aha/arch/x86/kernel/pci-gart_64.c
Mark Langsdorf fe2245c905 x86: enable GART-IOMMU only after setting up protection methods
The current code to set up the GART as an IOMMU enables GART
translations before it removes the aperture from the kernel memory
map, sets the GART PTEs to UC, sets up the guard and scratch
pages, or does a wbinvd().  This leaves the possibility of cache
aliasing open and can cause system crashes.

Re-order the code so as to enable the GART translations only
after all safeguards are in place and the tlb has been flushed.

AMD has tested this patch on both Istanbul systems and 1st
generation Opteron systems with APG enabled and seen no adverse
effects.  Istanbul systems with HT Assist enabled sometimes
see MCE errors due to cache artifacts with the unmodified
code.

Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Cc: <stable@kernel.org>
Cc: Joerg Roedel <joerg.roedel@amd.com>
Cc: akpm@linux-foundation.org
Cc: jbarnes@virtuousgeek.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-06 09:42:09 +02:00

881 lines
22 KiB
C

/*
* Dynamic DMA mapping support for AMD Hammer.
*
* Use the integrated AGP GART in the Hammer northbridge as an IOMMU for PCI.
* This allows to use PCI devices that only support 32bit addresses on systems
* with more than 4GB.
*
* See Documentation/PCI/PCI-DMA-mapping.txt for the interface specification.
*
* Copyright 2002 Andi Kleen, SuSE Labs.
* Subject to the GNU General Public License v2 only.
*/
#include <linux/types.h>
#include <linux/ctype.h>
#include <linux/agp_backend.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/topology.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/kdebug.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <linux/sysdev.h>
#include <linux/io.h>
#include <asm/atomic.h>
#include <asm/mtrr.h>
#include <asm/pgtable.h>
#include <asm/proto.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/cacheflush.h>
#include <asm/swiotlb.h>
#include <asm/dma.h>
#include <asm/k8.h>
static unsigned long iommu_bus_base; /* GART remapping area (physical) */
static unsigned long iommu_size; /* size of remapping area bytes */
static unsigned long iommu_pages; /* .. and in pages */
static u32 *iommu_gatt_base; /* Remapping table */
/*
* If this is disabled the IOMMU will use an optimized flushing strategy
* of only flushing when an mapping is reused. With it true the GART is
* flushed for every mapping. Problem is that doing the lazy flush seems
* to trigger bugs with some popular PCI cards, in particular 3ware (but
* has been also also seen with Qlogic at least).
*/
static int iommu_fullflush = 1;
/* Allocation bitmap for the remapping area: */
static DEFINE_SPINLOCK(iommu_bitmap_lock);
/* Guarded by iommu_bitmap_lock: */
static unsigned long *iommu_gart_bitmap;
static u32 gart_unmapped_entry;
#define GPTE_VALID 1
#define GPTE_COHERENT 2
#define GPTE_ENCODE(x) \
(((x) & 0xfffff000) | (((x) >> 32) << 4) | GPTE_VALID | GPTE_COHERENT)
#define GPTE_DECODE(x) (((x) & 0xfffff000) | (((u64)(x) & 0xff0) << 28))
#define EMERGENCY_PAGES 32 /* = 128KB */
#ifdef CONFIG_AGP
#define AGPEXTERN extern
#else
#define AGPEXTERN
#endif
/* backdoor interface to AGP driver */
AGPEXTERN int agp_memory_reserved;
AGPEXTERN __u32 *agp_gatt_table;
static unsigned long next_bit; /* protected by iommu_bitmap_lock */
static bool need_flush; /* global flush state. set for each gart wrap */
static unsigned long alloc_iommu(struct device *dev, int size,
unsigned long align_mask)
{
unsigned long offset, flags;
unsigned long boundary_size;
unsigned long base_index;
base_index = ALIGN(iommu_bus_base & dma_get_seg_boundary(dev),
PAGE_SIZE) >> PAGE_SHIFT;
boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
PAGE_SIZE) >> PAGE_SHIFT;
spin_lock_irqsave(&iommu_bitmap_lock, flags);
offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, next_bit,
size, base_index, boundary_size, align_mask);
if (offset == -1) {
need_flush = true;
offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, 0,
size, base_index, boundary_size,
align_mask);
}
if (offset != -1) {
next_bit = offset+size;
if (next_bit >= iommu_pages) {
next_bit = 0;
need_flush = true;
}
}
if (iommu_fullflush)
need_flush = true;
spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
return offset;
}
static void free_iommu(unsigned long offset, int size)
{
unsigned long flags;
spin_lock_irqsave(&iommu_bitmap_lock, flags);
iommu_area_free(iommu_gart_bitmap, offset, size);
if (offset >= next_bit)
next_bit = offset + size;
spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
}
/*
* Use global flush state to avoid races with multiple flushers.
*/
static void flush_gart(void)
{
unsigned long flags;
spin_lock_irqsave(&iommu_bitmap_lock, flags);
if (need_flush) {
k8_flush_garts();
need_flush = false;
}
spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
}
#ifdef CONFIG_IOMMU_LEAK
/* Debugging aid for drivers that don't free their IOMMU tables */
static int leak_trace;
static int iommu_leak_pages = 20;
static void dump_leak(void)
{
static int dump;
if (dump)
return;
dump = 1;
show_stack(NULL, NULL);
debug_dma_dump_mappings(NULL);
}
#endif
static void iommu_full(struct device *dev, size_t size, int dir)
{
/*
* Ran out of IOMMU space for this operation. This is very bad.
* Unfortunately the drivers cannot handle this operation properly.
* Return some non mapped prereserved space in the aperture and
* let the Northbridge deal with it. This will result in garbage
* in the IO operation. When the size exceeds the prereserved space
* memory corruption will occur or random memory will be DMAed
* out. Hopefully no network devices use single mappings that big.
*/
dev_err(dev, "PCI-DMA: Out of IOMMU space for %lu bytes\n", size);
if (size > PAGE_SIZE*EMERGENCY_PAGES) {
if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
panic("PCI-DMA: Memory would be corrupted\n");
if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
panic(KERN_ERR
"PCI-DMA: Random memory would be DMAed\n");
}
#ifdef CONFIG_IOMMU_LEAK
dump_leak();
#endif
}
static inline int
need_iommu(struct device *dev, unsigned long addr, size_t size)
{
return force_iommu ||
!is_buffer_dma_capable(*dev->dma_mask, addr, size);
}
static inline int
nonforced_iommu(struct device *dev, unsigned long addr, size_t size)
{
return !is_buffer_dma_capable(*dev->dma_mask, addr, size);
}
/* Map a single continuous physical area into the IOMMU.
* Caller needs to check if the iommu is needed and flush.
*/
static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
size_t size, int dir, unsigned long align_mask)
{
unsigned long npages = iommu_num_pages(phys_mem, size, PAGE_SIZE);
unsigned long iommu_page = alloc_iommu(dev, npages, align_mask);
int i;
if (iommu_page == -1) {
if (!nonforced_iommu(dev, phys_mem, size))
return phys_mem;
if (panic_on_overflow)
panic("dma_map_area overflow %lu bytes\n", size);
iommu_full(dev, size, dir);
return bad_dma_address;
}
for (i = 0; i < npages; i++) {
iommu_gatt_base[iommu_page + i] = GPTE_ENCODE(phys_mem);
phys_mem += PAGE_SIZE;
}
return iommu_bus_base + iommu_page*PAGE_SIZE + (phys_mem & ~PAGE_MASK);
}
/* Map a single area into the IOMMU */
static dma_addr_t gart_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
unsigned long bus;
phys_addr_t paddr = page_to_phys(page) + offset;
if (!dev)
dev = &x86_dma_fallback_dev;
if (!need_iommu(dev, paddr, size))
return paddr;
bus = dma_map_area(dev, paddr, size, dir, 0);
flush_gart();
return bus;
}
/*
* Free a DMA mapping.
*/
static void gart_unmap_page(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
unsigned long iommu_page;
int npages;
int i;
if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE ||
dma_addr >= iommu_bus_base + iommu_size)
return;
iommu_page = (dma_addr - iommu_bus_base)>>PAGE_SHIFT;
npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
for (i = 0; i < npages; i++) {
iommu_gatt_base[iommu_page + i] = gart_unmapped_entry;
}
free_iommu(iommu_page, npages);
}
/*
* Wrapper for pci_unmap_single working with scatterlists.
*/
static void gart_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
if (!s->dma_length || !s->length)
break;
gart_unmap_page(dev, s->dma_address, s->dma_length, dir, NULL);
}
}
/* Fallback for dma_map_sg in case of overflow */
static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
int nents, int dir)
{
struct scatterlist *s;
int i;
#ifdef CONFIG_IOMMU_DEBUG
printk(KERN_DEBUG "dma_map_sg overflow\n");
#endif
for_each_sg(sg, s, nents, i) {
unsigned long addr = sg_phys(s);
if (nonforced_iommu(dev, addr, s->length)) {
addr = dma_map_area(dev, addr, s->length, dir, 0);
if (addr == bad_dma_address) {
if (i > 0)
gart_unmap_sg(dev, sg, i, dir, NULL);
nents = 0;
sg[0].dma_length = 0;
break;
}
}
s->dma_address = addr;
s->dma_length = s->length;
}
flush_gart();
return nents;
}
/* Map multiple scatterlist entries continuous into the first. */
static int __dma_map_cont(struct device *dev, struct scatterlist *start,
int nelems, struct scatterlist *sout,
unsigned long pages)
{
unsigned long iommu_start = alloc_iommu(dev, pages, 0);
unsigned long iommu_page = iommu_start;
struct scatterlist *s;
int i;
if (iommu_start == -1)
return -1;
for_each_sg(start, s, nelems, i) {
unsigned long pages, addr;
unsigned long phys_addr = s->dma_address;
BUG_ON(s != start && s->offset);
if (s == start) {
sout->dma_address = iommu_bus_base;
sout->dma_address += iommu_page*PAGE_SIZE + s->offset;
sout->dma_length = s->length;
} else {
sout->dma_length += s->length;
}
addr = phys_addr;
pages = iommu_num_pages(s->offset, s->length, PAGE_SIZE);
while (pages--) {
iommu_gatt_base[iommu_page] = GPTE_ENCODE(addr);
addr += PAGE_SIZE;
iommu_page++;
}
}
BUG_ON(iommu_page - iommu_start != pages);
return 0;
}
static inline int
dma_map_cont(struct device *dev, struct scatterlist *start, int nelems,
struct scatterlist *sout, unsigned long pages, int need)
{
if (!need) {
BUG_ON(nelems != 1);
sout->dma_address = start->dma_address;
sout->dma_length = start->length;
return 0;
}
return __dma_map_cont(dev, start, nelems, sout, pages);
}
/*
* DMA map all entries in a scatterlist.
* Merge chunks that have page aligned sizes into a continuous mapping.
*/
static int gart_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
struct scatterlist *s, *ps, *start_sg, *sgmap;
int need = 0, nextneed, i, out, start;
unsigned long pages = 0;
unsigned int seg_size;
unsigned int max_seg_size;
if (nents == 0)
return 0;
if (!dev)
dev = &x86_dma_fallback_dev;
out = 0;
start = 0;
start_sg = sgmap = sg;
seg_size = 0;
max_seg_size = dma_get_max_seg_size(dev);
ps = NULL; /* shut up gcc */
for_each_sg(sg, s, nents, i) {
dma_addr_t addr = sg_phys(s);
s->dma_address = addr;
BUG_ON(s->length == 0);
nextneed = need_iommu(dev, addr, s->length);
/* Handle the previous not yet processed entries */
if (i > start) {
/*
* Can only merge when the last chunk ends on a
* page boundary and the new one doesn't have an
* offset.
*/
if (!iommu_merge || !nextneed || !need || s->offset ||
(s->length + seg_size > max_seg_size) ||
(ps->offset + ps->length) % PAGE_SIZE) {
if (dma_map_cont(dev, start_sg, i - start,
sgmap, pages, need) < 0)
goto error;
out++;
seg_size = 0;
sgmap = sg_next(sgmap);
pages = 0;
start = i;
start_sg = s;
}
}
seg_size += s->length;
need = nextneed;
pages += iommu_num_pages(s->offset, s->length, PAGE_SIZE);
ps = s;
}
if (dma_map_cont(dev, start_sg, i - start, sgmap, pages, need) < 0)
goto error;
out++;
flush_gart();
if (out < nents) {
sgmap = sg_next(sgmap);
sgmap->dma_length = 0;
}
return out;
error:
flush_gart();
gart_unmap_sg(dev, sg, out, dir, NULL);
/* When it was forced or merged try again in a dumb way */
if (force_iommu || iommu_merge) {
out = dma_map_sg_nonforce(dev, sg, nents, dir);
if (out > 0)
return out;
}
if (panic_on_overflow)
panic("dma_map_sg: overflow on %lu pages\n", pages);
iommu_full(dev, pages << PAGE_SHIFT, dir);
for_each_sg(sg, s, nents, i)
s->dma_address = bad_dma_address;
return 0;
}
/* allocate and map a coherent mapping */
static void *
gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr,
gfp_t flag)
{
dma_addr_t paddr;
unsigned long align_mask;
struct page *page;
if (force_iommu && !(flag & GFP_DMA)) {
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
page = alloc_pages(flag | __GFP_ZERO, get_order(size));
if (!page)
return NULL;
align_mask = (1UL << get_order(size)) - 1;
paddr = dma_map_area(dev, page_to_phys(page), size,
DMA_BIDIRECTIONAL, align_mask);
flush_gart();
if (paddr != bad_dma_address) {
*dma_addr = paddr;
return page_address(page);
}
__free_pages(page, get_order(size));
} else
return dma_generic_alloc_coherent(dev, size, dma_addr, flag);
return NULL;
}
/* free a coherent mapping */
static void
gart_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_addr)
{
gart_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL, NULL);
free_pages((unsigned long)vaddr, get_order(size));
}
static int no_agp;
static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size)
{
unsigned long a;
if (!iommu_size) {
iommu_size = aper_size;
if (!no_agp)
iommu_size /= 2;
}
a = aper + iommu_size;
iommu_size -= round_up(a, PMD_PAGE_SIZE) - a;
if (iommu_size < 64*1024*1024) {
printk(KERN_WARNING
"PCI-DMA: Warning: Small IOMMU %luMB."
" Consider increasing the AGP aperture in BIOS\n",
iommu_size >> 20);
}
return iommu_size;
}
static __init unsigned read_aperture(struct pci_dev *dev, u32 *size)
{
unsigned aper_size = 0, aper_base_32, aper_order;
u64 aper_base;
pci_read_config_dword(dev, AMD64_GARTAPERTUREBASE, &aper_base_32);
pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &aper_order);
aper_order = (aper_order >> 1) & 7;
aper_base = aper_base_32 & 0x7fff;
aper_base <<= 25;
aper_size = (32 * 1024 * 1024) << aper_order;
if (aper_base + aper_size > 0x100000000UL || !aper_size)
aper_base = 0;
*size = aper_size;
return aper_base;
}
static void enable_gart_translations(void)
{
int i;
for (i = 0; i < num_k8_northbridges; i++) {
struct pci_dev *dev = k8_northbridges[i];
enable_gart_translation(dev, __pa(agp_gatt_table));
}
}
/*
* If fix_up_north_bridges is set, the north bridges have to be fixed up on
* resume in the same way as they are handled in gart_iommu_hole_init().
*/
static bool fix_up_north_bridges;
static u32 aperture_order;
static u32 aperture_alloc;
void set_up_gart_resume(u32 aper_order, u32 aper_alloc)
{
fix_up_north_bridges = true;
aperture_order = aper_order;
aperture_alloc = aper_alloc;
}
static int gart_resume(struct sys_device *dev)
{
printk(KERN_INFO "PCI-DMA: Resuming GART IOMMU\n");
if (fix_up_north_bridges) {
int i;
printk(KERN_INFO "PCI-DMA: Restoring GART aperture settings\n");
for (i = 0; i < num_k8_northbridges; i++) {
struct pci_dev *dev = k8_northbridges[i];
/*
* Don't enable translations just yet. That is the next
* step. Restore the pre-suspend aperture settings.
*/
pci_write_config_dword(dev, AMD64_GARTAPERTURECTL,
aperture_order << 1);
pci_write_config_dword(dev, AMD64_GARTAPERTUREBASE,
aperture_alloc >> 25);
}
}
enable_gart_translations();
return 0;
}
static int gart_suspend(struct sys_device *dev, pm_message_t state)
{
return 0;
}
static struct sysdev_class gart_sysdev_class = {
.name = "gart",
.suspend = gart_suspend,
.resume = gart_resume,
};
static struct sys_device device_gart = {
.id = 0,
.cls = &gart_sysdev_class,
};
/*
* Private Northbridge GATT initialization in case we cannot use the
* AGP driver for some reason.
*/
static __init int init_k8_gatt(struct agp_kern_info *info)
{
unsigned aper_size, gatt_size, new_aper_size;
unsigned aper_base, new_aper_base;
struct pci_dev *dev;
void *gatt;
int i, error;
printk(KERN_INFO "PCI-DMA: Disabling AGP.\n");
aper_size = aper_base = info->aper_size = 0;
dev = NULL;
for (i = 0; i < num_k8_northbridges; i++) {
dev = k8_northbridges[i];
new_aper_base = read_aperture(dev, &new_aper_size);
if (!new_aper_base)
goto nommu;
if (!aper_base) {
aper_size = new_aper_size;
aper_base = new_aper_base;
}
if (aper_size != new_aper_size || aper_base != new_aper_base)
goto nommu;
}
if (!aper_base)
goto nommu;
info->aper_base = aper_base;
info->aper_size = aper_size >> 20;
gatt_size = (aper_size >> PAGE_SHIFT) * sizeof(u32);
gatt = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(gatt_size));
if (!gatt)
panic("Cannot allocate GATT table");
if (set_memory_uc((unsigned long)gatt, gatt_size >> PAGE_SHIFT))
panic("Could not set GART PTEs to uncacheable pages");
agp_gatt_table = gatt;
error = sysdev_class_register(&gart_sysdev_class);
if (!error)
error = sysdev_register(&device_gart);
if (error)
panic("Could not register gart_sysdev -- "
"would corrupt data on next suspend");
flush_gart();
printk(KERN_INFO "PCI-DMA: aperture base @ %x size %u KB\n",
aper_base, aper_size>>10);
return 0;
nommu:
/* Should not happen anymore */
printk(KERN_WARNING "PCI-DMA: More than 4GB of RAM and no IOMMU\n"
KERN_WARNING "falling back to iommu=soft.\n");
return -1;
}
static struct dma_map_ops gart_dma_ops = {
.map_sg = gart_map_sg,
.unmap_sg = gart_unmap_sg,
.map_page = gart_map_page,
.unmap_page = gart_unmap_page,
.alloc_coherent = gart_alloc_coherent,
.free_coherent = gart_free_coherent,
};
void gart_iommu_shutdown(void)
{
struct pci_dev *dev;
int i;
if (no_agp && (dma_ops != &gart_dma_ops))
return;
for (i = 0; i < num_k8_northbridges; i++) {
u32 ctl;
dev = k8_northbridges[i];
pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &ctl);
ctl &= ~GARTEN;
pci_write_config_dword(dev, AMD64_GARTAPERTURECTL, ctl);
}
}
void __init gart_iommu_init(void)
{
struct agp_kern_info info;
unsigned long iommu_start;
unsigned long aper_base, aper_size;
unsigned long start_pfn, end_pfn;
unsigned long scratch;
long i;
if (cache_k8_northbridges() < 0 || num_k8_northbridges == 0)
return;
#ifndef CONFIG_AGP_AMD64
no_agp = 1;
#else
/* Makefile puts PCI initialization via subsys_initcall first. */
/* Add other K8 AGP bridge drivers here */
no_agp = no_agp ||
(agp_amd64_init() < 0) ||
(agp_copy_info(agp_bridge, &info) < 0);
#endif
if (swiotlb)
return;
/* Did we detect a different HW IOMMU? */
if (iommu_detected && !gart_iommu_aperture)
return;
if (no_iommu ||
(!force_iommu && max_pfn <= MAX_DMA32_PFN) ||
!gart_iommu_aperture ||
(no_agp && init_k8_gatt(&info) < 0)) {
if (max_pfn > MAX_DMA32_PFN) {
printk(KERN_WARNING "More than 4GB of memory "
"but GART IOMMU not available.\n");
printk(KERN_WARNING "falling back to iommu=soft.\n");
}
return;
}
/* need to map that range */
aper_size = info.aper_size << 20;
aper_base = info.aper_base;
end_pfn = (aper_base>>PAGE_SHIFT) + (aper_size>>PAGE_SHIFT);
if (end_pfn > max_low_pfn_mapped) {
start_pfn = (aper_base>>PAGE_SHIFT);
init_memory_mapping(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
}
printk(KERN_INFO "PCI-DMA: using GART IOMMU.\n");
iommu_size = check_iommu_size(info.aper_base, aper_size);
iommu_pages = iommu_size >> PAGE_SHIFT;
iommu_gart_bitmap = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(iommu_pages/8));
if (!iommu_gart_bitmap)
panic("Cannot allocate iommu bitmap\n");
#ifdef CONFIG_IOMMU_LEAK
if (leak_trace) {
int ret;
ret = dma_debug_resize_entries(iommu_pages);
if (ret)
printk(KERN_DEBUG
"PCI-DMA: Cannot trace all the entries\n");
}
#endif
/*
* Out of IOMMU space handling.
* Reserve some invalid pages at the beginning of the GART.
*/
iommu_area_reserve(iommu_gart_bitmap, 0, EMERGENCY_PAGES);
agp_memory_reserved = iommu_size;
printk(KERN_INFO
"PCI-DMA: Reserving %luMB of IOMMU area in the AGP aperture\n",
iommu_size >> 20);
iommu_start = aper_size - iommu_size;
iommu_bus_base = info.aper_base + iommu_start;
bad_dma_address = iommu_bus_base;
iommu_gatt_base = agp_gatt_table + (iommu_start>>PAGE_SHIFT);
/*
* Unmap the IOMMU part of the GART. The alias of the page is
* always mapped with cache enabled and there is no full cache
* coherency across the GART remapping. The unmapping avoids
* automatic prefetches from the CPU allocating cache lines in
* there. All CPU accesses are done via the direct mapping to
* the backing memory. The GART address is only used by PCI
* devices.
*/
set_memory_np((unsigned long)__va(iommu_bus_base),
iommu_size >> PAGE_SHIFT);
/*
* Tricky. The GART table remaps the physical memory range,
* so the CPU wont notice potential aliases and if the memory
* is remapped to UC later on, we might surprise the PCI devices
* with a stray writeout of a cacheline. So play it sure and
* do an explicit, full-scale wbinvd() _after_ having marked all
* the pages as Not-Present:
*/
wbinvd();
/*
* Now all caches are flushed and we can safely enable
* GART hardware. Doing it early leaves the possibility
* of stale cache entries that can lead to GART PTE
* errors.
*/
enable_gart_translations();
/*
* Try to workaround a bug (thanks to BenH):
* Set unmapped entries to a scratch page instead of 0.
* Any prefetches that hit unmapped entries won't get an bus abort
* then. (P2P bridge may be prefetching on DMA reads).
*/
scratch = get_zeroed_page(GFP_KERNEL);
if (!scratch)
panic("Cannot allocate iommu scratch page");
gart_unmapped_entry = GPTE_ENCODE(__pa(scratch));
for (i = EMERGENCY_PAGES; i < iommu_pages; i++)
iommu_gatt_base[i] = gart_unmapped_entry;
flush_gart();
dma_ops = &gart_dma_ops;
}
void __init gart_parse_options(char *p)
{
int arg;
#ifdef CONFIG_IOMMU_LEAK
if (!strncmp(p, "leak", 4)) {
leak_trace = 1;
p += 4;
if (*p == '=')
++p;
if (isdigit(*p) && get_option(&p, &arg))
iommu_leak_pages = arg;
}
#endif
if (isdigit(*p) && get_option(&p, &arg))
iommu_size = arg;
if (!strncmp(p, "fullflush", 8))
iommu_fullflush = 1;
if (!strncmp(p, "nofullflush", 11))
iommu_fullflush = 0;
if (!strncmp(p, "noagp", 5))
no_agp = 1;
if (!strncmp(p, "noaperture", 10))
fix_aperture = 0;
/* duplicated from pci-dma.c */
if (!strncmp(p, "force", 5))
gart_iommu_aperture_allowed = 1;
if (!strncmp(p, "allowed", 7))
gart_iommu_aperture_allowed = 1;
if (!strncmp(p, "memaper", 7)) {
fallback_aper_force = 1;
p += 7;
if (*p == '=') {
++p;
if (get_option(&p, &arg))
fallback_aper_order = arg;
}
}
}