq_cfqq_dispatched(cfqq)) {
|
|
cfqq = NULL;
|
|
goto keep_queue;
|
|
} else if (cfq_cfqq_class_sync(cfqq)) {
|
|
if (cfq_arm_slice_timer(cfqd))
|
|
return NULL;
|
|
}
|
|
|
|
expire:
|
|
cfq_slice_expired(cfqd, 0, 0);
|
|
new_queue:
|
|
cfqq = cfq_set_active_queue(cfqd);
|
|
keep_queue:
|
|
return cfqq;
|
|
}
|
|
|
|
static int
|
|
__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
int max_dispatch)
|
|
{
|
|
int dispatched = 0;
|
|
|
|
BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
|
|
|
|
do {
|
|
struct request *rq;
|
|
|
|
/*
|
|
* follow expired path, else get first next available
|
|
*/
|
|
if ((rq = cfq_check_fifo(cfqq)) == NULL)
|
|
rq = cfqq->next_rq;
|
|
|
|
/*
|
|
* finally, insert request into driver dispatch list
|
|
*/
|
|
cfq_dispatch_insert(cfqd->queue, rq);
|
|
|
|
cfqd->dispatch_slice++;
|
|
dispatched++;
|
|
|
|
if (!cfqd->active_cic) {
|
|
atomic_inc(&RQ_CIC(rq)->ioc->refcount);
|
|
cfqd->active_cic = RQ_CIC(rq);
|
|
}
|
|
|
|
if (RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
break;
|
|
|
|
} while (dispatched < max_dispatch);
|
|
|
|
/*
|
|
* expire an async queue immediately if it has used up its slice. idle
|
|
* queue always expire after 1 dispatch round.
|
|
*/
|
|
if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
|
|
cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
|
|
cfq_class_idle(cfqq))) {
|
|
cfqq->slice_end = jiffies + 1;
|
|
cfq_slice_expired(cfqd, 0, 0);
|
|
}
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
static int
|
|
cfq_forced_dispatch_cfqqs(struct list_head *list)
|
|
{
|
|
struct cfq_queue *cfqq, *next;
|
|
int dispatched;
|
|
|
|
dispatched = 0;
|
|
list_for_each_entry_safe(cfqq, next, list, cfq_list) {
|
|
while (cfqq->next_rq) {
|
|
cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
|
|
dispatched++;
|
|
}
|
|
BUG_ON(!list_empty(&cfqq->fifo));
|
|
}
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
static int
|
|
cfq_forced_dispatch(struct cfq_data *cfqd)
|
|
{
|
|
int i, dispatched = 0;
|
|
|
|
for (i = 0; i < CFQ_PRIO_LISTS; i++)
|
|
dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
|
|
|
|
dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
|
|
dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
|
|
dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
|
|
|
|
cfq_slice_expired(cfqd, 0, 0);
|
|
|
|
BUG_ON(cfqd->busy_queues);
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
static int
|
|
cfq_dispatch_requests(request_queue_t *q, int force)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_queue *cfqq, *prev_cfqq;
|
|
int dispatched;
|
|
|
|
if (!cfqd->busy_queues)
|
|
return 0;
|
|
|
|
if (unlikely(force))
|
|
return cfq_forced_dispatch(cfqd);
|
|
|
|
dispatched = 0;
|
|
prev_cfqq = NULL;
|
|
while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
|
|
int max_dispatch;
|
|
|
|
if (cfqd->busy_queues > 1) {
|
|
/*
|
|
* Don't repeat dispatch from the previous queue.
|
|
*/
|
|
if (prev_cfqq == cfqq)
|
|
break;
|
|
|
|
/*
|
|
* So we have dispatched before in this round, if the
|
|
* next queue has idling enabled (must be sync), don't
|
|
* allow it service until the previous have continued.
|
|
*/
|
|
if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq))
|
|
break;
|
|
}
|
|
|
|
cfq_clear_cfqq_must_dispatch(cfqq);
|
|
cfq_clear_cfqq_wait_request(cfqq);
|
|
del_timer(&cfqd->idle_slice_timer);
|
|
|
|
max_dispatch = cfqd->cfq_quantum;
|
|
if (cfq_class_idle(cfqq))
|
|
max_dispatch = 1;
|
|
|
|
dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
|
|
prev_cfqq = cfqq;
|
|
}
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
/*
|
|
* task holds one reference to the queue, dropped when task exits. each rq
|
|
* in-flight on this queue also holds a reference, dropped when rq is freed.
|
|
*
|
|
* queue lock must be held here.
|
|
*/
|
|
static void cfq_put_queue(struct cfq_queue *cfqq)
|
|
{
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
|
|
BUG_ON(atomic_read(&cfqq->ref) <= 0);
|
|
|
|
if (!atomic_dec_and_test(&cfqq->ref))
|
|
return;
|
|
|
|
BUG_ON(rb_first(&cfqq->sort_list));
|
|
BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
|
|
BUG_ON(cfq_cfqq_on_rr(cfqq));
|
|
|
|
if (unlikely(cfqd->active_queue == cfqq)) {
|
|
__cfq_slice_expired(cfqd, cfqq, 0, 0);
|
|
cfq_schedule_dispatch(cfqd);
|
|
}
|
|
|
|
/*
|
|
* it's on the empty list and still hashed
|
|
*/
|
|
list_del(&cfqq->cfq_list);
|
|
hlist_del(&cfqq->cfq_hash);
|
|
kmem_cache_free(cfq_pool, cfqq);
|
|
}
|
|
|
|
static struct cfq_queue *
|
|
__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
|
|
const int hashval)
|
|
{
|
|
struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
|
|
struct hlist_node *entry;
|
|
struct cfq_queue *__cfqq;
|
|
|
|
hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
|
|
const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
|
|
|
|
if (__cfqq->key == key && (__p == prio || !prio))
|
|
return __cfqq;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct cfq_queue *
|
|
cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
|
|
{
|
|
return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
|
|
}
|
|
|
|
static void cfq_free_io_context(struct io_context *ioc)
|
|
{
|
|
struct cfq_io_context *__cic;
|
|
struct rb_node *n;
|
|
int freed = 0;
|
|
|
|
while ((n = rb_first(&ioc->cic_root)) != NULL) {
|
|
__cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
rb_erase(&__cic->rb_node, &ioc->cic_root);
|
|
kmem_cache_free(cfq_ioc_pool, __cic);
|
|
freed++;
|
|
}
|
|
|
|
elv_ioc_count_mod(ioc_count, -freed);
|
|
|
|
if (ioc_gone && !elv_ioc_count_read(ioc_count))
|
|
complete(ioc_gone);
|
|
}
|
|
|
|
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
if (unlikely(cfqq == cfqd->active_queue)) {
|
|
__cfq_slice_expired(cfqd, cfqq, 0, 0);
|
|
cfq_schedule_dispatch(cfqd);
|
|
}
|
|
|
|
cfq_put_queue(cfqq);
|
|
}
|
|
|
|
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
|
|
struct cfq_io_context *cic)
|
|
{
|
|
list_del_init(&cic->queue_list);
|
|
smp_wmb();
|
|
cic->key = NULL;
|
|
|
|
if (cic->cfqq[ASYNC]) {
|
|
cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
|
|
cic->cfqq[ASYNC] = NULL;
|
|
}
|
|
|
|
if (cic->cfqq[SYNC]) {
|
|
cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
|
|
cic->cfqq[SYNC] = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Called with interrupts disabled
|
|
*/
|
|
static void cfq_exit_single_io_context(struct cfq_io_context *cic)
|
|
{
|
|
struct cfq_data *cfqd = cic->key;
|
|
|
|
if (cfqd) {
|
|
request_queue_t *q = cfqd->queue;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
__cfq_exit_single_io_context(cfqd, cic);
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
}
|
|
|
|
static void cfq_exit_io_context(struct io_context *ioc)
|
|
{
|
|
struct cfq_io_context *__cic;
|
|
struct rb_node *n;
|
|
|
|
/*
|
|
* put the reference this task is holding to the various queues
|
|
*/
|
|
|
|
n = rb_first(&ioc->cic_root);
|
|
while (n != NULL) {
|
|
__cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
|
|
cfq_exit_single_io_context(__cic);
|
|
n = rb_next(n);
|
|
}
|
|
}
|
|
|
|
static struct cfq_io_context *
|
|
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
|
|
{
|
|
struct cfq_io_context *cic;
|
|
|
|
cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
|
|
if (cic) {
|
|
memset(cic, 0, sizeof(*cic));
|
|
cic->last_end_request = jiffies;
|
|
INIT_LIST_HEAD(&cic->queue_list);
|
|
cic->dtor = cfq_free_io_context;
|
|
cic->exit = cfq_exit_io_context;
|
|
elv_ioc_count_inc(ioc_count);
|
|
}
|
|
|
|
return cic;
|
|
}
|
|
|
|
static void cfq_init_prio_data(struct cfq_queue *cfqq)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int ioprio_class;
|
|
|
|
if (!cfq_cfqq_prio_changed(cfqq))
|
|
return;
|
|
|
|
ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
|
|
switch (ioprio_class) {
|
|
default:
|
|
printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
|
|
case IOPRIO_CLASS_NONE:
|
|
/*
|
|
* no prio set, place us in the middle of the BE classes
|
|
*/
|
|
cfqq->ioprio = task_nice_ioprio(tsk);
|
|
cfqq->ioprio_class = IOPRIO_CLASS_BE;
|
|
break;
|
|
case IOPRIO_CLASS_RT:
|
|
cfqq->ioprio = task_ioprio(tsk);
|
|
cfqq->ioprio_class = IOPRIO_CLASS_RT;
|
|
break;
|
|
case IOPRIO_CLASS_BE:
|
|
cfqq->ioprio = task_ioprio(tsk);
|
|
cfqq->ioprio_class = IOPRIO_CLASS_BE;
|
|
break;
|
|
case IOPRIO_CLASS_IDLE:
|
|
cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
|
|
cfqq->ioprio = 7;
|
|
cfq_clear_cfqq_idle_window(cfqq);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* keep track of original prio settings in case we have to temporarily
|
|
* elevate the priority of this queue
|
|
*/
|
|
cfqq->org_ioprio = cfqq->ioprio;
|
|
cfqq->org_ioprio_class = cfqq->ioprio_class;
|
|
|
|
cfq_resort_rr_list(cfqq, 0);
|
|
cfq_clear_cfqq_prio_changed(cfqq);
|
|
}
|
|
|
|
static inline void changed_ioprio(struct cfq_io_context *cic)
|
|
{
|
|
struct cfq_data *cfqd = cic->key;
|
|
struct cfq_queue *cfqq;
|
|
unsigned long flags;
|
|
|
|
if (unlikely(!cfqd))
|
|
return;
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
|
|
cfqq = cic->cfqq[ASYNC];
|
|
if (cfqq) {
|
|
struct cfq_queue *new_cfqq;
|
|
new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
|
|
GFP_ATOMIC);
|
|
if (new_cfqq) {
|
|
cic->cfqq[ASYNC] = new_cfqq;
|
|
cfq_put_queue(cfqq);
|
|
}
|
|
}
|
|
|
|
cfqq = cic->cfqq[SYNC];
|
|
if (cfqq)
|
|
cfq_mark_cfqq_prio_changed(cfqq);
|
|
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
static void cfq_ioc_set_ioprio(struct io_context *ioc)
|
|
{
|
|
struct cfq_io_context *cic;
|
|
struct rb_node *n;
|
|
|
|
ioc->ioprio_changed = 0;
|
|
|
|
n = rb_first(&ioc->cic_root);
|
|
while (n != NULL) {
|
|
cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
|
|
changed_ioprio(cic);
|
|
n = rb_next(n);
|
|
}
|
|
}
|
|
|
|
static struct cfq_queue *
|
|
cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
|
|
gfp_t gfp_mask)
|
|
{
|
|
const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
|
|
struct cfq_queue *cfqq, *new_cfqq = NULL;
|
|
unsigned short ioprio;
|
|
|
|
retry:
|
|
ioprio = tsk->ioprio;
|
|
cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
|
|
|
|
if (!cfqq) {
|
|
if (new_cfqq) {
|
|
cfqq = new_cfqq;
|
|
new_cfqq = NULL;
|
|
} else if (gfp_mask & __GFP_WAIT) {
|
|
/*
|
|
* Inform the allocator of the fact that we will
|
|
* just repeat this allocation if it fails, to allow
|
|
* the allocator to do whatever it needs to attempt to
|
|
* free memory.
|
|
*/
|
|
spin_unlock_irq(cfqd->queue->queue_lock);
|
|
new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
|
|
spin_lock_irq(cfqd->queue->queue_lock);
|
|
goto retry;
|
|
} else {
|
|
cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
|
|
if (!cfqq)
|
|
goto out;
|
|
}
|
|
|
|
memset(cfqq, 0, sizeof(*cfqq));
|
|
|
|
INIT_HLIST_NODE(&cfqq->cfq_hash);
|
|
INIT_LIST_HEAD(&cfqq->cfq_list);
|
|
INIT_LIST_HEAD(&cfqq->fifo);
|
|
|
|
cfqq->key = key;
|
|
hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
|
|
atomic_set(&cfqq->ref, 0);
|
|
cfqq->cfqd = cfqd;
|
|
|
|
if (key != CFQ_KEY_ASYNC)
|
|
cfq_mark_cfqq_idle_window(cfqq);
|
|
|
|
cfq_mark_cfqq_prio_changed(cfqq);
|
|
cfq_mark_cfqq_queue_new(cfqq);
|
|
cfq_init_prio_data(cfqq);
|
|
}
|
|
|
|
if (new_cfqq)
|
|
kmem_cache_free(cfq_pool, new_cfqq);
|
|
|
|
atomic_inc(&cfqq->ref);
|
|
out:
|
|
WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
|
|
return cfqq;
|
|
}
|
|
|
|
static void
|
|
cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
|
|
{
|
|
WARN_ON(!list_empty(&cic->queue_list));
|
|
rb_erase(&cic->rb_node, &ioc->cic_root);
|
|
kmem_cache_free(cfq_ioc_pool, cic);
|
|
elv_ioc_count_dec(ioc_count);
|
|
}
|
|
|
|
static struct cfq_io_context *
|
|
cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
|
|
{
|
|
struct rb_node *n;
|
|
struct cfq_io_context *cic;
|
|
void *k, *key = cfqd;
|
|
|
|
restart:
|
|
n = ioc->cic_root.rb_node;
|
|
while (n) {
|
|
cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
/* ->key must be copied to avoid race with cfq_exit_queue() */
|
|
k = cic->key;
|
|
if (unlikely(!k)) {
|
|
cfq_drop_dead_cic(ioc, cic);
|
|
goto restart;
|
|
}
|
|
|
|
if (key < k)
|
|
n = n->rb_left;
|
|
else if (key > k)
|
|
n = n->rb_right;
|
|
else
|
|
return cic;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
|
|
struct cfq_io_context *cic)
|
|
{
|
|
struct rb_node **p;
|
|
struct rb_node *parent;
|
|
struct cfq_io_context *__cic;
|
|
unsigned long flags;
|
|
void *k;
|
|
|
|
cic->ioc = ioc;
|
|
cic->key = cfqd;
|
|
|
|
restart:
|
|
parent = NULL;
|
|
p = &ioc->cic_root.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
__cic = rb_entry(parent, struct cfq_io_context, rb_node);
|
|
/* ->key must be copied to avoid race with cfq_exit_queue() */
|
|
k = __cic->key;
|
|
if (unlikely(!k)) {
|
|
cfq_drop_dead_cic(ioc, __cic);
|
|
goto restart;
|
|
}
|
|
|
|
if (cic->key < k)
|
|
p = &(*p)->rb_left;
|
|
else if (cic->key > k)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(&cic->rb_node, parent, p);
|
|
rb_insert_color(&cic->rb_node, &ioc->cic_root);
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
list_add(&cic->queue_list, &cfqd->cic_list);
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Setup general io context and cfq io context. There can be several cfq
|
|
* io contexts per general io context, if this process is doing io to more
|
|
* than one device managed by cfq.
|
|
*/
|
|
static struct cfq_io_context *
|
|
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
|
|
{
|
|
struct io_context *ioc = NULL;
|
|
struct cfq_io_context *cic;
|
|
|
|
might_sleep_if(gfp_mask & __GFP_WAIT);
|
|
|
|
ioc = get_io_context(gfp_mask, cfqd->queue->node);
|
|
if (!ioc)
|
|
return NULL;
|
|
|
|
cic = cfq_cic_rb_lookup(cfqd, ioc);
|
|
if (cic)
|
|
goto out;
|
|
|
|
cic = cfq_alloc_io_context(cfqd, gfp_mask);
|
|
if (cic == NULL)
|
|
goto err;
|
|
|
|
cfq_cic_link(cfqd, ioc, cic);
|
|
out:
|
|
smp_read_barrier_depends();
|
|
if (unlikely(ioc->ioprio_changed))
|
|
cfq_ioc_set_ioprio(ioc);
|
|
|
|
return cic;
|
|
err:
|
|
put_io_context(ioc);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
|
|
{
|
|
unsigned long elapsed = jiffies - cic->last_end_request;
|
|
unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
|
|
|
|
cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
|
|
cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
|
|
cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
|
|
}
|
|
|
|
static void
|
|
cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
|
|
{
|
|
sector_t sdist;
|
|
u64 total;
|
|
|
|
if (cic->last_request_pos < rq->sector)
|
|
sdist = rq->sector - cic->last_request_pos;
|
|
else
|
|
sdist = cic->last_request_pos - rq->sector;
|
|
|
|
/*
|
|
* Don't allow the seek distance to get too large from the
|
|
* odd fragment, pagein, etc
|
|
*/
|
|
if (cic->seek_samples <= 60) /* second&third seek */
|
|
sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
|
|
else
|
|
sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
|
|
|
|
cic->seek_samples = (7*cic->seek_samples + 256) / 8;
|
|
cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
|
|
total = cic->seek_total + (cic->seek_samples/2);
|
|
do_div(total, cic->seek_samples);
|
|
cic->seek_mean = (sector_t)total;
|
|
}
|
|
|
|
/*
|
|
* Disable idle window if the process thinks too long or seeks so much that
|
|
* it doesn't matter
|
|
*/
|
|
static void
|
|
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
struct cfq_io_context *cic)
|
|
{
|
|
int enable_idle = cfq_cfqq_idle_window(cfqq);
|
|
|
|
if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
|
|
(cfqd->hw_tag && CIC_SEEKY(cic)))
|
|
enable_idle = 0;
|
|
else if (sample_valid(cic->ttime_samples)) {
|
|
if (cic->ttime_mean > cfqd->cfq_slice_idle)
|
|
enable_idle = 0;
|
|
else
|
|
enable_idle = 1;
|
|
}
|
|
|
|
if (enable_idle)
|
|
cfq_mark_cfqq_idle_window(cfqq);
|
|
else
|
|
cfq_clear_cfqq_idle_window(cfqq);
|
|
}
|
|
|
|
/*
|
|
* Check if new_cfqq should preempt the currently active queue. Return 0 for
|
|
* no or if we aren't sure, a 1 will cause a preempt.
|
|
*/
|
|
static int
|
|
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
|
|
struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = cfqd->active_queue;
|
|
|
|
if (cfq_class_idle(new_cfqq))
|
|
return 0;
|
|
|
|
if (!cfqq)
|
|
return 0;
|
|
|
|
if (cfq_class_idle(cfqq))
|
|
return 1;
|
|
if (!cfq_cfqq_wait_request(new_cfqq))
|
|
return 0;
|
|
/*
|
|
* if the new request is sync, but the currently running queue is
|
|
* not, let the sync request have priority.
|
|
*/
|
|
if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
|
|
return 1;
|
|
/*
|
|
* So both queues are sync. Let the new request get disk time if
|
|
* it's a metadata request and the current queue is doing regular IO.
|
|
*/
|
|
if (rq_is_meta(rq) && !cfqq->meta_pending)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* cfqq preempts the active queue. if we allowed preempt with no slice left,
|
|
* let it have half of its nominal slice.
|
|
*/
|
|
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
cfq_slice_expired(cfqd, 1, 1);
|
|
|
|
/*
|
|
* Put the new queue at the front of the of the current list,
|
|
* so we know that it will be selected next.
|
|
*/
|
|
BUG_ON(!cfq_cfqq_on_rr(cfqq));
|
|
list_move(&cfqq->cfq_list, &cfqd->cur_rr);
|
|
|
|
cfqq->slice_end = 0;
|
|
cfq_mark_cfqq_slice_new(cfqq);
|
|
}
|
|
|
|
/*
|
|
* Called when a new fs request (rq) is added (to cfqq). Check if there's
|
|
* something we should do about it
|
|
*/
|
|
static void
|
|
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
struct request *rq)
|
|
{
|
|
struct cfq_io_context *cic = RQ_CIC(rq);
|
|
|
|
if (rq_is_meta(rq))
|
|
cfqq->meta_pending++;
|
|
|
|
/*
|
|
* we never wait for an async request and we don't allow preemption
|
|
* of an async request. so just return early
|
|
*/
|
|
if (!rq_is_sync(rq)) {
|
|
/*
|
|
* sync process issued an async request, if it's waiting
|
|
* then expire it and kick rq handling.
|
|
*/
|
|
if (cic == cfqd->active_cic &&
|
|
del_timer(&cfqd->idle_slice_timer)) {
|
|
cfq_slice_expired(cfqd, 0, 0);
|
|
blk_start_queueing(cfqd->queue);
|
|
}
|
|
return;
|
|
}
|
|
|
|
cfq_update_io_thinktime(cfqd, cic);
|
|
cfq_update_io_seektime(cic, rq);
|
|
cfq_update_idle_window(cfqd, cfqq, cic);
|
|
|
|
cic->last_request_pos = rq->sector + rq->nr_sectors;
|
|
|
|
if (cfqq == cfqd->active_queue) {
|
|
/*
|
|
* if we are waiting for a request for this queue, let it rip
|
|
* immediately and flag that we must not expire this queue
|
|
* just now
|
|
*/
|
|
if (cfq_cfqq_wait_request(cfqq)) {
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
del_timer(&cfqd->idle_slice_timer);
|
|
blk_start_queueing(cfqd->queue);
|
|
}
|
|
} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
|
|
/*
|
|
* not the active queue - expire current slice if it is
|
|
* idle and has expired it's mean thinktime or this new queue
|
|
* has some old slice time left and is of higher priority
|
|
*/
|
|
cfq_preempt_queue(cfqd, cfqq);
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
blk_start_queueing(cfqd->queue);
|
|
}
|
|
}
|
|
|
|
static void cfq_insert_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
cfq_init_prio_data(cfqq);
|
|
|
|
cfq_add_rq_rb(rq);
|
|
|
|
list_add_tail(&rq->queuelist, &cfqq->fifo);
|
|
|
|
cfq_rq_enqueued(cfqd, cfqq, rq);
|
|
}
|
|
|
|
static void cfq_completed_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
const int sync = rq_is_sync(rq);
|
|
unsigned long now;
|
|
|
|
now = jiffies;
|
|
|
|
WARN_ON(!cfqd->rq_in_driver);
|
|
WARN_ON(!cfqq->on_dispatch[sync]);
|
|
cfqd->rq_in_driver--;
|
|
cfqq->on_dispatch[sync]--;
|
|
cfqq->service_last = now;
|
|
|
|
if (!cfq_class_idle(cfqq))
|
|
cfqd->last_end_request = now;
|
|
|
|
cfq_resort_rr_list(cfqq, 0);
|
|
|
|
if (sync)
|
|
RQ_CIC(rq)->last_end_request = now;
|
|
|
|
/*
|
|
* If this is the active queue, check if it needs to be expired,
|
|
* or if we want to idle in case it has no pending requests.
|
|
*/
|
|
if (cfqd->active_queue == cfqq) {
|
|
if (cfq_cfqq_slice_new(cfqq)) {
|
|
cfq_set_prio_slice(cfqd, cfqq);
|
|
cfq_clear_cfqq_slice_new(cfqq);
|
|
}
|
|
if (cfq_slice_used(cfqq))
|
|
cfq_slice_expired(cfqd, 0, 1);
|
|
else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
|
|
if (!cfq_arm_slice_timer(cfqd))
|
|
cfq_schedule_dispatch(cfqd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* we temporarily boost lower priority queues if they are holding fs exclusive
|
|
* resources. they are boosted to normal prio (CLASS_BE/4)
|
|
*/
|
|
static void cfq_prio_boost(struct cfq_queue *cfqq)
|
|
{
|
|
const int ioprio_class = cfqq->ioprio_class;
|
|
const int ioprio = cfqq->ioprio;
|
|
|
|
if (has_fs_excl()) {
|
|
/*
|
|
* boost idle prio on transactions that would lock out other
|
|
* users of the filesystem
|
|
*/
|
|
if (cfq_class_idle(cfqq))
|
|
cfqq->ioprio_class = IOPRIO_CLASS_BE;
|
|
if (cfqq->ioprio > IOPRIO_NORM)
|
|
cfqq->ioprio = IOPRIO_NORM;
|
|
} else {
|
|
/*
|
|
* check if we need to unboost the queue
|
|
*/
|
|
if (cfqq->ioprio_class != cfqq->org_ioprio_class)
|
|
cfqq->ioprio_class = cfqq->org_ioprio_class;
|
|
if (cfqq->ioprio != cfqq->org_ioprio)
|
|
cfqq->ioprio = cfqq->org_ioprio;
|
|
}
|
|
|
|
/*
|
|
* refile between round-robin lists if we moved the priority class
|
|
*/
|
|
if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio))
|
|
cfq_resort_rr_list(cfqq, 0);
|
|
}
|
|
|
|
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
|
|
{
|
|
if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
|
|
!cfq_cfqq_must_alloc_slice(cfqq)) {
|
|
cfq_mark_cfqq_must_alloc_slice(cfqq);
|
|
return ELV_MQUEUE_MUST;
|
|
}
|
|
|
|
return ELV_MQUEUE_MAY;
|
|
}
|
|
|
|
static int cfq_may_queue(request_queue_t *q, int rw)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct task_struct *tsk = current;
|
|
struct cfq_queue *cfqq;
|
|
unsigned int key;
|
|
|
|
key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
|
|
|
|
/*
|
|
* don't force setup of a queue from here, as a call to may_queue
|
|
* does not necessarily imply that a request actually will be queued.
|
|
* so just lookup a possibly existing queue, or return 'may queue'
|
|
* if that fails
|
|
*/
|
|
cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
|
|
if (cfqq) {
|
|
cfq_init_prio_data(cfqq);
|
|
cfq_prio_boost(cfqq);
|
|
|
|
return __cfq_may_queue(cfqq);
|
|
}
|
|
|
|
return ELV_MQUEUE_MAY;
|
|
}
|
|
|
|
/*
|
|
* queue lock held here
|
|
*/
|
|
static void cfq_put_request(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
if (cfqq) {
|
|
const int rw = rq_data_dir(rq);
|
|
|
|
BUG_ON(!cfqq->allocated[rw]);
|
|
cfqq->allocated[rw]--;
|
|
|
|
put_io_context(RQ_CIC(rq)->ioc);
|
|
|
|
rq->elevator_private = NULL;
|
|
rq->elevator_private2 = NULL;
|
|
|
|
cfq_put_queue(cfqq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate cfq data structures associated with this request.
|
|
*/
|
|
static int
|
|
cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct task_struct *tsk = current;
|
|
struct cfq_io_context *cic;
|
|
const int rw = rq_data_dir(rq);
|
|
const int is_sync = rq_is_sync(rq);
|
|
pid_t key = cfq_queue_pid(tsk, rw, is_sync);
|
|
struct cfq_queue *cfqq;
|
|
unsigned long flags;
|
|
|
|
might_sleep_if(gfp_mask & __GFP_WAIT);
|
|
|
|
cic = cfq_get_io_context(cfqd, gfp_mask);
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
|
|
if (!cic)
|
|
goto queue_fail;
|
|
|
|
if (!cic->cfqq[is_sync]) {
|
|
cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
|
|
if (!cfqq)
|
|
goto queue_fail;
|
|
|
|
cic->cfqq[is_sync] = cfqq;
|
|
} else
|
|
cfqq = cic->cfqq[is_sync];
|
|
|
|
cfqq->allocated[rw]++;
|
|
cfq_clear_cfqq_must_alloc(cfqq);
|
|
atomic_inc(&cfqq->ref);
|
|
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
|
|
rq->elevator_private = cic;
|
|
rq->elevator_private2 = cfqq;
|
|
return 0;
|
|
|
|
queue_fail:
|
|
if (cic)
|
|
put_io_context(cic->ioc);
|
|
|
|
cfq_schedule_dispatch(cfqd);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
static void cfq_kick_queue(struct work_struct *work)
|
|
{
|
|
struct cfq_data *cfqd =
|
|
container_of(work, struct cfq_data, unplug_work);
|
|
request_queue_t *q = cfqd->queue;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
blk_start_queueing(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Timer running if the active_queue is currently idling inside its time slice
|
|
*/
|
|
static void cfq_idle_slice_timer(unsigned long data)
|
|
{
|
|
struct cfq_data *cfqd = (struct cfq_data *) data;
|
|
struct cfq_queue *cfqq;
|
|
unsigned long flags;
|
|
int timed_out = 1;
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
|
|
if ((cfqq = cfqd->active_queue) != NULL) {
|
|
timed_out = 0;
|
|
|
|
/*
|
|
* expired
|
|
*/
|
|
if (cfq_slice_used(cfqq))
|
|
goto expire;
|
|
|
|
/*
|
|
* only expire and reinvoke request handler, if there are
|
|
* other queues with pending requests
|
|
*/
|
|
if (!cfqd->busy_queues)
|
|
goto out_cont;
|
|
|
|
/*
|
|
* not expired and it has a request pending, let it dispatch
|
|
*/
|
|
if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
goto out_kick;
|
|
}
|
|
}
|
|
expire:
|
|
cfq_slice_expired(cfqd, 0, timed_out);
|
|
out_kick:
|
|
cfq_schedule_dispatch(cfqd);
|
|
out_cont:
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Timer running if an idle class queue is waiting for service
|
|
*/
|
|
static void cfq_idle_class_timer(unsigned long data)
|
|
{
|
|
struct cfq_data *cfqd = (struct cfq_data *) data;
|
|
unsigned long flags, end;
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
|
|
/*
|
|
* race with a non-idle queue, reset timer
|
|
*/
|
|
end = cfqd->last_end_request + CFQ_IDLE_GRACE;
|
|
if (!time_after_eq(jiffies, end))
|
|
mod_timer(&cfqd->idle_class_timer, end);
|
|
else
|
|
cfq_schedule_dispatch(cfqd);
|
|
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
|
|
{
|
|
del_timer_sync(&cfqd->idle_slice_timer);
|
|
del_timer_sync(&cfqd->idle_class_timer);
|
|
blk_sync_queue(cfqd->queue);
|
|
}
|
|
|
|
static void cfq_exit_queue(elevator_t *e)
|
|
{
|
|
struct cfq_data *cfqd = e->elevator_data;
|
|
request_queue_t *q = cfqd->queue;
|
|
|
|
cfq_shutdown_timer_wq(cfqd);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
if (cfqd->active_queue)
|
|
__cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
|
|
|
|
while (!list_empty(&cfqd->cic_list)) {
|
|
struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
|
|
struct cfq_io_context,
|
|
queue_list);
|
|
|
|
__cfq_exit_single_io_context(cfqd, cic);
|
|
}
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
cfq_shutdown_timer_wq(cfqd);
|
|
|
|
kfree(cfqd->cfq_hash);
|
|
kfree(cfqd);
|
|
}
|
|
|
|
static void *cfq_init_queue(request_queue_t *q)
|
|
{
|
|
struct cfq_data *cfqd;
|
|
int i;
|
|
|
|
cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
|
|
if (!cfqd)
|
|
return NULL;
|
|
|
|
memset(cfqd, 0, sizeof(*cfqd));
|
|
|
|
for (i = 0; i < CFQ_PRIO_LISTS; i++)
|
|
INIT_LIST_HEAD(&cfqd->rr_list[i]);
|
|
|
|
INIT_LIST_HEAD(&cfqd->busy_rr);
|
|
INIT_LIST_HEAD(&cfqd->cur_rr);
|
|
INIT_LIST_HEAD(&cfqd->idle_rr);
|
|
INIT_LIST_HEAD(&cfqd->cic_list);
|
|
|
|
cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
|
|
if (!cfqd->cfq_hash)
|
|
goto out_free;
|
|
|
|
for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
|
|
INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
|
|
|
|
cfqd->queue = q;
|
|
|
|
init_timer(&cfqd->idle_slice_timer);
|
|
cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
|
|
cfqd->idle_slice_timer.data = (unsigned long) cfqd;
|
|
|
|
init_timer(&cfqd->idle_class_timer);
|
|
cfqd->idle_class_timer.function = cfq_idle_class_timer;
|
|
cfqd->idle_class_timer.data = (unsigned long) cfqd;
|
|
|
|
INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
|
|
|
|
cfqd->cfq_quantum = cfq_quantum;
|
|
cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
|
|
cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
|
|
cfqd->cfq_back_max = cfq_back_max;
|
|
cfqd->cfq_back_penalty = cfq_back_penalty;
|
|
cfqd->cfq_slice[0] = cfq_slice_async;
|
|
cfqd->cfq_slice[1] = cfq_slice_sync;
|
|
cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
|
|
cfqd->cfq_slice_idle = cfq_slice_idle;
|
|
|
|
return cfqd;
|
|
out_free:
|
|
kfree(cfqd);
|
|
return NULL;
|
|
}
|
|
|
|
static void cfq_slab_kill(void)
|
|
{
|
|
if (cfq_pool)
|
|
kmem_cache_destroy(cfq_pool);
|
|
if (cfq_ioc_pool)
|
|
kmem_cache_destroy(cfq_ioc_pool);
|
|
}
|
|
|
|
static int __init cfq_slab_setup(void)
|
|
{
|
|
cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
|
|
NULL, NULL);
|
|
if (!cfq_pool)
|
|
goto fail;
|
|
|
|
cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
|
|
sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
|
|
if (!cfq_ioc_pool)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
cfq_slab_kill();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* sysfs parts below -->
|
|
*/
|
|
|
|
static ssize_t
|
|
cfq_var_show(unsigned int var, char *page)
|
|
{
|
|
return sprintf(page, "%d\n", var);
|
|
}
|
|
|
|
static ssize_t
|
|
cfq_var_store(unsigned int *var, const char *page, size_t count)
|
|
{
|
|
char *p = (char *) page;
|
|
|
|
*var = simple_strtoul(p, &p, 10);
|
|
return count;
|
|
}
|
|
|
|
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
|
|
static ssize_t __FUNC(elevator_t *e, char *page) \
|
|
{ \
|
|
struct cfq_data *cfqd = e->elevator_data; \
|
|
unsigned int __data = __VAR; \
|
|
if (__CONV) \
|
|
__data = jiffies_to_msecs(__data); \
|
|
return cfq_var_show(__data, (page)); \
|
|
}
|
|
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
|
|
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
|
|
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
|
|
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
|
|
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
|
|
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
|
|
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
|
|
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
|
|
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
|
|
#undef SHOW_FUNCTION
|
|
|
|
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
|
|
static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
|
|
{ \
|
|
struct cfq_data *cfqd = e->elevator_data; \
|
|
unsigned int __data; \
|
|
int ret = cfq_var_store(&__data, (page), count); \
|
|
if (__data < (MIN)) \
|
|
__data = (MIN); \
|
|
else if (__data > (MAX)) \
|
|
__data = (MAX); \
|
|
if (__CONV) \
|
|
*(__PTR) = msecs_to_jiffies(__data); \
|
|
else \
|
|
*(__PTR) = __data; \
|
|
return ret; \
|
|
}
|
|
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
|
|
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
|
|
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
|
|
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
|
|
#undef STORE_FUNCTION
|
|
|
|
#define CFQ_ATTR(name) \
|
|
__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
|
|
|
|
static struct elv_fs_entry cfq_attrs[] = {
|
|
CFQ_ATTR(quantum),
|
|
CFQ_ATTR(fifo_expire_sync),
|
|
CFQ_ATTR(fifo_expire_async),
|
|
CFQ_ATTR(back_seek_max),
|
|
CFQ_ATTR(back_seek_penalty),
|
|
CFQ_ATTR(slice_sync),
|
|
CFQ_ATTR(slice_async),
|
|
CFQ_ATTR(slice_async_rq),
|
|
CFQ_ATTR(slice_idle),
|
|
__ATTR_NULL
|
|
};
|
|
|
|
static struct elevator_type iosched_cfq = {
|
|
.ops = {
|
|
.elevator_merge_fn = cfq_merge,
|
|
.elevator_merged_fn = cfq_merged_request,
|
|
.elevator_merge_req_fn = cfq_merged_requests,
|
|
.elevator_allow_merge_fn = cfq_allow_merge,
|
|
.elevator_dispatch_fn = cfq_dispatch_requests,
|
|
.elevator_add_req_fn = cfq_insert_request,
|
|
.elevator_activate_req_fn = cfq_activate_request,
|
|
.elevator_deactivate_req_fn = cfq_deactivate_request,
|
|
.elevator_queue_empty_fn = cfq_queue_empty,
|
|
.elevator_completed_req_fn = cfq_completed_request,
|
|
.elevator_former_req_fn = elv_rb_former_request,
|
|
.elevator_latter_req_fn = elv_rb_latter_request,
|
|
.elevator_set_req_fn = cfq_set_request,
|
|
.elevator_put_req_fn = cfq_put_request,
|
|
.elevator_may_queue_fn = cfq_may_queue,
|
|
.elevator_init_fn = cfq_init_queue,
|
|
.elevator_exit_fn = cfq_exit_queue,
|
|
.trim = cfq_free_io_context,
|
|
},
|
|
.elevator_attrs = cfq_attrs,
|
|
.elevator_name = "cfq",
|
|
.elevator_owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cfq_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* could be 0 on HZ < 1000 setups
|
|
*/
|
|
if (!cfq_slice_async)
|
|
cfq_slice_async = 1;
|
|
if (!cfq_slice_idle)
|
|
cfq_slice_idle = 1;
|
|
|
|
if (cfq_slab_setup())
|
|
return -ENOMEM;
|
|
|
|
ret = elv_register(&iosched_cfq);
|
|
if (ret)
|
|
cfq_slab_kill();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit cfq_exit(void)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(all_gone);
|
|
elv_unregister(&iosched_cfq);
|
|
ioc_gone = &all_gone;
|
|
/* ioc_gone's update must be visible before reading ioc_count */
|
|
smp_wmb();
|
|
if (elv_ioc_count_read(ioc_count))
|
|
wait_for_completion(ioc_gone);
|
|
synchronize_rcu();
|
|
cfq_slab_kill();
|
|
}
|
|
|
|
module_init(cfq_init);
|
|
module_exit(cfq_exit);
|
|
|
|
MODULE_AUTHOR("Jens Axboe");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
|