aha/include/linux/raid/md_k.h
NeilBrown 32a7627cf3 [PATCH] md: optimised resync using Bitmap based intent logging
With this patch, the intent to write to some block in the array can be logged
to a bitmap file.  Each bit represents some number of sectors and is set
before any update happens, and only cleared when all writes relating to all
sectors are complete.

After an unclean shutdown, information in this bitmap can be used to optimise
resync - only sectors which could be out-of-sync need to be updated.

Also if a drive is removed and then added back into an array, the recovery can
make use of the bitmap to optimise reconstruction.  This is not implemented in
this patch.

Currently the bitmap is stored in a file which must (obviously) be stored on a
separate device.

The patch only provided infrastructure.  It does not update any personalities
to bitmap intent logging.

Md arrays can still be used with no bitmap file.  This patch has minimal
impact on such arrays.

Signed-off-by: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 19:07:43 -07:00

380 lines
9.7 KiB
C

/*
md_k.h : kernel internal structure of the Linux MD driver
Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
You should have received a copy of the GNU General Public License
(for example /usr/src/linux/COPYING); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _MD_K_H
#define _MD_K_H
/* and dm-bio-list.h is not under include/linux because.... ??? */
#include "../../../drivers/md/dm-bio-list.h"
#define MD_RESERVED 0UL
#define LINEAR 1UL
#define RAID0 2UL
#define RAID1 3UL
#define RAID5 4UL
#define TRANSLUCENT 5UL
#define HSM 6UL
#define MULTIPATH 7UL
#define RAID6 8UL
#define RAID10 9UL
#define FAULTY 10UL
#define MAX_PERSONALITY 11UL
#define LEVEL_MULTIPATH (-4)
#define LEVEL_LINEAR (-1)
#define LEVEL_FAULTY (-5)
#define MaxSector (~(sector_t)0)
#define MD_THREAD_NAME_MAX 14
static inline int pers_to_level (int pers)
{
switch (pers) {
case FAULTY: return LEVEL_FAULTY;
case MULTIPATH: return LEVEL_MULTIPATH;
case HSM: return -3;
case TRANSLUCENT: return -2;
case LINEAR: return LEVEL_LINEAR;
case RAID0: return 0;
case RAID1: return 1;
case RAID5: return 5;
case RAID6: return 6;
case RAID10: return 10;
}
BUG();
return MD_RESERVED;
}
static inline int level_to_pers (int level)
{
switch (level) {
case LEVEL_FAULTY: return FAULTY;
case LEVEL_MULTIPATH: return MULTIPATH;
case -3: return HSM;
case -2: return TRANSLUCENT;
case LEVEL_LINEAR: return LINEAR;
case 0: return RAID0;
case 1: return RAID1;
case 4:
case 5: return RAID5;
case 6: return RAID6;
case 10: return RAID10;
}
return MD_RESERVED;
}
typedef struct mddev_s mddev_t;
typedef struct mdk_rdev_s mdk_rdev_t;
#define MAX_MD_DEVS 256 /* Max number of md dev */
/*
* options passed in raidrun:
*/
#define MAX_CHUNK_SIZE (4096*1024)
/*
* default readahead
*/
static inline int disk_faulty(mdp_disk_t * d)
{
return d->state & (1 << MD_DISK_FAULTY);
}
static inline int disk_active(mdp_disk_t * d)
{
return d->state & (1 << MD_DISK_ACTIVE);
}
static inline int disk_sync(mdp_disk_t * d)
{
return d->state & (1 << MD_DISK_SYNC);
}
static inline int disk_spare(mdp_disk_t * d)
{
return !disk_sync(d) && !disk_active(d) && !disk_faulty(d);
}
static inline int disk_removed(mdp_disk_t * d)
{
return d->state & (1 << MD_DISK_REMOVED);
}
static inline void mark_disk_faulty(mdp_disk_t * d)
{
d->state |= (1 << MD_DISK_FAULTY);
}
static inline void mark_disk_active(mdp_disk_t * d)
{
d->state |= (1 << MD_DISK_ACTIVE);
}
static inline void mark_disk_sync(mdp_disk_t * d)
{
d->state |= (1 << MD_DISK_SYNC);
}
static inline void mark_disk_spare(mdp_disk_t * d)
{
d->state = 0;
}
static inline void mark_disk_removed(mdp_disk_t * d)
{
d->state = (1 << MD_DISK_FAULTY) | (1 << MD_DISK_REMOVED);
}
static inline void mark_disk_inactive(mdp_disk_t * d)
{
d->state &= ~(1 << MD_DISK_ACTIVE);
}
static inline void mark_disk_nonsync(mdp_disk_t * d)
{
d->state &= ~(1 << MD_DISK_SYNC);
}
/*
* MD's 'extended' device
*/
struct mdk_rdev_s
{
struct list_head same_set; /* RAID devices within the same set */
sector_t size; /* Device size (in blocks) */
mddev_t *mddev; /* RAID array if running */
unsigned long last_events; /* IO event timestamp */
struct block_device *bdev; /* block device handle */
struct page *sb_page;
int sb_loaded;
sector_t data_offset; /* start of data in array */
sector_t sb_offset;
int preferred_minor; /* autorun support */
/* A device can be in one of three states based on two flags:
* Not working: faulty==1 in_sync==0
* Fully working: faulty==0 in_sync==1
* Working, but not
* in sync with array
* faulty==0 in_sync==0
*
* It can never have faulty==1, in_sync==1
* This reduces the burden of testing multiple flags in many cases
*/
int faulty; /* if faulty do not issue IO requests */
int in_sync; /* device is a full member of the array */
int desc_nr; /* descriptor index in the superblock */
int raid_disk; /* role of device in array */
atomic_t nr_pending; /* number of pending requests.
* only maintained for arrays that
* support hot removal
*/
};
typedef struct mdk_personality_s mdk_personality_t;
struct mddev_s
{
void *private;
mdk_personality_t *pers;
dev_t unit;
int md_minor;
struct list_head disks;
int sb_dirty;
int ro;
struct gendisk *gendisk;
/* Superblock information */
int major_version,
minor_version,
patch_version;
int persistent;
int chunk_size;
time_t ctime, utime;
int level, layout;
int raid_disks;
int max_disks;
sector_t size; /* used size of component devices */
sector_t array_size; /* exported array size */
__u64 events;
char uuid[16];
struct mdk_thread_s *thread; /* management thread */
struct mdk_thread_s *sync_thread; /* doing resync or reconstruct */
sector_t curr_resync; /* blocks scheduled */
unsigned long resync_mark; /* a recent timestamp */
sector_t resync_mark_cnt;/* blocks written at resync_mark */
sector_t resync_max_sectors; /* may be set by personality */
/* recovery/resync flags
* NEEDED: we might need to start a resync/recover
* RUNNING: a thread is running, or about to be started
* SYNC: actually doing a resync, not a recovery
* ERR: and IO error was detected - abort the resync/recovery
* INTR: someone requested a (clean) early abort.
* DONE: thread is done and is waiting to be reaped
*/
#define MD_RECOVERY_RUNNING 0
#define MD_RECOVERY_SYNC 1
#define MD_RECOVERY_ERR 2
#define MD_RECOVERY_INTR 3
#define MD_RECOVERY_DONE 4
#define MD_RECOVERY_NEEDED 5
unsigned long recovery;
int in_sync; /* know to not need resync */
struct semaphore reconfig_sem;
atomic_t active;
int changed; /* true if we might need to reread partition info */
int degraded; /* whether md should consider
* adding a spare
*/
atomic_t recovery_active; /* blocks scheduled, but not written */
wait_queue_head_t recovery_wait;
sector_t recovery_cp;
spinlock_t write_lock;
struct bio_list write_list;
unsigned int safemode; /* if set, update "clean" superblock
* when no writes pending.
*/
unsigned int safemode_delay;
struct timer_list safemode_timer;
atomic_t writes_pending;
request_queue_t *queue; /* for plugging ... */
struct bitmap *bitmap; /* the bitmap for the device */
struct file *bitmap_file; /* the bitmap file */
struct list_head all_mddevs;
};
static inline void rdev_dec_pending(mdk_rdev_t *rdev, mddev_t *mddev)
{
int faulty = rdev->faulty;
if (atomic_dec_and_test(&rdev->nr_pending) && faulty)
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors)
{
atomic_add(nr_sectors, &bdev->bd_contains->bd_disk->sync_io);
}
struct mdk_personality_s
{
char *name;
struct module *owner;
int (*make_request)(request_queue_t *q, struct bio *bio);
int (*run)(mddev_t *mddev);
int (*stop)(mddev_t *mddev);
void (*status)(struct seq_file *seq, mddev_t *mddev);
/* error_handler must set ->faulty and clear ->in_sync
* if appropriate, and should abort recovery if needed
*/
void (*error_handler)(mddev_t *mddev, mdk_rdev_t *rdev);
int (*hot_add_disk) (mddev_t *mddev, mdk_rdev_t *rdev);
int (*hot_remove_disk) (mddev_t *mddev, int number);
int (*spare_active) (mddev_t *mddev);
sector_t (*sync_request)(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster);
int (*resize) (mddev_t *mddev, sector_t sectors);
int (*reshape) (mddev_t *mddev, int raid_disks);
int (*reconfig) (mddev_t *mddev, int layout, int chunk_size);
};
static inline char * mdname (mddev_t * mddev)
{
return mddev->gendisk ? mddev->gendisk->disk_name : "mdX";
}
extern mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr);
/*
* iterates through some rdev ringlist. It's safe to remove the
* current 'rdev'. Dont touch 'tmp' though.
*/
#define ITERATE_RDEV_GENERIC(head,rdev,tmp) \
\
for ((tmp) = (head).next; \
(rdev) = (list_entry((tmp), mdk_rdev_t, same_set)), \
(tmp) = (tmp)->next, (tmp)->prev != &(head) \
; )
/*
* iterates through the 'same array disks' ringlist
*/
#define ITERATE_RDEV(mddev,rdev,tmp) \
ITERATE_RDEV_GENERIC((mddev)->disks,rdev,tmp)
/*
* Iterates through 'pending RAID disks'
*/
#define ITERATE_RDEV_PENDING(rdev,tmp) \
ITERATE_RDEV_GENERIC(pending_raid_disks,rdev,tmp)
typedef struct mdk_thread_s {
void (*run) (mddev_t *mddev);
mddev_t *mddev;
wait_queue_head_t wqueue;
unsigned long flags;
struct completion *event;
struct task_struct *tsk;
unsigned long timeout;
const char *name;
} mdk_thread_t;
#define THREAD_WAKEUP 0
#define __wait_event_lock_irq(wq, condition, lock, cmd) \
do { \
wait_queue_t __wait; \
init_waitqueue_entry(&__wait, current); \
\
add_wait_queue(&wq, &__wait); \
for (;;) { \
set_current_state(TASK_UNINTERRUPTIBLE); \
if (condition) \
break; \
spin_unlock_irq(&lock); \
cmd; \
schedule(); \
spin_lock_irq(&lock); \
} \
current->state = TASK_RUNNING; \
remove_wait_queue(&wq, &__wait); \
} while (0)
#define wait_event_lock_irq(wq, condition, lock, cmd) \
do { \
if (condition) \
break; \
__wait_event_lock_irq(wq, condition, lock, cmd); \
} while (0)
#endif