aha/drivers/net/skge.c
Jeff Garzik b9f2c0440d [netdrvr] Stop using legacy hooks ->self_test_count, ->get_stats_count
These have been superceded by the new ->get_sset_count() hook.

Signed-off-by: Jeff Garzik <jeff@garzik.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-10 16:51:45 -07:00

3916 lines
101 KiB
C

/*
* New driver for Marvell Yukon chipset and SysKonnect Gigabit
* Ethernet adapters. Based on earlier sk98lin, e100 and
* FreeBSD if_sk drivers.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <asm/irq.h>
#include "skge.h"
#define DRV_NAME "skge"
#define DRV_VERSION "1.11"
#define PFX DRV_NAME " "
#define DEFAULT_TX_RING_SIZE 128
#define DEFAULT_RX_RING_SIZE 512
#define MAX_TX_RING_SIZE 1024
#define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
#define MAX_RX_RING_SIZE 4096
#define RX_COPY_THRESHOLD 128
#define RX_BUF_SIZE 1536
#define PHY_RETRIES 1000
#define ETH_JUMBO_MTU 9000
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define BLINK_MS 250
#define LINK_HZ (HZ/2)
MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg
= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
| NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static const struct pci_device_id skge_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);
static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
static void skge_phy_reset(struct skge_port *skge);
static void skge_tx_clean(struct net_device *dev);
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_link_up(struct skge_port *skge);
/* Avoid conditionals by using array */
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
static int skge_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
/*
* Returns copy of whole control register region
* Note: skip RAM address register because accessing it will
* cause bus hangs!
*/
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct skge_port *skge = netdev_priv(dev);
const void __iomem *io = skge->hw->regs;
regs->version = 1;
memset(p, 0, regs->len);
memcpy_fromio(p, io, B3_RAM_ADDR);
memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
regs->len - B3_RI_WTO_R1);
}
/* Wake on Lan only supported on Yukon chips with rev 1 or above */
static u32 wol_supported(const struct skge_hw *hw)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return 0;
if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
return 0;
return WAKE_MAGIC | WAKE_PHY;
}
static u32 pci_wake_enabled(struct pci_dev *dev)
{
int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
u16 value;
/* If device doesn't support PM Capabilities, but request is to disable
* wake events, it's a nop; otherwise fail */
if (!pm)
return 0;
pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
value &= PCI_PM_CAP_PME_MASK;
value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
return value != 0;
}
static void skge_wol_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl;
skge_write16(hw, B0_CTST, CS_RST_CLR);
skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
/* Turn on Vaux */
skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
/* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
u32 reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9;
reg &= ~GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
skge_write32(hw, SK_REG(port, GPHY_CTRL),
GPC_DIS_SLEEP |
GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
GPC_ANEG_1 | GPC_RST_SET);
skge_write32(hw, SK_REG(port, GPHY_CTRL),
GPC_DIS_SLEEP |
GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
GPC_ANEG_1 | GPC_RST_CLR);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
/* Force to 10/100 skge_reset will re-enable on resume */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
PHY_AN_100FULL | PHY_AN_100HALF |
PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
/* no 1000 HD/FD */
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_CTRL,
PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
PHY_CT_RE_CFG | PHY_CT_DUP_MD);
/* Set GMAC to no flow control and auto update for speed/duplex */
gma_write16(hw, port, GM_GP_CTRL,
GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
/* Set WOL address */
memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
skge->netdev->dev_addr, ETH_ALEN);
/* Turn on appropriate WOL control bits */
skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
ctrl = 0;
if (skge->wol & WAKE_PHY)
ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
if (skge->wol & WAKE_MAGIC)
ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
/* block receiver */
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
}
static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct skge_port *skge = netdev_priv(dev);
wol->supported = wol_supported(skge->hw);
wol->wolopts = skge->wol;
}
static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (wol->wolopts & ~wol_supported(hw))
return -EOPNOTSUPP;
skge->wol = wol->wolopts;
return 0;
}
/* Determine supported/advertised modes based on hardware.
* Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
*/
static u32 skge_supported_modes(const struct skge_hw *hw)
{
u32 supported;
if (hw->copper) {
supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg| SUPPORTED_TP;
if (hw->chip_id == CHIP_ID_GENESIS)
supported &= ~(SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full);
else if (hw->chip_id == CHIP_ID_YUKON)
supported &= ~SUPPORTED_1000baseT_Half;
} else
supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
| SUPPORTED_FIBRE | SUPPORTED_Autoneg;
return supported;
}
static int skge_get_settings(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = skge_supported_modes(hw);
if (hw->copper) {
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy_addr;
} else
ecmd->port = PORT_FIBRE;
ecmd->advertising = skge->advertising;
ecmd->autoneg = skge->autoneg;
ecmd->speed = skge->speed;
ecmd->duplex = skge->duplex;
return 0;
}
static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
const struct skge_hw *hw = skge->hw;
u32 supported = skge_supported_modes(hw);
if (ecmd->autoneg == AUTONEG_ENABLE) {
ecmd->advertising = supported;
skge->duplex = -1;
skge->speed = -1;
} else {
u32 setting;
switch (ecmd->speed) {
case SPEED_1000:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
skge->speed = ecmd->speed;
skge->duplex = ecmd->duplex;
}
skge->autoneg = ecmd->autoneg;
skge->advertising = ecmd->advertising;
if (netif_running(dev))
skge_phy_reset(skge);
return (0);
}
static void skge_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct skge_port *skge = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, pci_name(skge->hw->pdev));
}
static const struct skge_stat {
char name[ETH_GSTRING_LEN];
u16 xmac_offset;
u16 gma_offset;
} skge_stats[] = {
{ "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
{ "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
{ "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
{ "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
{ "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
{ "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
{ "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
{ "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
{ "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
{ "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
{ "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
{ "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
{ "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
{ "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
{ "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
{ "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
{ "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
{ "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
{ "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
{ "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
{ "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};
static int skge_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(skge_stats);
default:
return -EOPNOTSUPP;
}
}
static void skge_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->hw->chip_id == CHIP_ID_GENESIS)
genesis_get_stats(skge, data);
else
yukon_get_stats(skge, data);
}
/* Use hardware MIB variables for critical path statistics and
* transmit feedback not reported at interrupt.
* Other errors are accounted for in interrupt handler.
*/
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
u64 data[ARRAY_SIZE(skge_stats)];
if (skge->hw->chip_id == CHIP_ID_GENESIS)
genesis_get_stats(skge, data);
else
yukon_get_stats(skge, data);
skge->net_stats.tx_bytes = data[0];
skge->net_stats.rx_bytes = data[1];
skge->net_stats.tx_packets = data[2] + data[4] + data[6];
skge->net_stats.rx_packets = data[3] + data[5] + data[7];
skge->net_stats.multicast = data[3] + data[5];
skge->net_stats.collisions = data[10];
skge->net_stats.tx_aborted_errors = data[12];
return &skge->net_stats;
}
static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
skge_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static void skge_get_ring_param(struct net_device *dev,
struct ethtool_ringparam *p)
{
struct skge_port *skge = netdev_priv(dev);
p->rx_max_pending = MAX_RX_RING_SIZE;
p->tx_max_pending = MAX_TX_RING_SIZE;
p->rx_mini_max_pending = 0;
p->rx_jumbo_max_pending = 0;
p->rx_pending = skge->rx_ring.count;
p->tx_pending = skge->tx_ring.count;
p->rx_mini_pending = 0;
p->rx_jumbo_pending = 0;
}
static int skge_set_ring_param(struct net_device *dev,
struct ethtool_ringparam *p)
{
struct skge_port *skge = netdev_priv(dev);
int err;
if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
return -EINVAL;
skge->rx_ring.count = p->rx_pending;
skge->tx_ring.count = p->tx_pending;
if (netif_running(dev)) {
skge_down(dev);
err = skge_up(dev);
if (err)
dev_close(dev);
}
return 0;
}
static u32 skge_get_msglevel(struct net_device *netdev)
{
struct skge_port *skge = netdev_priv(netdev);
return skge->msg_enable;
}
static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
struct skge_port *skge = netdev_priv(netdev);
skge->msg_enable = value;
}
static int skge_nway_reset(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
return -EINVAL;
skge_phy_reset(skge);
return 0;
}
static int skge_set_sg(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (hw->chip_id == CHIP_ID_GENESIS && data)
return -EOPNOTSUPP;
return ethtool_op_set_sg(dev, data);
}
static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if (hw->chip_id == CHIP_ID_GENESIS && data)
return -EOPNOTSUPP;
return ethtool_op_set_tx_csum(dev, data);
}
static u32 skge_get_rx_csum(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
return skge->rx_csum;
}
/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
return -EOPNOTSUPP;
skge->rx_csum = data;
return 0;
}
static void skge_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
|| (skge->flow_control == FLOW_MODE_SYM_OR_REM);
ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
}
static int skge_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct ethtool_pauseparam old;
skge_get_pauseparam(dev, &old);
if (ecmd->autoneg != old.autoneg)
skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
else {
if (ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYMMETRIC;
else if (ecmd->rx_pause && !ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYM_OR_REM;
else if (!ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_LOC_SEND;
else
skge->flow_control = FLOW_MODE_NONE;
}
if (netif_running(dev))
skge_phy_reset(skge);
return 0;
}
/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
}
/* Chip HZ to microseconds */
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
return (ticks * 1000) / hwkhz(hw);
}
/* Microseconds to chip HZ */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
return hwkhz(hw) * usec / 1000;
}
static int skge_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
ecmd->rx_coalesce_usecs = 0;
ecmd->tx_coalesce_usecs = 0;
if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
u32 msk = skge_read32(hw, B2_IRQM_MSK);
if (msk & rxirqmask[port])
ecmd->rx_coalesce_usecs = delay;
if (msk & txirqmask[port])
ecmd->tx_coalesce_usecs = delay;
}
return 0;
}
/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 msk = skge_read32(hw, B2_IRQM_MSK);
u32 delay = 25;
if (ecmd->rx_coalesce_usecs == 0)
msk &= ~rxirqmask[port];
else if (ecmd->rx_coalesce_usecs < 25 ||
ecmd->rx_coalesce_usecs > 33333)
return -EINVAL;
else {
msk |= rxirqmask[port];
delay = ecmd->rx_coalesce_usecs;
}
if (ecmd->tx_coalesce_usecs == 0)
msk &= ~txirqmask[port];
else if (ecmd->tx_coalesce_usecs < 25 ||
ecmd->tx_coalesce_usecs > 33333)
return -EINVAL;
else {
msk |= txirqmask[port];
delay = min(delay, ecmd->rx_coalesce_usecs);
}
skge_write32(hw, B2_IRQM_MSK, msk);
if (msk == 0)
skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
else {
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
}
return 0;
}
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
spin_lock_bh(&hw->phy_lock);
if (hw->chip_id == CHIP_ID_GENESIS) {
switch (mode) {
case LED_MODE_OFF:
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
else {
skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
}
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
break;
case LED_MODE_ON:
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
break;
case LED_MODE_TST:
skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
else {
skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
}
}
} else {
switch (mode) {
case LED_MODE_OFF:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) |
PHY_M_LED_MO_1000(MO_LED_OFF) |
PHY_M_LED_MO_RX(MO_LED_OFF));
break;
case LED_MODE_ON:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
PHY_M_LED_PULS_DUR(PULS_170MS) |
PHY_M_LED_BLINK_RT(BLINK_84MS) |
PHY_M_LEDC_TX_CTRL |
PHY_M_LEDC_DP_CTRL);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_RX(MO_LED_OFF) |
(skge->speed == SPEED_100 ?
PHY_M_LED_MO_100(MO_LED_ON) : 0));
break;
case LED_MODE_TST:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) |
PHY_M_LED_MO_1000(MO_LED_ON) |
PHY_M_LED_MO_RX(MO_LED_ON));
}
}
spin_unlock_bh(&hw->phy_lock);
}
/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
struct skge_port *skge = netdev_priv(dev);
unsigned long ms;
enum led_mode mode = LED_MODE_TST;
if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
else
ms = data * 1000;
while (ms > 0) {
skge_led(skge, mode);
mode ^= LED_MODE_TST;
if (msleep_interruptible(BLINK_MS))
break;
ms -= BLINK_MS;
}
/* back to regular LED state */
skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
return 0;
}
static const struct ethtool_ops skge_ethtool_ops = {
.get_settings = skge_get_settings,
.set_settings = skge_set_settings,
.get_drvinfo = skge_get_drvinfo,
.get_regs_len = skge_get_regs_len,
.get_regs = skge_get_regs,
.get_wol = skge_get_wol,
.set_wol = skge_set_wol,
.get_msglevel = skge_get_msglevel,
.set_msglevel = skge_set_msglevel,
.nway_reset = skge_nway_reset,
.get_link = ethtool_op_get_link,
.get_ringparam = skge_get_ring_param,
.set_ringparam = skge_set_ring_param,
.get_pauseparam = skge_get_pauseparam,
.set_pauseparam = skge_set_pauseparam,
.get_coalesce = skge_get_coalesce,
.set_coalesce = skge_set_coalesce,
.set_sg = skge_set_sg,
.set_tx_csum = skge_set_tx_csum,
.get_rx_csum = skge_get_rx_csum,
.set_rx_csum = skge_set_rx_csum,
.get_strings = skge_get_strings,
.phys_id = skge_phys_id,
.get_sset_count = skge_get_sset_count,
.get_ethtool_stats = skge_get_ethtool_stats,
};
/*
* Allocate ring elements and chain them together
* One-to-one association of board descriptors with ring elements
*/
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
{
struct skge_tx_desc *d;
struct skge_element *e;
int i;
ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
if (!ring->start)
return -ENOMEM;
for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
e->desc = d;
if (i == ring->count - 1) {
e->next = ring->start;
d->next_offset = base;
} else {
e->next = e + 1;
d->next_offset = base + (i+1) * sizeof(*d);
}
}
ring->to_use = ring->to_clean = ring->start;
return 0;
}
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
struct sk_buff *skb, unsigned int bufsize)
{
struct skge_rx_desc *rd = e->desc;
u64 map;
map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
PCI_DMA_FROMDEVICE);
rd->dma_lo = map;
rd->dma_hi = map >> 32;
e->skb = skb;
rd->csum1_start = ETH_HLEN;
rd->csum2_start = ETH_HLEN;
rd->csum1 = 0;
rd->csum2 = 0;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, bufsize);
}
/* Resume receiving using existing skb,
* Note: DMA address is not changed by chip.
* MTU not changed while receiver active.
*/
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
struct skge_rx_desc *rd = e->desc;
rd->csum2 = 0;
rd->csum2_start = ETH_HLEN;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}
/* Free all buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct skge_rx_desc *rd = e->desc;
rd->control = 0;
if (e->skb) {
pci_unmap_single(hw->pdev,
pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(e->skb);
e->skb = NULL;
}
} while ((e = e->next) != ring->start);
}
/* Allocate buffers for receive ring
* For receive: to_clean is next received frame.
*/
static int skge_rx_fill(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct sk_buff *skb;
skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_reserve(skb, NET_IP_ALIGN);
skge_rx_setup(skge, e, skb, skge->rx_buf_size);
} while ( (e = e->next) != ring->start);
ring->to_clean = ring->start;
return 0;
}
static const char *skge_pause(enum pause_status status)
{
switch(status) {
case FLOW_STAT_NONE:
return "none";
case FLOW_STAT_REM_SEND:
return "rx only";
case FLOW_STAT_LOC_SEND:
return "tx_only";
case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
return "both";
default:
return "indeterminated";
}
}
static void skge_link_up(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
netif_carrier_on(skge->netdev);
netif_wake_queue(skge->netdev);
if (netif_msg_link(skge)) {
printk(KERN_INFO PFX
"%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
skge->netdev->name, skge->speed,
skge->duplex == DUPLEX_FULL ? "full" : "half",
skge_pause(skge->flow_status));
}
}
static void skge_link_down(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
netif_carrier_off(skge->netdev);
netif_stop_queue(skge->netdev);
if (netif_msg_link(skge))
printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}
static void xm_link_down(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 cmd, msk;
if (hw->phy_type == SK_PHY_XMAC) {
msk = xm_read16(hw, port, XM_IMSK);
msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
xm_write16(hw, port, XM_IMSK, msk);
}
cmd = xm_read16(hw, port, XM_MMU_CMD);
cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
xm_write16(hw, port, XM_MMU_CMD, cmd);
/* dummy read to ensure writing */
(void) xm_read16(hw, port, XM_MMU_CMD);
if (netif_carrier_ok(dev))
skge_link_down(skge);
}
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
*val = xm_read16(hw, port, XM_PHY_DATA);
if (hw->phy_type == SK_PHY_XMAC)
goto ready;
for (i = 0; i < PHY_RETRIES; i++) {
if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
goto ready;
udelay(1);
}
return -ETIMEDOUT;
ready:
*val = xm_read16(hw, port, XM_PHY_DATA);
return 0;
}
static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__xm_phy_read(hw, port, reg, &v))
printk(KERN_WARNING PFX "%s: phy read timed out\n",
hw->dev[port]->name);
return v;
}
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
goto ready;
udelay(1);
}
return -EIO;
ready:
xm_write16(hw, port, XM_PHY_DATA, val);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void genesis_init(struct skge_hw *hw)
{
/* set blink source counter */
skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
skge_write8(hw, B2_BSC_CTRL, BSC_START);
/* configure mac arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure mac arbiter timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* configure packet arbiter timeout */
skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}
static void genesis_reset(struct skge_hw *hw, int port)
{
const u8 zero[8] = { 0 };
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
/* reset the statistics module */
xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable Broadcom PHY IRQ */
if (hw->phy_type == SK_PHY_BCOM)
xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
xm_outhash(hw, port, XM_HSM, zero);
}
/* Convert mode to MII values */
static const u16 phy_pause_map[] = {
[FLOW_MODE_NONE] = 0,
[FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
[FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};
/* special defines for FIBER (88E1011S only) */
static const u16 fiber_pause_map[] = {
[FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
[FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
[FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
[FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
};
/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 status;
/* read twice because of latch */
(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
status = xm_phy_read(hw, port, PHY_BCOM_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, aux;
if (!(status & PHY_ST_AN_OVER))
return;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
printk(KERN_NOTICE PFX "%s: remote fault\n",
dev->name);
return;
}
aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
/* Check Duplex mismatch */
switch (aux & PHY_B_AS_AN_RES_MSK) {
case PHY_B_RES_1000FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_B_RES_1000HD:
skge->duplex = DUPLEX_HALF;
break;
default:
printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
dev->name);
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (aux & PHY_B_AS_PAUSE_MSK) {
case PHY_B_AS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_B_AS_PRR:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_B_AS_PRT:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
}
/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
* Phy on for 100 or 10Mbit operation
*/
static void bcom_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
u16 id1, r, ext, ctl;
/* magic workaround patterns for Broadcom */
static const struct {
u16 reg;
u16 val;
} A1hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
}, C0hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
};
/* read Id from external PHY (all have the same address) */
id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */
r = xm_read16(hw, port, XM_MMU_CMD);
r |= XM_MMU_NO_PRE;
xm_write16(hw, port, XM_MMU_CMD,r);
switch (id1) {
case PHY_BCOM_ID1_C0:
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val);
break;
case PHY_BCOM_ID1_A1:
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val);
break;
}
/*
* Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset.
*/
r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
r |= PHY_B_AC_DIS_PM;
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
/* Dummy read */
xm_read16(hw, port, XM_ISRC);
ext = PHY_B_PEC_EN_LTR; /* enable tx led */
ctl = PHY_CT_SP1000; /* always 1000mbit */
if (skge->autoneg == AUTONEG_ENABLE) {
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
u16 adv = PHY_B_1000C_RD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_B_1000C_AHD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_B_1000C_AFD;
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
if (skge->duplex == DUPLEX_FULL)
ctl |= PHY_CT_DUP_MD;
/* Force to slave */
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
}
/* Set autonegotiation pause parameters */
xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
/* Handle Jumbo frames */
if (hw->dev[port]->mtu > ETH_DATA_LEN) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
ext |= PHY_B_PEC_HIGH_LA;
}
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
/* Use link status change interrupt */
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
static void xm_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl = 0;
if (skge->autoneg == AUTONEG_ENABLE) {
if (skge->advertising & ADVERTISED_1000baseT_Half)
ctrl |= PHY_X_AN_HD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
ctrl |= PHY_X_AN_FD;
ctrl |= fiber_pause_map[skge->flow_control];
xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
/* Restart Auto-negotiation */
ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* Set DuplexMode in Config register */
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLEs are transmitted
*/
}
xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
/* Poll PHY for status changes */
mod_timer(&skge->link_timer, jiffies + LINK_HZ);
}
static void xm_check_link(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 status;
/* read twice because of latch */
(void) xm_phy_read(hw, port, PHY_XMAC_STAT);
status = xm_phy_read(hw, port, PHY_XMAC_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, res;
if (!(status & PHY_ST_AN_OVER))
return;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
printk(KERN_NOTICE PFX "%s: remote fault\n",
dev->name);
return;
}
res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
/* Check Duplex mismatch */
switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
case PHY_X_RS_FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_X_RS_HD:
skge->duplex = DUPLEX_HALF;
break;
default:
printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
dev->name);
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
(lpa & PHY_X_P_SYM_MD))
skge->flow_status = FLOW_STAT_SYMMETRIC;
else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
/* Enable PAUSE receive, disable PAUSE transmit */
skge->flow_status = FLOW_STAT_REM_SEND;
else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
/* Disable PAUSE receive, enable PAUSE transmit */
skge->flow_status = FLOW_STAT_LOC_SEND;
else
skge->flow_status = FLOW_STAT_NONE;
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
}
/* Poll to check for link coming up.
* Since internal PHY is wired to a level triggered pin, can't
* get an interrupt when carrier is detected.
*/
static void xm_link_timer(unsigned long arg)
{
struct skge_port *skge = (struct skge_port *) arg;
struct net_device *dev = skge->netdev;
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (!netif_running(dev))
return;
if (netif_carrier_ok(dev)) {
xm_read16(hw, port, XM_ISRC);
if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
goto nochange;
} else {
if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
goto nochange;
xm_read16(hw, port, XM_ISRC);
if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
goto nochange;
}
spin_lock(&hw->phy_lock);
xm_check_link(dev);
spin_unlock(&hw->phy_lock);
nochange:
if (netif_running(dev))
mod_timer(&skge->link_timer, jiffies + LINK_HZ);
}
static void genesis_mac_init(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
int i;
u32 r;
const u8 zero[6] = { 0 };
for (i = 0; i < 10; i++) {
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_SET_MAC_RST);
if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
goto reset_ok;
udelay(1);
}
printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
reset_ok:
/* Unreset the XMAC. */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (hw->phy_type != SK_PHY_XMAC) {
/* Take external Phy out of reset */
r = skge_read32(hw, B2_GP_IO);
if (port == 0)
r |= GP_DIR_0|GP_IO_0;
else
r |= GP_DIR_2|GP_IO_2;
skge_write32(hw, B2_GP_IO, r);
/* Enable GMII interface */
xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
}
switch(hw->phy_type) {
case SK_PHY_XMAC:
xm_phy_init(skge);
break;
case SK_PHY_BCOM:
bcom_phy_init(skge);
bcom_check_link(hw, port);
}
/* Set Station Address */
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
/* We don't use match addresses so clear */
for (i = 1; i < 16; i++)
xm_outaddr(hw, port, XM_EXM(i), zero);
/* Clear MIB counters */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* configure Rx High Water Mark (XM_RX_HI_WM) */
xm_write16(hw, port, XM_RX_HI_WM, 1450);
/* We don't need the FCS appended to the packet. */
r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
if (jumbo)
r |= XM_RX_BIG_PK_OK;
if (skge->duplex == DUPLEX_HALF) {
/*
* If in manual half duplex mode the other side might be in
* full duplex mode, so ignore if a carrier extension is not seen
* on frames received
*/
r |= XM_RX_DIS_CEXT;
}
xm_write16(hw, port, XM_RX_CMD, r);
/* We want short frames padded to 60 bytes. */
xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
xm_write16(hw, port, XM_TX_THR, 512);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transferring frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
/*
* Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
* - Enable all bits excepting 'Octets Rx OK Low CntOv'
* and 'Octets Rx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
/*
* Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
* - Enable all bits excepting 'Octets Tx OK Low CntOv'
* and 'Octets Tx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
/* Configure MAC arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, 72);
skge_write8(hw, B3_MA_TOINI_RX2, 72);
skge_write8(hw, B3_MA_TOINI_TX1, 72);
skge_write8(hw, B3_MA_TOINI_TX2, 72);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* Configure Rx MAC FIFO */
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
if (jumbo) {
/* Enable frame flushing if jumbo frames used */
skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
} else {
/* enable timeout timers if normal frames */
skge_write16(hw, B3_PA_CTRL,
(port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
}
}
static void genesis_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 reg;
genesis_reset(hw, port);
/* Clear Tx packet arbiter timeout IRQ */
skge_write16(hw, B3_PA_CTRL,
port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
/*
* If the transfer sticks at the MAC the STOP command will not
* terminate if we don't flush the XMAC's transmit FIFO !
*/
xm_write32(hw, port, XM_MODE,
xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
/* Reset the MAC */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
/* For external PHYs there must be special handling */
if (hw->phy_type != SK_PHY_XMAC) {
reg = skge_read32(hw, B2_GP_IO);
if (port == 0) {
reg |= GP_DIR_0;
reg &= ~GP_IO_0;
} else {
reg |= GP_DIR_2;
reg &= ~GP_IO_2;
}
skge_write32(hw, B2_GP_IO, reg);
skge_read32(hw, B2_GP_IO);
}
xm_write16(hw, port, XM_MMU_CMD,
xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
xm_read16(hw, port, XM_MMU_CMD);
}
static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
unsigned long timeout = jiffies + HZ;
xm_write16(hw, port,
XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
/* wait for update to complete */
while (xm_read16(hw, port, XM_STAT_CMD)
& (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
if (time_after(jiffies, timeout))
break;
udelay(10);
}
/* special case for 64 bit octet counter */
data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
| xm_read32(hw, port, XM_TXO_OK_LO);
data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
| xm_read32(hw, port, XM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
}
static void genesis_mac_intr(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 status = xm_read16(hw, port, XM_ISRC);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
skge->netdev->name, status);
if (hw->phy_type == SK_PHY_XMAC &&
(status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
xm_link_down(hw, port);
if (status & XM_IS_TXF_UR) {
xm_write32(hw, port, XM_MODE, XM_MD_FTF);
++skge->net_stats.tx_fifo_errors;
}
if (status & XM_IS_RXF_OV) {
xm_write32(hw, port, XM_MODE, XM_MD_FRF);
++skge->net_stats.rx_fifo_errors;
}
}
static void genesis_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 cmd, msk;
u32 mode;
cmd = xm_read16(hw, port, XM_MMU_CMD);
/*
* enabling pause frame reception is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
if (skge->flow_status == FLOW_STAT_NONE ||
skge->flow_status == FLOW_STAT_LOC_SEND)
/* Disable Pause Frame Reception */
cmd |= XM_MMU_IGN_PF;
else
/* Enable Pause Frame Reception */
cmd &= ~XM_MMU_IGN_PF;
xm_write16(hw, port, XM_MMU_CMD, cmd);
mode = xm_read32(hw, port, XM_MODE);
if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
skge->flow_status == FLOW_STAT_LOC_SEND) {
/*
* Configure Pause Frame Generation
* Use internal and external Pause Frame Generation.
* Sending pause frames is edge triggered.
* Send a Pause frame with the maximum pause time if
* internal oder external FIFO full condition occurs.
* Send a zero pause time frame to re-start transmission.
*/
/* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */
xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
mode |= XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
} else {
/*
* disable pause frame generation is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
/* Disable Pause Mode in Mode Register */
mode &= ~XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
}
xm_write32(hw, port, XM_MODE, mode);
msk = XM_DEF_MSK;
if (hw->phy_type != SK_PHY_XMAC)
msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
xm_write16(hw, port, XM_IMSK, msk);
xm_read16(hw, port, XM_ISRC);
/* get MMU Command Reg. */
cmd = xm_read16(hw, port, XM_MMU_CMD);
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
cmd |= XM_MMU_GMII_FD;
/*
* Workaround BCOM Errata (#10523) for all BCom Phys
* Enable Power Management after link up
*/
if (hw->phy_type == SK_PHY_BCOM) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
& ~PHY_B_AC_DIS_PM);
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
/* enable Rx/Tx */
xm_write16(hw, port, XM_MMU_CMD,
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
skge_link_up(skge);
}
static inline void bcom_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 isrc;
isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
skge->netdev->name, isrc);
if (isrc & PHY_B_IS_PSE)
printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
hw->dev[port]->name);
/* Workaround BCom Errata:
* enable and disable loopback mode if "NO HCD" occurs.
*/
if (isrc & PHY_B_IS_NO_HDCL) {
u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl | PHY_CT_LOOP);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl & ~PHY_CT_LOOP);
}
if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
bcom_check_link(hw, port);
}
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
return 0;
}
printk(KERN_WARNING PFX "%s: phy write timeout\n",
hw->dev[port]->name);
return -EIO;
}
static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
goto ready;
}
return -ETIMEDOUT;
ready:
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__gm_phy_read(hw, port, reg, &v))
printk(KERN_WARNING PFX "%s: phy read timeout\n",
hw->dev[port]->name);
return v;
}
/* Marvell Phy Initialization */
static void yukon_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv;
if (skge->autoneg == AUTONEG_ENABLE) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (skge->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE;
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0;
ct1000 = 0;
adv = PHY_AN_CSMA;
if (skge->autoneg == AUTONEG_ENABLE) {
if (hw->copper) {
if (skge->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (skge->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (skge->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (skge->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (skge->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
/* Set Flow-control capabilities */
adv |= phy_pause_map[skge->flow_control];
} else {
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
adv |= fiber_pause_map[skge->flow_control];
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
switch (skge->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
break;
}
ctrl |= PHY_CT_RESET;
}
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Enable phy interrupt on autonegotiation complete (or link up) */
if (skge->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
}
static void yukon_reset(struct skge_hw *hw, int port)
{
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
gma_write16(hw, port, GM_RX_CTRL,
gma_read16(hw, port, GM_RX_CTRL)
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
u32 reg;
int ret;
if (hw->chip_id != CHIP_ID_YUKON)
return 0;
reg = skge_read32(hw, B2_FAR);
skge_write8(hw, B2_FAR + 3, 0xff);
ret = (skge_read8(hw, B2_FAR + 3) != 0);
skge_write32(hw, B2_FAR, reg);
return ret;
}
static void yukon_mac_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
int i;
u32 reg;
const u8 *addr = hw->dev[port]->dev_addr;
/* WA code for COMA mode -- set PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9 | GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* hard reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9;
reg &= ~GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* Set hardware config mode */
reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
/* Clear GMC reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
if (skge->autoneg == AUTONEG_DISABLE) {
reg = GM_GPCR_AU_ALL_DIS;
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL) | reg);
switch (skge->speed) {
case SPEED_1000:
reg &= ~GM_GPCR_SPEED_100;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
reg &= ~GM_GPCR_SPEED_1000;
reg |= GM_GPCR_SPEED_100;
break;
case SPEED_10:
reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
break;
}
if (skge->duplex == DUPLEX_FULL)
reg |= GM_GPCR_DUP_FULL;
} else
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
switch (skge->flow_control) {
case FLOW_MODE_NONE:
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_LOC_SEND:
/* disable Rx flow-control */
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_SYMMETRIC:
case FLOW_MODE_SYM_OR_REM:
/* enable Tx & Rx flow-control */
break;
}
gma_write16(hw, port, GM_GP_CTRL, reg);
skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
yukon_init(hw, port);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
/* serial mode register */
reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (hw->dev[port]->mtu > 1500)
reg |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* enable interrupt mask for counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Initialize Mac Fifo */
/* Configure Rx MAC FIFO */
skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
if (is_yukon_lite_a0(hw))
reg &= ~GMF_RX_F_FL_ON;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
/*
* because Pause Packet Truncation in GMAC is not working
* we have to increase the Flush Threshold to 64 bytes
* in order to flush pause packets in Rx FIFO on Yukon-1
*/
skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
}
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
u16 ctrl;
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_PC_POL_R_DIS;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* switch IEEE compatible power down mode on */
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_PDOWN;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}
static void yukon_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
yukon_reset(hw, port);
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
gma_read16(hw, port, GM_GP_CTRL);
yukon_suspend(hw, port);
/* set GPHY Control reset */
skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
}
static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = gma_read32(hw, port,
skge_stats[i].gma_offset);
}
static void yukon_mac_intr(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
dev->name, status);
if (status & GM_IS_RX_FF_OR) {
++skge->net_stats.rx_fifo_errors;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++skge->net_stats.tx_fifo_errors;
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void yukon_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 reg;
/* Enable Transmit FIFO Underrun */
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
reg = gma_read16(hw, port, GM_GP_CTRL);
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
skge_link_up(skge);
}
static void yukon_link_down(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl;
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
if (skge->flow_status == FLOW_STAT_REM_SEND) {
ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
ctrl |= PHY_M_AN_ASP;
/* restore Asymmetric Pause bit */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
}
skge_link_down(skge);
yukon_init(hw, port);
}
static void yukon_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
const char *reason = NULL;
u16 istatus, phystat;
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
if (netif_msg_intr(skge))
printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
skge->netdev->name, istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) {
if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
& PHY_M_AN_RF) {
reason = "remote fault";
goto failed;
}
if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
reason = "master/slave fault";
goto failed;
}
if (!(phystat & PHY_M_PS_SPDUP_RES)) {
reason = "speed/duplex";
goto failed;
}
skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
? DUPLEX_FULL : DUPLEX_HALF;
skge->speed = yukon_speed(hw, phystat);
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (phystat & PHY_M_PS_PAUSE_MSK) {
case PHY_M_PS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_M_PS_RX_P_EN:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_M_PS_TX_P_EN:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
if (skge->flow_status == FLOW_STAT_NONE ||
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
else
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
yukon_link_up(skge);
return;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
skge->speed = yukon_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
yukon_link_up(skge);
else
yukon_link_down(skge);
}
return;
failed:
printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
skge->netdev->name, reason);
/* XXX restart autonegotiation? */
}
static void skge_phy_reset(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct net_device *dev = hw->dev[port];
netif_stop_queue(skge->netdev);
netif_carrier_off(skge->netdev);
spin_lock_bh(&hw->phy_lock);
if (hw->chip_id == CHIP_ID_GENESIS) {
genesis_reset(hw, port);
genesis_mac_init(hw, port);
} else {
yukon_reset(hw, port);
yukon_init(hw, port);
}
spin_unlock_bh(&hw->phy_lock);
dev->set_multicast_list(dev);
}
/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = hw->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
spin_lock_bh(&hw->phy_lock);
if (hw->chip_id == CHIP_ID_GENESIS)
err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
else
err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
spin_unlock_bh(&hw->phy_lock);
data->val_out = val;
break;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_bh(&hw->phy_lock);
if (hw->chip_id == CHIP_ID_GENESIS)
err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
data->val_in);
else
err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
data->val_in);
spin_unlock_bh(&hw->phy_lock);
break;
}
return err;
}
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
u32 end;
start /= 8;
len /= 8;
end = start + len - 1;
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
skge_write32(hw, RB_ADDR(q, RB_START), start);
skge_write32(hw, RB_ADDR(q, RB_WP), start);
skge_write32(hw, RB_ADDR(q, RB_RP), start);
skge_write32(hw, RB_ADDR(q, RB_END), end);
if (q == Q_R1 || q == Q_R2) {
/* Set thresholds on receive queue's */
skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
start + (2*len)/3);
skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
start + (len/3));
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 4K on Genesis and 1K on Yukon
*/
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}
/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
const struct skge_element *e)
{
struct skge_hw *hw = skge->hw;
u32 watermark = 0x600;
u64 base = skge->dma + (e->desc - skge->mem);
/* optimization to reduce window on 32bit/33mhz */
if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
watermark /= 2;
skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
skge_write32(hw, Q_ADDR(q, Q_F), watermark);
skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}
static int skge_up(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 chunk, ram_addr;
size_t rx_size, tx_size;
int err;
if (!is_valid_ether_addr(dev->dev_addr))
return -EINVAL;
if (netif_msg_ifup(skge))
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
if (dev->mtu > RX_BUF_SIZE)
skge->rx_buf_size = dev->mtu + ETH_HLEN;
else
skge->rx_buf_size = RX_BUF_SIZE;
rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
skge->mem_size = tx_size + rx_size;
skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
if (!skge->mem)
return -ENOMEM;
BUG_ON(skge->dma & 7);
if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
err = -EINVAL;
goto free_pci_mem;
}
memset(skge->mem, 0, skge->mem_size);
err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
if (err)
goto free_pci_mem;
err = skge_rx_fill(dev);
if (err)
goto free_rx_ring;
err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
skge->dma + rx_size);
if (err)
goto free_rx_ring;
/* Initialize MAC */
spin_lock_bh(&hw->phy_lock);
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_init(hw, port);
else
yukon_mac_init(hw, port);
spin_unlock_bh(&hw->phy_lock);
/* Configure RAMbuffers */
chunk = hw->ram_size / ((hw->ports + 1)*2);
ram_addr = hw->ram_offset + 2 * chunk * port;
skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
/* Start receiver BMU */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
skge_led(skge, LED_MODE_ON);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask |= portmask[port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
spin_unlock_irq(&hw->hw_lock);
napi_enable(&skge->napi);
return 0;
free_rx_ring:
skge_rx_clean(skge);
kfree(skge->rx_ring.start);
free_pci_mem:
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
skge->mem = NULL;
return err;
}
static int skge_down(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (skge->mem == NULL)
return 0;
if (netif_msg_ifdown(skge))
printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
netif_stop_queue(dev);
if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
del_timer_sync(&skge->link_timer);
napi_disable(&skge->napi);
netif_carrier_off(dev);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask &= ~portmask[port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
spin_unlock_irq(&hw->hw_lock);
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_stop(skge);
else
yukon_stop(skge);
/* Stop transmitter */
skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
/* Disable Force Sync bit and Enable Alloc bit */
skge_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset PCI FIFO */
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
/* Reset the RAM Buffer async Tx queue */
skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
/* stop receiver */
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
if (hw->chip_id == CHIP_ID_GENESIS) {
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
} else {
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
}
skge_led(skge, LED_MODE_OFF);
netif_tx_lock_bh(dev);
skge_tx_clean(dev);
netif_tx_unlock_bh(dev);
skge_rx_clean(skge);
kfree(skge->rx_ring.start);
kfree(skge->tx_ring.start);
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
skge->mem = NULL;
return 0;
}
static inline int skge_avail(const struct skge_ring *ring)
{
smp_mb();
return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
+ (ring->to_clean - ring->to_use) - 1;
}
static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
struct skge_element *e;
struct skge_tx_desc *td;
int i;
u32 control, len;
u64 map;
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
return NETDEV_TX_BUSY;
e = skge->tx_ring.to_use;
td = e->desc;
BUG_ON(td->control & BMU_OWN);
e->skb = skb;
len = skb_headlen(skb);
map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, len);
td->dma_lo = map;
td->dma_hi = map >> 32;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const int offset = skb_transport_offset(skb);
/* This seems backwards, but it is what the sk98lin
* does. Looks like hardware is wrong?
*/
if (ipip_hdr(skb)->protocol == IPPROTO_UDP
&& hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
control = BMU_TCP_CHECK;
else
control = BMU_UDP_CHECK;
td->csum_offs = 0;
td->csum_start = offset;
td->csum_write = offset + skb->csum_offset;
} else
control = BMU_CHECK;
if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
control |= BMU_EOF| BMU_IRQ_EOF;
else {
struct skge_tx_desc *tf = td;
control |= BMU_STFWD;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
e = e->next;
e->skb = skb;
tf = e->desc;
BUG_ON(tf->control & BMU_OWN);
tf->dma_lo = map;
tf->dma_hi = (u64) map >> 32;
pci_unmap_addr_set(e, mapaddr, map);
pci_unmap_len_set(e, maplen, frag->size);
tf->control = BMU_OWN | BMU_SW | control | frag->size;
}
tf->control |= BMU_EOF | BMU_IRQ_EOF;
}
/* Make sure all the descriptors written */
wmb();
td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
wmb();
skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
if (unlikely(netif_msg_tx_queued(skge)))
printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
dev->name, e - skge->tx_ring.start, skb->len);
skge->tx_ring.to_use = e->next;
smp_wmb();
if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
pr_debug("%s: transmit queue full\n", dev->name);
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
/* Free resources associated with this reing element */
static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
u32 control)
{
struct pci_dev *pdev = skge->hw->pdev;
/* skb header vs. fragment */
if (control & BMU_STF)
pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_TODEVICE);
if (control & BMU_EOF) {
if (unlikely(netif_msg_tx_done(skge)))
printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
skge->netdev->name, e - skge->tx_ring.start);
dev_kfree_skb(e->skb);
}
}
/* Free all buffers in transmit ring */
static void skge_tx_clean(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_element *e;
for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
struct skge_tx_desc *td = e->desc;
skge_tx_free(skge, e, td->control);
td->control = 0;
}
skge->tx_ring.to_clean = e;
netif_wake_queue(dev);
}
static void skge_tx_timeout(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
if (netif_msg_timer(skge))
printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
skge_tx_clean(dev);
}
static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
int err;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
skge_down(dev);
dev->mtu = new_mtu;
err = skge_up(dev);
if (err)
dev_close(dev);
return err;
}
static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
static void genesis_add_filter(u8 filter[8], const u8 *addr)
{
u32 crc, bit;
crc = ether_crc_le(ETH_ALEN, addr);
bit = ~crc & 0x3f;
filter[bit/8] |= 1 << (bit%8);
}
static void genesis_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i, count = dev->mc_count;
struct dev_mc_list *list = dev->mc_list;
u32 mode;
u8 filter[8];
mode = xm_read32(hw, port, XM_MODE);
mode |= XM_MD_ENA_HASH;
if (dev->flags & IFF_PROMISC)
mode |= XM_MD_ENA_PROM;
else
mode &= ~XM_MD_ENA_PROM;
if (dev->flags & IFF_ALLMULTI)
memset(filter, 0xff, sizeof(filter));
else {
memset(filter, 0, sizeof(filter));
if (skge->flow_status == FLOW_STAT_REM_SEND
|| skge->flow_status == FLOW_STAT_SYMMETRIC)
genesis_add_filter(filter, pause_mc_addr);
for (i = 0; list && i < count; i++, list = list->next)
genesis_add_filter(filter, list->dmi_addr);
}
xm_write32(hw, port, XM_MODE, mode);
xm_outhash(hw, port, XM_HSM, filter);
}
static void yukon_add_filter(u8 filter[8], const u8 *addr)
{
u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
filter[bit/8] |= 1 << (bit%8);
}
static void yukon_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct dev_mc_list *list = dev->mc_list;
int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
|| skge->flow_status == FLOW_STAT_SYMMETRIC);
u16 reg;
u8 filter[8];
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if (dev->flags & IFF_ALLMULTI) /* all multicast */
memset(filter, 0xff, sizeof(filter));
else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
reg &= ~GM_RXCR_MCF_ENA;
else {
int i;
reg |= GM_RXCR_MCF_ENA;
if (rx_pause)
yukon_add_filter(filter, pause_mc_addr);
for (i = 0; list && i < dev->mc_count; i++, list = list->next)
yukon_add_filter(filter, list->dmi_addr);
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16)filter[0] | ((u16)filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16)filter[2] | ((u16)filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16)filter[4] | ((u16)filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16)filter[6] | ((u16)filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return status >> XMR_FS_LEN_SHIFT;
else
return status >> GMR_FS_LEN_SHIFT;
}
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
if (hw->chip_id == CHIP_ID_GENESIS)
return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
else
return (status & GMR_FS_ANY_ERR) ||
(status & GMR_FS_RX_OK) == 0;
}
/* Get receive buffer from descriptor.
* Handles copy of small buffers and reallocation failures
*/
static struct sk_buff *skge_rx_get(struct net_device *dev,
struct skge_element *e,
u32 control, u32 status, u16 csum)
{
struct skge_port *skge = netdev_priv(dev);
struct sk_buff *skb;
u16 len = control & BMU_BBC;
if (unlikely(netif_msg_rx_status(skge)))
printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
dev->name, e - skge->rx_ring.start,
status, len);
if (len > skge->rx_buf_size)
goto error;
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
goto error;
if (bad_phy_status(skge->hw, status))
goto error;
if (phy_length(skge->hw, status) != len)
goto error;
if (len < RX_COPY_THRESHOLD) {
skb = netdev_alloc_skb(dev, len + 2);
if (!skb)
goto resubmit;
skb_reserve(skb, 2);
pci_dma_sync_single_for_cpu(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(e->skb, skb->data, len);
pci_dma_sync_single_for_device(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
skge_rx_reuse(e, skge->rx_buf_size);
} else {
struct sk_buff *nskb;
nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
if (!nskb)
goto resubmit;
skb_reserve(nskb, NET_IP_ALIGN);
pci_unmap_single(skge->hw->pdev,
pci_unmap_addr(e, mapaddr),
pci_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
skb = e->skb;
prefetch(skb->data);
skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
}
skb_put(skb, len);
if (skge->rx_csum) {
skb->csum = csum;
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb->protocol = eth_type_trans(skb, dev);
return skb;
error:
if (netif_msg_rx_err(skge))
printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
dev->name, e - skge->rx_ring.start,
control, status);
if (skge->hw->chip_id == CHIP_ID_GENESIS) {
if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
skge->net_stats.rx_length_errors++;
if (status & XMR_FS_FRA_ERR)
skge->net_stats.rx_frame_errors++;
if (status & XMR_FS_FCS_ERR)
skge->net_stats.rx_crc_errors++;
} else {
if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
skge->net_stats.rx_length_errors++;
if (status & GMR_FS_FRAGMENT)
skge->net_stats.rx_frame_errors++;
if (status & GMR_FS_CRC_ERR)
skge->net_stats.rx_crc_errors++;
}
resubmit:
skge_rx_reuse(e, skge->rx_buf_size);
return NULL;
}
/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_tx_done(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->tx_ring;
struct skge_element *e;
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
for (e = ring->to_clean; e != ring->to_use; e = e->next) {
u32 control = ((const struct skge_tx_desc *) e->desc)->control;
if (control & BMU_OWN)
break;
skge_tx_free(skge, e, control);
}
skge->tx_ring.to_clean = e;
/* Can run lockless until we need to synchronize to restart queue. */
smp_mb();
if (unlikely(netif_queue_stopped(dev) &&
skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
netif_tx_lock(dev);
if (unlikely(netif_queue_stopped(dev) &&
skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
netif_wake_queue(dev);
}
netif_tx_unlock(dev);
}
}
static int skge_poll(struct napi_struct *napi, int to_do)
{
struct skge_port *skge = container_of(napi, struct skge_port, napi);
struct net_device *dev = skge->netdev;
struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
int work_done = 0;
skge_tx_done(dev);
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
struct skge_rx_desc *rd = e->desc;
struct sk_buff *skb;
u32 control;
rmb();
control = rd->control;
if (control & BMU_OWN)
break;
skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
if (likely(skb)) {
dev->last_rx = jiffies;
netif_receive_skb(skb);
++work_done;
}
}
ring->to_clean = e;
/* restart receiver */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
if (work_done < to_do) {
spin_lock_irq(&hw->hw_lock);
__netif_rx_complete(dev, napi);
hw->intr_mask |= napimask[skge->port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
}
return work_done;
}
/* Parity errors seem to happen when Genesis is connected to a switch
* with no other ports present. Heartbeat error??
*/
static void skge_mac_parity(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
if (dev) {
struct skge_port *skge = netdev_priv(dev);
++skge->net_stats.tx_heartbeat_errors;
}
if (hw->chip_id == CHIP_ID_GENESIS)
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_CLR_PERR);
else
/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
(hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}
static void skge_mac_intr(struct skge_hw *hw, int port)
{
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_mac_intr(hw, port);
else
yukon_mac_intr(hw, port);
}
/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
if (hw->chip_id == CHIP_ID_GENESIS) {
/* clear xmac errors */
if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
} else {
/* Timestamp (unused) overflow */
if (hwstatus & IS_IRQ_TIST_OV)
skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
}
if (hwstatus & IS_RAM_RD_PAR) {
dev_err(&pdev->dev, "Ram read data parity error\n");
skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
}
if (hwstatus & IS_RAM_WR_PAR) {
dev_err(&pdev->dev, "Ram write data parity error\n");
skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
}
if (hwstatus & IS_M1_PAR_ERR)
skge_mac_parity(hw, 0);
if (hwstatus & IS_M2_PAR_ERR)
skge_mac_parity(hw, 1);
if (hwstatus & IS_R1_PAR_ERR) {
dev_err(&pdev->dev, "%s: receive queue parity error\n",
hw->dev[0]->name);
skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
}
if (hwstatus & IS_R2_PAR_ERR) {
dev_err(&pdev->dev, "%s: receive queue parity error\n",
hw->dev[1]->name);
skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
}
if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
u16 pci_status, pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(pdev, PCI_STATUS, &pci_status);
dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
pci_cmd, pci_status);
/* Write the error bits back to clear them. */
pci_status &= PCI_STATUS_ERROR_BITS;
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config_word(pdev, PCI_COMMAND,
pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
pci_write_config_word(pdev, PCI_STATUS, pci_status);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* if error still set then just ignore it */
hwstatus = skge_read32(hw, B0_HWE_ISRC);
if (hwstatus & IS_IRQ_STAT) {
dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
hw->intr_mask &= ~IS_HW_ERR;
}
}
}
/*
* Interrupt from PHY are handled in tasklet (softirq)
* because accessing phy registers requires spin wait which might
* cause excess interrupt latency.
*/
static void skge_extirq(unsigned long arg)
{
struct skge_hw *hw = (struct skge_hw *) arg;
int port;
for (port = 0; port < hw->ports; port++) {
struct net_device *dev = hw->dev[port];
if (netif_running(dev)) {
struct skge_port *skge = netdev_priv(dev);
spin_lock(&hw->phy_lock);
if (hw->chip_id != CHIP_ID_GENESIS)
yukon_phy_intr(skge);
else if (hw->phy_type == SK_PHY_BCOM)
bcom_phy_intr(skge);
spin_unlock(&hw->phy_lock);
}
}
spin_lock_irq(&hw->hw_lock);
hw->intr_mask |= IS_EXT_REG;
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
}
static irqreturn_t skge_intr(int irq, void *dev_id)
{
struct skge_hw *hw = dev_id;
u32 status;
int handled = 0;
spin_lock(&hw->hw_lock);
/* Reading this register masks IRQ */
status = skge_read32(hw, B0_SP_ISRC);
if (status == 0 || status == ~0)
goto out;
handled = 1;
status &= hw->intr_mask;
if (status & IS_EXT_REG) {
hw->intr_mask &= ~IS_EXT_REG;
tasklet_schedule(&hw->phy_task);
}
if (status & (IS_XA1_F|IS_R1_F)) {
struct skge_port *skge = netdev_priv(hw->dev[0]);
hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
netif_rx_schedule(hw->dev[0], &skge->napi);
}
if (status & IS_PA_TO_TX1)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
if (status & IS_PA_TO_RX1) {
struct skge_port *skge = netdev_priv(hw->dev[0]);
++skge->net_stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
}
if (status & IS_MAC1)
skge_mac_intr(hw, 0);
if (hw->dev[1]) {
struct skge_port *skge = netdev_priv(hw->dev[1]);
if (status & (IS_XA2_F|IS_R2_F)) {
hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
netif_rx_schedule(hw->dev[1], &skge->napi);
}
if (status & IS_PA_TO_RX2) {
++skge->net_stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
}
if (status & IS_PA_TO_TX2)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
if (status & IS_MAC2)
skge_mac_intr(hw, 1);
}
if (status & IS_HW_ERR)
skge_error_irq(hw);
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
out:
spin_unlock(&hw->hw_lock);
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
disable_irq(dev->irq);
skge_intr(dev->irq, skge->hw);
enable_irq(dev->irq);
}
#endif
static int skge_set_mac_address(struct net_device *dev, void *p)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
unsigned port = skge->port;
const struct sockaddr *addr = p;
u16 ctrl;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
if (!netif_running(dev)) {
memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
} else {
/* disable Rx */
spin_lock_bh(&hw->phy_lock);
ctrl = gma_read16(hw, port, GM_GP_CTRL);
gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
if (hw->chip_id == CHIP_ID_GENESIS)
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
else {
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
}
gma_write16(hw, port, GM_GP_CTRL, ctrl);
spin_unlock_bh(&hw->phy_lock);
}
return 0;
}
static const struct {
u8 id;
const char *name;
} skge_chips[] = {
{ CHIP_ID_GENESIS, "Genesis" },
{ CHIP_ID_YUKON, "Yukon" },
{ CHIP_ID_YUKON_LITE, "Yukon-Lite"},
{ CHIP_ID_YUKON_LP, "Yukon-LP"},
};
static const char *skge_board_name(const struct skge_hw *hw)
{
int i;
static char buf[16];
for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
if (skge_chips[i].id == hw->chip_id)
return skge_chips[i].name;
snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
return buf;
}
/*
* Setup the board data structure, but don't bring up
* the port(s)
*/
static int skge_reset(struct skge_hw *hw)
{
u32 reg;
u16 ctst, pci_status;
u8 t8, mac_cfg, pmd_type;
int i;
ctst = skge_read16(hw, B0_CTST);
/* do a SW reset */
skge_write8(hw, B0_CTST, CS_RST_SET);
skge_write8(hw, B0_CTST, CS_RST_CLR);
/* clear PCI errors, if any */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
skge_write8(hw, B2_TST_CTRL2, 0);
pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
pci_write_config_word(hw->pdev, PCI_STATUS,
pci_status | PCI_STATUS_ERROR_BITS);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
skge_write8(hw, B0_CTST, CS_MRST_CLR);
/* restore CLK_RUN bits (for Yukon-Lite) */
skge_write16(hw, B0_CTST,
ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
hw->chip_id = skge_read8(hw, B2_CHIP_ID);
hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
pmd_type = skge_read8(hw, B2_PMD_TYP);
hw->copper = (pmd_type == 'T' || pmd_type == '1');
switch (hw->chip_id) {
case CHIP_ID_GENESIS:
switch (hw->phy_type) {
case SK_PHY_XMAC:
hw->phy_addr = PHY_ADDR_XMAC;
break;
case SK_PHY_BCOM:
hw->phy_addr = PHY_ADDR_BCOM;
break;
default:
dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
hw->phy_type);
return -EOPNOTSUPP;
}
break;
case CHIP_ID_YUKON:
case CHIP_ID_YUKON_LITE:
case CHIP_ID_YUKON_LP:
if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
hw->copper = 1;
hw->phy_addr = PHY_ADDR_MARV;
break;
default:
dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
hw->chip_id);
return -EOPNOTSUPP;
}
mac_cfg = skge_read8(hw, B2_MAC_CFG);
hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
/* read the adapters RAM size */
t8 = skge_read8(hw, B2_E_0);
if (hw->chip_id == CHIP_ID_GENESIS) {
if (t8 == 3) {
/* special case: 4 x 64k x 36, offset = 0x80000 */
hw->ram_size = 0x100000;
hw->ram_offset = 0x80000;
} else
hw->ram_size = t8 * 512;
}
else if (t8 == 0)
hw->ram_size = 0x20000;
else
hw->ram_size = t8 * 4096;
hw->intr_mask = IS_HW_ERR;
/* Use PHY IRQ for all but fiber based Genesis board */
if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
hw->intr_mask |= IS_EXT_REG;
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_init(hw);
else {
/* switch power to VCC (WA for VAUX problem) */
skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* avoid boards with stuck Hardware error bits */
if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
(skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
hw->intr_mask &= ~IS_HW_ERR;
}
/* Clear PHY COMA */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
reg &= ~PCI_PHY_COMA;
pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
for (i = 0; i < hw->ports; i++) {
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
}
/* turn off hardware timer (unused) */
skge_write8(hw, B2_TI_CTRL, TIM_STOP);
skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
skge_write8(hw, B0_LED, LED_STAT_ON);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
/* Set interrupt moderation for Transmit only
* Receive interrupts avoided by NAPI
*/
skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
skge_write32(hw, B0_IMSK, hw->intr_mask);
for (i = 0; i < hw->ports; i++) {
if (hw->chip_id == CHIP_ID_GENESIS)
genesis_reset(hw, i);
else
yukon_reset(hw, i);
}
return 0;
}
/* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
int highmem)
{
struct skge_port *skge;
struct net_device *dev = alloc_etherdev(sizeof(*skge));
if (!dev) {
dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
return NULL;
}
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->open = skge_up;
dev->stop = skge_down;
dev->do_ioctl = skge_ioctl;
dev->hard_start_xmit = skge_xmit_frame;
dev->get_stats = skge_get_stats;
if (hw->chip_id == CHIP_ID_GENESIS)
dev->set_multicast_list = genesis_set_multicast;
else
dev->set_multicast_list = yukon_set_multicast;
dev->set_mac_address = skge_set_mac_address;
dev->change_mtu = skge_change_mtu;
SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
dev->tx_timeout = skge_tx_timeout;
dev->watchdog_timeo = TX_WATCHDOG;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = skge_netpoll;
#endif
dev->irq = hw->pdev->irq;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
skge = netdev_priv(dev);
netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
skge->netdev = dev;
skge->hw = hw;
skge->msg_enable = netif_msg_init(debug, default_msg);
skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
/* Auto speed and flow control */
skge->autoneg = AUTONEG_ENABLE;
skge->flow_control = FLOW_MODE_SYM_OR_REM;
skge->duplex = -1;
skge->speed = -1;
skge->advertising = skge_supported_modes(hw);
if (pci_wake_enabled(hw->pdev))
skge->wol = wol_supported(hw) & WAKE_MAGIC;
hw->dev[port] = dev;
skge->port = port;
/* Only used for Genesis XMAC */
setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
if (hw->chip_id != CHIP_ID_GENESIS) {
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
skge->rx_csum = 1;
}
/* read the mac address */
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
/* device is off until link detection */
netif_carrier_off(dev);
netif_stop_queue(dev);
return dev;
}
static void __devinit skge_show_addr(struct net_device *dev)
{
const struct skge_port *skge = netdev_priv(dev);
DECLARE_MAC_BUF(mac);
if (netif_msg_probe(skge))
printk(KERN_INFO PFX "%s: addr %s\n",
dev->name, print_mac(mac, dev->dev_addr));
}
static int __devinit skge_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev, *dev1;
struct skge_hw *hw;
int err, using_dac = 0;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
} else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
using_dac = 0;
err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
}
if (err) {
dev_err(&pdev->dev, "no usable DMA configuration\n");
goto err_out_free_regions;
}
#ifdef __BIG_ENDIAN
/* byte swap descriptors in hardware */
{
u32 reg;
pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
reg |= PCI_REV_DESC;
pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
}
#endif
err = -ENOMEM;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw) {
dev_err(&pdev->dev, "cannot allocate hardware struct\n");
goto err_out_free_regions;
}
hw->pdev = pdev;
spin_lock_init(&hw->hw_lock);
spin_lock_init(&hw->phy_lock);
tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
dev_err(&pdev->dev, "cannot map device registers\n");
goto err_out_free_hw;
}
err = skge_reset(hw);
if (err)
goto err_out_iounmap;
printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
skge_board_name(hw), hw->chip_rev);
dev = skge_devinit(hw, 0, using_dac);
if (!dev)
goto err_out_led_off;
/* Some motherboards are broken and has zero in ROM. */
if (!is_valid_ether_addr(dev->dev_addr))
dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "cannot register net device\n");
goto err_out_free_netdev;
}
err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
if (err) {
dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
dev->name, pdev->irq);
goto err_out_unregister;
}
skge_show_addr(dev);
if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
if (register_netdev(dev1) == 0)
skge_show_addr(dev1);
else {
/* Failure to register second port need not be fatal */
dev_warn(&pdev->dev, "register of second port failed\n");
hw->dev[1] = NULL;
free_netdev(dev1);
}
}
pci_set_drvdata(pdev, hw);
return 0;
err_out_unregister:
unregister_netdev(dev);
err_out_free_netdev:
free_netdev(dev);
err_out_led_off:
skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return err;
}
static void __devexit skge_remove(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1;
if (!hw)
return;
flush_scheduled_work();
if ((dev1 = hw->dev[1]))
unregister_netdev(dev1);
dev0 = hw->dev[0];
unregister_netdev(dev0);
tasklet_disable(&hw->phy_task);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask = 0;
skge_write32(hw, B0_IMSK, 0);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
skge_write16(hw, B0_LED, LED_STAT_OFF);
skge_write8(hw, B0_CTST, CS_RST_SET);
free_irq(pdev->irq, hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
if (dev1)
free_netdev(dev1);
free_netdev(dev0);
iounmap(hw->regs);
kfree(hw);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
int i, err, wol = 0;
if (!hw)
return 0;
err = pci_save_state(pdev);
if (err)
return err;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct skge_port *skge = netdev_priv(dev);
if (netif_running(dev))
skge_down(dev);
if (skge->wol)
skge_wol_init(skge);
wol |= skge->wol;
}
skge_write32(hw, B0_IMSK, 0);
pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int skge_resume(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
int i, err;
if (!hw)
return 0;
err = pci_set_power_state(pdev, PCI_D0);
if (err)
goto out;
err = pci_restore_state(pdev);
if (err)
goto out;
pci_enable_wake(pdev, PCI_D0, 0);
err = skge_reset(hw);
if (err)
goto out;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
err = skge_up(dev);
if (err) {
printk(KERN_ERR PFX "%s: could not up: %d\n",
dev->name, err);
dev_close(dev);
goto out;
}
}
}
out:
return err;
}
#endif
static void skge_shutdown(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
int i, wol = 0;
if (!hw)
return;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct skge_port *skge = netdev_priv(dev);
if (skge->wol)
skge_wol_init(skge);
wol |= skge->wol;
}
pci_enable_wake(pdev, PCI_D3hot, wol);
pci_enable_wake(pdev, PCI_D3cold, wol);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
}
static struct pci_driver skge_driver = {
.name = DRV_NAME,
.id_table = skge_id_table,
.probe = skge_probe,
.remove = __devexit_p(skge_remove),
#ifdef CONFIG_PM
.suspend = skge_suspend,
.resume = skge_resume,
#endif
.shutdown = skge_shutdown,
};
static int __init skge_init_module(void)
{
return pci_register_driver(&skge_driver);
}
static void __exit skge_cleanup_module(void)
{
pci_unregister_driver(&skge_driver);
}
module_init(skge_init_module);
module_exit(skge_cleanup_module);