mirror of
https://github.com/adulau/aha.git
synced 2024-12-29 12:16:20 +00:00
05adc3b745
This fixes remaining u32s in drivers/ net. Signed-off-by: Pavel Machek <pavel@suse.cz> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1748 lines
51 KiB
C
1748 lines
51 KiB
C
/* xircom_tulip_cb.c: A Xircom CBE-100 ethernet driver for Linux. */
|
|
/*
|
|
Written/copyright 1994-1999 by Donald Becker.
|
|
|
|
This software may be used and distributed according to the terms
|
|
of the GNU General Public License, incorporated herein by reference.
|
|
|
|
The author may be reached as becker@scyld.com, or C/O
|
|
Scyld Computing Corporation
|
|
410 Severn Ave., Suite 210
|
|
Annapolis MD 21403
|
|
|
|
-----------------------------------------------------------
|
|
|
|
Linux kernel-specific changes:
|
|
|
|
LK1.0 (Ion Badulescu)
|
|
- Major cleanup
|
|
- Use 2.4 PCI API
|
|
- Support ethtool
|
|
- Rewrite perfect filter/hash code
|
|
- Use interrupts for media changes
|
|
|
|
LK1.1 (Ion Badulescu)
|
|
- Disallow negotiation of unsupported full-duplex modes
|
|
*/
|
|
|
|
#define DRV_NAME "xircom_tulip_cb"
|
|
#define DRV_VERSION "0.91+LK1.1"
|
|
#define DRV_RELDATE "October 11, 2001"
|
|
|
|
#define CARDBUS 1
|
|
|
|
/* A few user-configurable values. */
|
|
|
|
#define xircom_debug debug
|
|
#ifdef XIRCOM_DEBUG
|
|
static int xircom_debug = XIRCOM_DEBUG;
|
|
#else
|
|
static int xircom_debug = 1;
|
|
#endif
|
|
|
|
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
|
|
static int max_interrupt_work = 25;
|
|
|
|
#define MAX_UNITS 4
|
|
/* Used to pass the full-duplex flag, etc. */
|
|
static int full_duplex[MAX_UNITS];
|
|
static int options[MAX_UNITS];
|
|
static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
|
|
|
|
/* Keep the ring sizes a power of two for efficiency.
|
|
Making the Tx ring too large decreases the effectiveness of channel
|
|
bonding and packet priority.
|
|
There are no ill effects from too-large receive rings. */
|
|
#define TX_RING_SIZE 16
|
|
#define RX_RING_SIZE 32
|
|
|
|
/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
|
|
#ifdef __alpha__
|
|
static int rx_copybreak = 1518;
|
|
#else
|
|
static int rx_copybreak = 100;
|
|
#endif
|
|
|
|
/*
|
|
Set the bus performance register.
|
|
Typical: Set 16 longword cache alignment, no burst limit.
|
|
Cache alignment bits 15:14 Burst length 13:8
|
|
0000 No alignment 0x00000000 unlimited 0800 8 longwords
|
|
4000 8 longwords 0100 1 longword 1000 16 longwords
|
|
8000 16 longwords 0200 2 longwords 2000 32 longwords
|
|
C000 32 longwords 0400 4 longwords
|
|
Warning: many older 486 systems are broken and require setting 0x00A04800
|
|
8 longword cache alignment, 8 longword burst.
|
|
ToDo: Non-Intel setting could be better.
|
|
*/
|
|
|
|
#if defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
|
|
static int csr0 = 0x01A00000 | 0xE000;
|
|
#elif defined(__powerpc__)
|
|
static int csr0 = 0x01B00000 | 0x8000;
|
|
#elif defined(__sparc__)
|
|
static int csr0 = 0x01B00080 | 0x8000;
|
|
#elif defined(__i386__)
|
|
static int csr0 = 0x01A00000 | 0x8000;
|
|
#else
|
|
#warning Processor architecture undefined!
|
|
static int csr0 = 0x00A00000 | 0x4800;
|
|
#endif
|
|
|
|
/* Operational parameters that usually are not changed. */
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (4 * HZ)
|
|
#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
|
|
#define PKT_SETUP_SZ 192 /* Size of the setup frame */
|
|
|
|
/* PCI registers */
|
|
#define PCI_POWERMGMT 0x40
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/crc32.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h> /* Processor type for cache alignment. */
|
|
#include <asm/uaccess.h>
|
|
|
|
|
|
/* These identify the driver base version and may not be removed. */
|
|
static char version[] __devinitdata =
|
|
KERN_INFO DRV_NAME ".c derived from tulip.c:v0.91 4/14/99 becker@scyld.com\n"
|
|
KERN_INFO " unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE "\n";
|
|
|
|
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
|
|
MODULE_DESCRIPTION("Xircom CBE-100 ethernet driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
module_param(debug, int, 0);
|
|
module_param(max_interrupt_work, int, 0);
|
|
module_param(rx_copybreak, int, 0);
|
|
module_param(csr0, int, 0);
|
|
|
|
module_param_array(options, int, NULL, 0);
|
|
module_param_array(full_duplex, int, NULL, 0);
|
|
|
|
#define RUN_AT(x) (jiffies + (x))
|
|
|
|
/*
|
|
Theory of Operation
|
|
|
|
I. Board Compatibility
|
|
|
|
This device driver was forked from the driver for the DECchip "Tulip",
|
|
Digital's single-chip ethernet controllers for PCI. It supports Xircom's
|
|
almost-Tulip-compatible CBE-100 CardBus adapters.
|
|
|
|
II. Board-specific settings
|
|
|
|
PCI bus devices are configured by the system at boot time, so no jumpers
|
|
need to be set on the board. The system BIOS preferably should assign the
|
|
PCI INTA signal to an otherwise unused system IRQ line.
|
|
|
|
III. Driver operation
|
|
|
|
IIIa. Ring buffers
|
|
|
|
The Xircom can use either ring buffers or lists of Tx and Rx descriptors.
|
|
This driver uses statically allocated rings of Rx and Tx descriptors, set at
|
|
compile time by RX/TX_RING_SIZE. This version of the driver allocates skbuffs
|
|
for the Rx ring buffers at open() time and passes the skb->data field to the
|
|
Xircom as receive data buffers. When an incoming frame is less than
|
|
RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is
|
|
copied to the new skbuff. When the incoming frame is larger, the skbuff is
|
|
passed directly up the protocol stack and replaced by a newly allocated
|
|
skbuff.
|
|
|
|
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
|
|
using a full-sized skbuff for small frames vs. the copying costs of larger
|
|
frames. For small frames the copying cost is negligible (esp. considering
|
|
that we are pre-loading the cache with immediately useful header
|
|
information). For large frames the copying cost is non-trivial, and the
|
|
larger copy might flush the cache of useful data. A subtle aspect of this
|
|
choice is that the Xircom only receives into longword aligned buffers, thus
|
|
the IP header at offset 14 isn't longword aligned for further processing.
|
|
Copied frames are put into the new skbuff at an offset of "+2", thus copying
|
|
has the beneficial effect of aligning the IP header and preloading the
|
|
cache.
|
|
|
|
IIIC. Synchronization
|
|
The driver runs as two independent, single-threaded flows of control. One
|
|
is the send-packet routine, which enforces single-threaded use by the
|
|
dev->tbusy flag. The other thread is the interrupt handler, which is single
|
|
threaded by the hardware and other software.
|
|
|
|
The send packet thread has partial control over the Tx ring and 'dev->tbusy'
|
|
flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
|
|
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
|
|
the 'tp->tx_full' flag.
|
|
|
|
The interrupt handler has exclusive control over the Rx ring and records stats
|
|
from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
|
|
we can't avoid the interrupt overhead by having the Tx routine reap the Tx
|
|
stats.) After reaping the stats, it marks the queue entry as empty by setting
|
|
the 'base' to zero. Iff the 'tp->tx_full' flag is set, it clears both the
|
|
tx_full and tbusy flags.
|
|
|
|
IV. Notes
|
|
|
|
IVb. References
|
|
|
|
http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
|
|
http://www.digital.com (search for current 21*4* datasheets and "21X4 SROM")
|
|
http://www.national.com/pf/DP/DP83840A.html
|
|
|
|
IVc. Errata
|
|
|
|
*/
|
|
|
|
/* A full-duplex map for media types. */
|
|
enum MediaIs {
|
|
MediaIsFD = 1, MediaAlwaysFD=2, MediaIsMII=4, MediaIsFx=8,
|
|
MediaIs100=16};
|
|
static const char media_cap[] =
|
|
{0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20 };
|
|
|
|
/* Offsets to the Command and Status Registers, "CSRs". All accesses
|
|
must be longword instructions and quadword aligned. */
|
|
enum xircom_offsets {
|
|
CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28,
|
|
CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58,
|
|
CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78, CSR16=0x04, };
|
|
|
|
/* The bits in the CSR5 status registers, mostly interrupt sources. */
|
|
enum status_bits {
|
|
LinkChange=0x08000000,
|
|
NormalIntr=0x10000, NormalIntrMask=0x00014045,
|
|
AbnormalIntr=0x8000, AbnormalIntrMask=0x0a00a5a2,
|
|
ReservedIntrMask=0xe0001a18,
|
|
EarlyRxIntr=0x4000, BusErrorIntr=0x2000,
|
|
EarlyTxIntr=0x400, RxDied=0x100, RxNoBuf=0x80, RxIntr=0x40,
|
|
TxFIFOUnderflow=0x20, TxNoBuf=0x04, TxDied=0x02, TxIntr=0x01,
|
|
};
|
|
|
|
enum csr0_control_bits {
|
|
EnableMWI=0x01000000, EnableMRL=0x00800000,
|
|
EnableMRM=0x00200000, EqualBusPrio=0x02,
|
|
SoftwareReset=0x01,
|
|
};
|
|
|
|
enum csr6_control_bits {
|
|
ReceiveAllBit=0x40000000, AllMultiBit=0x80, PromiscBit=0x40,
|
|
HashFilterBit=0x01, FullDuplexBit=0x0200,
|
|
TxThresh10=0x400000, TxStoreForw=0x200000,
|
|
TxThreshMask=0xc000, TxThreshShift=14,
|
|
EnableTx=0x2000, EnableRx=0x02,
|
|
ReservedZeroMask=0x8d930134, ReservedOneMask=0x320c0000,
|
|
EnableTxRx=(EnableTx | EnableRx),
|
|
};
|
|
|
|
|
|
enum tbl_flag {
|
|
HAS_MII=1, HAS_ACPI=2,
|
|
};
|
|
static struct xircom_chip_table {
|
|
char *chip_name;
|
|
int valid_intrs; /* CSR7 interrupt enable settings */
|
|
int flags;
|
|
} xircom_tbl[] = {
|
|
{ "Xircom Cardbus Adapter",
|
|
LinkChange | NormalIntr | AbnormalIntr | BusErrorIntr |
|
|
RxDied | RxNoBuf | RxIntr | TxFIFOUnderflow | TxNoBuf | TxDied | TxIntr,
|
|
HAS_MII | HAS_ACPI, },
|
|
{ NULL, },
|
|
};
|
|
/* This matches the table above. */
|
|
enum chips {
|
|
X3201_3,
|
|
};
|
|
|
|
|
|
/* The Xircom Rx and Tx buffer descriptors. */
|
|
struct xircom_rx_desc {
|
|
s32 status;
|
|
s32 length;
|
|
u32 buffer1, buffer2;
|
|
};
|
|
|
|
struct xircom_tx_desc {
|
|
s32 status;
|
|
s32 length;
|
|
u32 buffer1, buffer2; /* We use only buffer 1. */
|
|
};
|
|
|
|
enum tx_desc0_status_bits {
|
|
Tx0DescOwned=0x80000000, Tx0DescError=0x8000, Tx0NoCarrier=0x0800,
|
|
Tx0LateColl=0x0200, Tx0ManyColl=0x0100, Tx0Underflow=0x02,
|
|
};
|
|
enum tx_desc1_status_bits {
|
|
Tx1ComplIntr=0x80000000, Tx1LastSeg=0x40000000, Tx1FirstSeg=0x20000000,
|
|
Tx1SetupPkt=0x08000000, Tx1DisableCRC=0x04000000, Tx1RingWrap=0x02000000,
|
|
Tx1ChainDesc=0x01000000, Tx1NoPad=0x800000, Tx1HashSetup=0x400000,
|
|
Tx1WholePkt=(Tx1FirstSeg | Tx1LastSeg),
|
|
};
|
|
enum rx_desc0_status_bits {
|
|
Rx0DescOwned=0x80000000, Rx0DescError=0x8000, Rx0NoSpace=0x4000,
|
|
Rx0Runt=0x0800, Rx0McastPkt=0x0400, Rx0FirstSeg=0x0200, Rx0LastSeg=0x0100,
|
|
Rx0HugeFrame=0x80, Rx0CRCError=0x02,
|
|
Rx0WholePkt=(Rx0FirstSeg | Rx0LastSeg),
|
|
};
|
|
enum rx_desc1_status_bits {
|
|
Rx1RingWrap=0x02000000, Rx1ChainDesc=0x01000000,
|
|
};
|
|
|
|
struct xircom_private {
|
|
struct xircom_rx_desc rx_ring[RX_RING_SIZE];
|
|
struct xircom_tx_desc tx_ring[TX_RING_SIZE];
|
|
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
|
|
struct sk_buff* tx_skbuff[TX_RING_SIZE];
|
|
#ifdef CARDBUS
|
|
/* The X3201-3 requires 4-byte aligned tx bufs */
|
|
struct sk_buff* tx_aligned_skbuff[TX_RING_SIZE];
|
|
#endif
|
|
/* The addresses of receive-in-place skbuffs. */
|
|
struct sk_buff* rx_skbuff[RX_RING_SIZE];
|
|
u16 setup_frame[PKT_SETUP_SZ / sizeof(u16)]; /* Pseudo-Tx frame to init address table. */
|
|
int chip_id;
|
|
struct net_device_stats stats;
|
|
unsigned int cur_rx, cur_tx; /* The next free ring entry */
|
|
unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
|
|
unsigned int tx_full:1; /* The Tx queue is full. */
|
|
unsigned int speed100:1;
|
|
unsigned int full_duplex:1; /* Full-duplex operation requested. */
|
|
unsigned int autoneg:1;
|
|
unsigned int default_port:4; /* Last dev->if_port value. */
|
|
unsigned int open:1;
|
|
unsigned int csr0; /* CSR0 setting. */
|
|
unsigned int csr6; /* Current CSR6 control settings. */
|
|
u16 to_advertise; /* NWay capabilities advertised. */
|
|
u16 advertising[4];
|
|
signed char phys[4], mii_cnt; /* MII device addresses. */
|
|
int saved_if_port;
|
|
struct pci_dev *pdev;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static int mdio_read(struct net_device *dev, int phy_id, int location);
|
|
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
|
|
static void xircom_up(struct net_device *dev);
|
|
static void xircom_down(struct net_device *dev);
|
|
static int xircom_open(struct net_device *dev);
|
|
static void xircom_tx_timeout(struct net_device *dev);
|
|
static void xircom_init_ring(struct net_device *dev);
|
|
static int xircom_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
|
static int xircom_rx(struct net_device *dev);
|
|
static void xircom_media_change(struct net_device *dev);
|
|
static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
|
|
static int xircom_close(struct net_device *dev);
|
|
static struct net_device_stats *xircom_get_stats(struct net_device *dev);
|
|
static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static void set_rx_mode(struct net_device *dev);
|
|
static void check_duplex(struct net_device *dev);
|
|
static struct ethtool_ops ops;
|
|
|
|
|
|
/* The Xircom cards are picky about when certain bits in CSR6 can be
|
|
manipulated. Keith Owens <kaos@ocs.com.au>. */
|
|
static void outl_CSR6(u32 newcsr6, long ioaddr)
|
|
{
|
|
const int strict_bits =
|
|
TxThresh10 | TxStoreForw | TxThreshMask | EnableTxRx | FullDuplexBit;
|
|
int csr5, csr5_22_20, csr5_19_17, currcsr6, attempts = 200;
|
|
unsigned long flags;
|
|
save_flags(flags);
|
|
cli();
|
|
/* mask out the reserved bits that always read 0 on the Xircom cards */
|
|
newcsr6 &= ~ReservedZeroMask;
|
|
/* or in the reserved bits that always read 1 */
|
|
newcsr6 |= ReservedOneMask;
|
|
currcsr6 = inl(ioaddr + CSR6);
|
|
if (((newcsr6 & strict_bits) == (currcsr6 & strict_bits)) ||
|
|
((currcsr6 & ~EnableTxRx) == 0)) {
|
|
outl(newcsr6, ioaddr + CSR6); /* safe */
|
|
restore_flags(flags);
|
|
return;
|
|
}
|
|
/* make sure the transmitter and receiver are stopped first */
|
|
currcsr6 &= ~EnableTxRx;
|
|
while (1) {
|
|
csr5 = inl(ioaddr + CSR5);
|
|
if (csr5 == 0xffffffff)
|
|
break; /* cannot read csr5, card removed? */
|
|
csr5_22_20 = csr5 & 0x700000;
|
|
csr5_19_17 = csr5 & 0x0e0000;
|
|
if ((csr5_22_20 == 0 || csr5_22_20 == 0x600000) &&
|
|
(csr5_19_17 == 0 || csr5_19_17 == 0x80000 || csr5_19_17 == 0xc0000))
|
|
break; /* both are stopped or suspended */
|
|
if (!--attempts) {
|
|
printk(KERN_INFO DRV_NAME ": outl_CSR6 too many attempts,"
|
|
"csr5=0x%08x\n", csr5);
|
|
outl(newcsr6, ioaddr + CSR6); /* unsafe but do it anyway */
|
|
restore_flags(flags);
|
|
return;
|
|
}
|
|
outl(currcsr6, ioaddr + CSR6);
|
|
udelay(1);
|
|
}
|
|
/* now it is safe to change csr6 */
|
|
outl(newcsr6, ioaddr + CSR6);
|
|
restore_flags(flags);
|
|
}
|
|
|
|
|
|
static void __devinit read_mac_address(struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
int i, j;
|
|
unsigned char tuple, link, data_id, data_count;
|
|
|
|
/* Xircom has its address stored in the CIS;
|
|
* we access it through the boot rom interface for now
|
|
* this might not work, as the CIS is not parsed but I
|
|
* (danilo) use the offset I found on my card's CIS !!!
|
|
*
|
|
* Doug Ledford: I changed this routine around so that it
|
|
* walks the CIS memory space, parsing the config items, and
|
|
* finds the proper lan_node_id tuple and uses the data
|
|
* stored there.
|
|
*/
|
|
outl(1 << 12, ioaddr + CSR9); /* enable boot rom access */
|
|
for (i = 0x100; i < 0x1f7; i += link+2) {
|
|
outl(i, ioaddr + CSR10);
|
|
tuple = inl(ioaddr + CSR9) & 0xff;
|
|
outl(i + 1, ioaddr + CSR10);
|
|
link = inl(ioaddr + CSR9) & 0xff;
|
|
outl(i + 2, ioaddr + CSR10);
|
|
data_id = inl(ioaddr + CSR9) & 0xff;
|
|
outl(i + 3, ioaddr + CSR10);
|
|
data_count = inl(ioaddr + CSR9) & 0xff;
|
|
if ( (tuple == 0x22) &&
|
|
(data_id == 0x04) && (data_count == 0x06) ) {
|
|
/*
|
|
* This is it. We have the data we want.
|
|
*/
|
|
for (j = 0; j < 6; j++) {
|
|
outl(i + j + 4, ioaddr + CSR10);
|
|
dev->dev_addr[j] = inl(ioaddr + CSR9) & 0xff;
|
|
}
|
|
break;
|
|
} else if (link == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* locate the MII interfaces and initialize them.
|
|
* we disable full-duplex modes here,
|
|
* because we don't know how to handle them.
|
|
*/
|
|
static void find_mii_transceivers(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
int phy, phy_idx;
|
|
|
|
if (media_cap[tp->default_port] & MediaIsMII) {
|
|
u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
|
|
tp->to_advertise = media2advert[tp->default_port - 9];
|
|
} else
|
|
tp->to_advertise =
|
|
/*ADVERTISE_100BASE4 | ADVERTISE_100FULL |*/ ADVERTISE_100HALF |
|
|
/*ADVERTISE_10FULL |*/ ADVERTISE_10HALF | ADVERTISE_CSMA;
|
|
|
|
/* Find the connected MII xcvrs.
|
|
Doing this in open() would allow detecting external xcvrs later,
|
|
but takes much time. */
|
|
for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) {
|
|
int mii_status = mdio_read(dev, phy, MII_BMSR);
|
|
if ((mii_status & (BMSR_100BASE4 | BMSR_100HALF | BMSR_10HALF)) == BMSR_100BASE4 ||
|
|
((mii_status & BMSR_100BASE4) == 0 &&
|
|
(mii_status & (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | BMSR_10HALF)) != 0)) {
|
|
int mii_reg0 = mdio_read(dev, phy, MII_BMCR);
|
|
int mii_advert = mdio_read(dev, phy, MII_ADVERTISE);
|
|
int reg4 = ((mii_status >> 6) & tp->to_advertise) | ADVERTISE_CSMA;
|
|
tp->phys[phy_idx] = phy;
|
|
tp->advertising[phy_idx++] = reg4;
|
|
printk(KERN_INFO "%s: MII transceiver #%d "
|
|
"config %4.4x status %4.4x advertising %4.4x.\n",
|
|
dev->name, phy, mii_reg0, mii_status, mii_advert);
|
|
}
|
|
}
|
|
tp->mii_cnt = phy_idx;
|
|
if (phy_idx == 0) {
|
|
printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n",
|
|
dev->name);
|
|
tp->phys[0] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* To quote Arjan van de Ven:
|
|
* transceiver_voodoo() enables the external UTP plug thingy.
|
|
* it's called voodoo as I stole this code and cannot cross-reference
|
|
* it with the specification.
|
|
* Actually it seems to go like this:
|
|
* - GPIO2 enables the MII itself so we can talk to it. The MII gets reset
|
|
* so any prior MII settings are lost.
|
|
* - GPIO0 enables the TP port so the MII can talk to the network.
|
|
* - a software reset will reset both GPIO pins.
|
|
* I also moved the software reset here, because doing it in xircom_up()
|
|
* required enabling the GPIO pins each time, which reset the MII each time.
|
|
* Thus we couldn't control the MII -- which sucks because we don't know
|
|
* how to handle full-duplex modes so we *must* disable them.
|
|
*/
|
|
static void transceiver_voodoo(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
|
|
/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
|
|
outl(SoftwareReset, ioaddr + CSR0);
|
|
udelay(2);
|
|
|
|
/* Deassert reset. */
|
|
outl(tp->csr0, ioaddr + CSR0);
|
|
|
|
/* Reset the xcvr interface and turn on heartbeat. */
|
|
outl(0x0008, ioaddr + CSR15);
|
|
udelay(5); /* The delays are Xircom-recommended to give the
|
|
* chipset time to reset the actual hardware
|
|
* on the PCMCIA card
|
|
*/
|
|
outl(0xa8050000, ioaddr + CSR15);
|
|
udelay(5);
|
|
outl(0xa00f0000, ioaddr + CSR15);
|
|
udelay(5);
|
|
|
|
outl_CSR6(0, ioaddr);
|
|
//outl_CSR6(FullDuplexBit, ioaddr);
|
|
}
|
|
|
|
|
|
static int __devinit xircom_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
struct net_device *dev;
|
|
struct xircom_private *tp;
|
|
static int board_idx = -1;
|
|
int chip_idx = id->driver_data;
|
|
long ioaddr;
|
|
int i;
|
|
u8 chip_rev;
|
|
|
|
/* when built into the kernel, we only print version if device is found */
|
|
#ifndef MODULE
|
|
static int printed_version;
|
|
if (!printed_version++)
|
|
printk(version);
|
|
#endif
|
|
|
|
//printk(KERN_INFO "xircom_init_one(%s)\n", pci_name(pdev));
|
|
|
|
board_idx++;
|
|
|
|
if (pci_enable_device(pdev))
|
|
return -ENODEV;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
ioaddr = pci_resource_start(pdev, 0);
|
|
dev = alloc_etherdev(sizeof(*tp));
|
|
if (!dev) {
|
|
printk (KERN_ERR DRV_NAME "%d: cannot alloc etherdev, aborting\n", board_idx);
|
|
return -ENOMEM;
|
|
}
|
|
SET_MODULE_OWNER(dev);
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
dev->base_addr = ioaddr;
|
|
dev->irq = pdev->irq;
|
|
|
|
if (pci_request_regions(pdev, dev->name)) {
|
|
printk (KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", board_idx);
|
|
goto err_out_free_netdev;
|
|
}
|
|
|
|
/* Bring the chip out of sleep mode.
|
|
Caution: Snooze mode does not work with some boards! */
|
|
if (xircom_tbl[chip_idx].flags & HAS_ACPI)
|
|
pci_write_config_dword(pdev, PCI_POWERMGMT, 0);
|
|
|
|
/* Stop the chip's Tx and Rx processes. */
|
|
outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr);
|
|
/* Clear the missed-packet counter. */
|
|
(volatile int)inl(ioaddr + CSR8);
|
|
|
|
tp = netdev_priv(dev);
|
|
|
|
spin_lock_init(&tp->lock);
|
|
tp->pdev = pdev;
|
|
tp->chip_id = chip_idx;
|
|
/* BugFixes: The 21143-TD hangs with PCI Write-and-Invalidate cycles. */
|
|
/* XXX: is this necessary for Xircom? */
|
|
tp->csr0 = csr0 & ~EnableMWI;
|
|
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
/* The lower four bits are the media type. */
|
|
if (board_idx >= 0 && board_idx < MAX_UNITS) {
|
|
tp->default_port = options[board_idx] & 15;
|
|
if ((options[board_idx] & 0x90) || full_duplex[board_idx] > 0)
|
|
tp->full_duplex = 1;
|
|
if (mtu[board_idx] > 0)
|
|
dev->mtu = mtu[board_idx];
|
|
}
|
|
if (dev->mem_start)
|
|
tp->default_port = dev->mem_start;
|
|
if (tp->default_port) {
|
|
if (media_cap[tp->default_port] & MediaAlwaysFD)
|
|
tp->full_duplex = 1;
|
|
}
|
|
if (tp->full_duplex)
|
|
tp->autoneg = 0;
|
|
else
|
|
tp->autoneg = 1;
|
|
tp->speed100 = 1;
|
|
|
|
/* The Xircom-specific entries in the device structure. */
|
|
dev->open = &xircom_open;
|
|
dev->hard_start_xmit = &xircom_start_xmit;
|
|
dev->stop = &xircom_close;
|
|
dev->get_stats = &xircom_get_stats;
|
|
dev->do_ioctl = &xircom_ioctl;
|
|
#ifdef HAVE_MULTICAST
|
|
dev->set_multicast_list = &set_rx_mode;
|
|
#endif
|
|
dev->tx_timeout = xircom_tx_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
SET_ETHTOOL_OPS(dev, &ops);
|
|
|
|
transceiver_voodoo(dev);
|
|
|
|
read_mac_address(dev);
|
|
|
|
if (register_netdev(dev))
|
|
goto err_out_cleardev;
|
|
|
|
pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev);
|
|
printk(KERN_INFO "%s: %s rev %d at %#3lx,",
|
|
dev->name, xircom_tbl[chip_idx].chip_name, chip_rev, ioaddr);
|
|
for (i = 0; i < 6; i++)
|
|
printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
|
|
printk(", IRQ %d.\n", dev->irq);
|
|
|
|
if (xircom_tbl[chip_idx].flags & HAS_MII) {
|
|
find_mii_transceivers(dev);
|
|
check_duplex(dev);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out_cleardev:
|
|
pci_set_drvdata(pdev, NULL);
|
|
pci_release_regions(pdev);
|
|
err_out_free_netdev:
|
|
free_netdev(dev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
|
|
/* MII transceiver control section.
|
|
Read and write the MII registers using software-generated serial
|
|
MDIO protocol. See the MII specifications or DP83840A data sheet
|
|
for details. */
|
|
|
|
/* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
|
|
met by back-to-back PCI I/O cycles, but we insert a delay to avoid
|
|
"overclocking" issues or future 66Mhz PCI. */
|
|
#define mdio_delay() inl(mdio_addr)
|
|
|
|
/* Read and write the MII registers using software-generated serial
|
|
MDIO protocol. It is just different enough from the EEPROM protocol
|
|
to not share code. The maxium data clock rate is 2.5 Mhz. */
|
|
#define MDIO_SHIFT_CLK 0x10000
|
|
#define MDIO_DATA_WRITE0 0x00000
|
|
#define MDIO_DATA_WRITE1 0x20000
|
|
#define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */
|
|
#define MDIO_ENB_IN 0x40000
|
|
#define MDIO_DATA_READ 0x80000
|
|
|
|
static int mdio_read(struct net_device *dev, int phy_id, int location)
|
|
{
|
|
int i;
|
|
int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
|
|
int retval = 0;
|
|
long ioaddr = dev->base_addr;
|
|
long mdio_addr = ioaddr + CSR9;
|
|
|
|
/* Establish sync by sending at least 32 logic ones. */
|
|
for (i = 32; i >= 0; i--) {
|
|
outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
|
|
mdio_delay();
|
|
outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
|
|
mdio_delay();
|
|
}
|
|
/* Shift the read command bits out. */
|
|
for (i = 15; i >= 0; i--) {
|
|
int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
|
|
|
|
outl(MDIO_ENB | dataval, mdio_addr);
|
|
mdio_delay();
|
|
outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
|
|
mdio_delay();
|
|
}
|
|
/* Read the two transition, 16 data, and wire-idle bits. */
|
|
for (i = 19; i > 0; i--) {
|
|
outl(MDIO_ENB_IN, mdio_addr);
|
|
mdio_delay();
|
|
retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
|
|
outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
|
|
mdio_delay();
|
|
}
|
|
return (retval>>1) & 0xffff;
|
|
}
|
|
|
|
|
|
static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
|
|
{
|
|
int i;
|
|
int cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value;
|
|
long ioaddr = dev->base_addr;
|
|
long mdio_addr = ioaddr + CSR9;
|
|
|
|
/* Establish sync by sending 32 logic ones. */
|
|
for (i = 32; i >= 0; i--) {
|
|
outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
|
|
mdio_delay();
|
|
outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
|
|
mdio_delay();
|
|
}
|
|
/* Shift the command bits out. */
|
|
for (i = 31; i >= 0; i--) {
|
|
int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
|
|
outl(MDIO_ENB | dataval, mdio_addr);
|
|
mdio_delay();
|
|
outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
|
|
mdio_delay();
|
|
}
|
|
/* Clear out extra bits. */
|
|
for (i = 2; i > 0; i--) {
|
|
outl(MDIO_ENB_IN, mdio_addr);
|
|
mdio_delay();
|
|
outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
|
|
mdio_delay();
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
xircom_up(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
int i;
|
|
|
|
xircom_init_ring(dev);
|
|
/* Clear the tx ring */
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
tp->tx_skbuff[i] = NULL;
|
|
tp->tx_ring[i].status = 0;
|
|
}
|
|
|
|
if (xircom_debug > 1)
|
|
printk(KERN_DEBUG "%s: xircom_up() irq %d.\n", dev->name, dev->irq);
|
|
|
|
outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3);
|
|
outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4);
|
|
|
|
tp->saved_if_port = dev->if_port;
|
|
if (dev->if_port == 0)
|
|
dev->if_port = tp->default_port;
|
|
|
|
tp->csr6 = TxThresh10 /*| FullDuplexBit*/; /* XXX: why 10 and not 100? */
|
|
|
|
set_rx_mode(dev);
|
|
|
|
/* Start the chip's Tx to process setup frame. */
|
|
outl_CSR6(tp->csr6, ioaddr);
|
|
outl_CSR6(tp->csr6 | EnableTx, ioaddr);
|
|
|
|
/* Acknowledge all outstanding interrupts sources */
|
|
outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
|
|
/* Enable interrupts by setting the interrupt mask. */
|
|
outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
|
|
/* Enable Rx */
|
|
outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
|
|
/* Rx poll demand */
|
|
outl(0, ioaddr + CSR2);
|
|
|
|
/* Tell the net layer we're ready */
|
|
netif_start_queue (dev);
|
|
|
|
/* Check current media state */
|
|
xircom_media_change(dev);
|
|
|
|
if (xircom_debug > 2) {
|
|
printk(KERN_DEBUG "%s: Done xircom_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
|
|
dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5),
|
|
inl(ioaddr + CSR6));
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
xircom_open(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
|
|
if (request_irq(dev->irq, &xircom_interrupt, SA_SHIRQ, dev->name, dev))
|
|
return -EAGAIN;
|
|
|
|
xircom_up(dev);
|
|
tp->open = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void xircom_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
|
|
if (media_cap[dev->if_port] & MediaIsMII) {
|
|
/* Do nothing -- the media monitor should handle this. */
|
|
if (xircom_debug > 1)
|
|
printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
|
|
dev->name);
|
|
}
|
|
|
|
#if defined(way_too_many_messages)
|
|
if (xircom_debug > 3) {
|
|
int i;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
|
|
int j;
|
|
printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
|
|
"%2.2x %2.2x %2.2x.\n",
|
|
i, (unsigned int)tp->rx_ring[i].status,
|
|
(unsigned int)tp->rx_ring[i].length,
|
|
(unsigned int)tp->rx_ring[i].buffer1,
|
|
(unsigned int)tp->rx_ring[i].buffer2,
|
|
buf[0], buf[1], buf[2]);
|
|
for (j = 0; buf[j] != 0xee && j < 1600; j++)
|
|
if (j < 100) printk(" %2.2x", buf[j]);
|
|
printk(" j=%d.\n", j);
|
|
}
|
|
printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
|
|
for (i = 0; i < RX_RING_SIZE; i++)
|
|
printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
|
|
printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
|
|
for (i = 0; i < TX_RING_SIZE; i++)
|
|
printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
|
|
/* Stop and restart the chip's Tx/Rx processes . */
|
|
outl_CSR6(tp->csr6 | EnableRx, ioaddr);
|
|
outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
|
|
/* Trigger an immediate transmit demand. */
|
|
outl(0, ioaddr + CSR1);
|
|
|
|
dev->trans_start = jiffies;
|
|
netif_wake_queue (dev);
|
|
tp->stats.tx_errors++;
|
|
}
|
|
|
|
|
|
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
|
|
static void xircom_init_ring(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
int i;
|
|
|
|
tp->tx_full = 0;
|
|
tp->cur_rx = tp->cur_tx = 0;
|
|
tp->dirty_rx = tp->dirty_tx = 0;
|
|
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
tp->rx_ring[i].status = 0;
|
|
tp->rx_ring[i].length = PKT_BUF_SZ;
|
|
tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i+1]);
|
|
tp->rx_skbuff[i] = NULL;
|
|
}
|
|
/* Mark the last entry as wrapping the ring. */
|
|
tp->rx_ring[i-1].length = PKT_BUF_SZ | Rx1RingWrap;
|
|
tp->rx_ring[i-1].buffer2 = virt_to_bus(&tp->rx_ring[0]);
|
|
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
/* Note the receive buffer must be longword aligned.
|
|
dev_alloc_skb() provides 16 byte alignment. But do *not*
|
|
use skb_reserve() to align the IP header! */
|
|
struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
|
|
tp->rx_skbuff[i] = skb;
|
|
if (skb == NULL)
|
|
break;
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
tp->rx_ring[i].status = Rx0DescOwned; /* Owned by Xircom chip */
|
|
tp->rx_ring[i].buffer1 = virt_to_bus(skb->tail);
|
|
}
|
|
tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
|
|
|
|
/* The Tx buffer descriptor is filled in as needed, but we
|
|
do need to clear the ownership bit. */
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
tp->tx_skbuff[i] = NULL;
|
|
tp->tx_ring[i].status = 0;
|
|
tp->tx_ring[i].buffer2 = virt_to_bus(&tp->tx_ring[i+1]);
|
|
#ifdef CARDBUS
|
|
if (tp->chip_id == X3201_3)
|
|
tp->tx_aligned_skbuff[i] = dev_alloc_skb(PKT_BUF_SZ);
|
|
#endif /* CARDBUS */
|
|
}
|
|
tp->tx_ring[i-1].buffer2 = virt_to_bus(&tp->tx_ring[0]);
|
|
}
|
|
|
|
|
|
static int
|
|
xircom_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
int entry;
|
|
u32 flag;
|
|
|
|
/* Caution: the write order is important here, set the base address
|
|
with the "ownership" bits last. */
|
|
|
|
/* Calculate the next Tx descriptor entry. */
|
|
entry = tp->cur_tx % TX_RING_SIZE;
|
|
|
|
tp->tx_skbuff[entry] = skb;
|
|
#ifdef CARDBUS
|
|
if (tp->chip_id == X3201_3) {
|
|
memcpy(tp->tx_aligned_skbuff[entry]->data,skb->data,skb->len);
|
|
tp->tx_ring[entry].buffer1 = virt_to_bus(tp->tx_aligned_skbuff[entry]->data);
|
|
} else
|
|
#endif
|
|
tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data);
|
|
|
|
if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
|
|
flag = Tx1WholePkt; /* No interrupt */
|
|
} else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
|
|
flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */
|
|
} else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
|
|
flag = Tx1WholePkt; /* No Tx-done intr. */
|
|
} else {
|
|
/* Leave room for set_rx_mode() to fill entries. */
|
|
flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */
|
|
tp->tx_full = 1;
|
|
}
|
|
if (entry == TX_RING_SIZE - 1)
|
|
flag |= Tx1WholePkt | Tx1ComplIntr | Tx1RingWrap;
|
|
|
|
tp->tx_ring[entry].length = skb->len | flag;
|
|
tp->tx_ring[entry].status = Tx0DescOwned; /* Pass ownership to the chip. */
|
|
tp->cur_tx++;
|
|
if (tp->tx_full)
|
|
netif_stop_queue (dev);
|
|
else
|
|
netif_wake_queue (dev);
|
|
|
|
/* Trigger an immediate transmit demand. */
|
|
outl(0, dev->base_addr + CSR1);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void xircom_media_change(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
u16 reg0, reg1, reg4, reg5;
|
|
u32 csr6 = inl(ioaddr + CSR6), newcsr6;
|
|
|
|
/* reset status first */
|
|
mdio_read(dev, tp->phys[0], MII_BMCR);
|
|
mdio_read(dev, tp->phys[0], MII_BMSR);
|
|
|
|
reg0 = mdio_read(dev, tp->phys[0], MII_BMCR);
|
|
reg1 = mdio_read(dev, tp->phys[0], MII_BMSR);
|
|
|
|
if (reg1 & BMSR_LSTATUS) {
|
|
/* link is up */
|
|
if (reg0 & BMCR_ANENABLE) {
|
|
/* autonegotiation is enabled */
|
|
reg4 = mdio_read(dev, tp->phys[0], MII_ADVERTISE);
|
|
reg5 = mdio_read(dev, tp->phys[0], MII_LPA);
|
|
if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
|
|
tp->speed100 = 1;
|
|
tp->full_duplex = 1;
|
|
} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
|
|
tp->speed100 = 1;
|
|
tp->full_duplex = 0;
|
|
} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
|
|
tp->speed100 = 0;
|
|
tp->full_duplex = 1;
|
|
} else {
|
|
tp->speed100 = 0;
|
|
tp->full_duplex = 0;
|
|
}
|
|
} else {
|
|
/* autonegotiation is disabled */
|
|
if (reg0 & BMCR_SPEED100)
|
|
tp->speed100 = 1;
|
|
else
|
|
tp->speed100 = 0;
|
|
if (reg0 & BMCR_FULLDPLX)
|
|
tp->full_duplex = 1;
|
|
else
|
|
tp->full_duplex = 0;
|
|
}
|
|
printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
|
|
dev->name,
|
|
tp->speed100 ? "100" : "10",
|
|
tp->full_duplex ? "full" : "half");
|
|
netif_carrier_on(dev);
|
|
newcsr6 = csr6 & ~FullDuplexBit;
|
|
if (tp->full_duplex)
|
|
newcsr6 |= FullDuplexBit;
|
|
if (newcsr6 != csr6)
|
|
outl_CSR6(newcsr6, ioaddr + CSR6);
|
|
} else {
|
|
printk(KERN_DEBUG "%s: Link is down\n", dev->name);
|
|
netif_carrier_off(dev);
|
|
}
|
|
}
|
|
|
|
|
|
static void check_duplex(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
u16 reg0;
|
|
|
|
mdio_write(dev, tp->phys[0], MII_BMCR, BMCR_RESET);
|
|
udelay(500);
|
|
while (mdio_read(dev, tp->phys[0], MII_BMCR) & BMCR_RESET);
|
|
|
|
reg0 = mdio_read(dev, tp->phys[0], MII_BMCR);
|
|
mdio_write(dev, tp->phys[0], MII_ADVERTISE, tp->advertising[0]);
|
|
|
|
if (tp->autoneg) {
|
|
reg0 &= ~(BMCR_SPEED100 | BMCR_FULLDPLX);
|
|
reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
|
|
} else {
|
|
reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
|
|
if (tp->speed100)
|
|
reg0 |= BMCR_SPEED100;
|
|
if (tp->full_duplex)
|
|
reg0 |= BMCR_FULLDPLX;
|
|
printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
|
|
dev->name,
|
|
tp->speed100 ? "100" : "10",
|
|
tp->full_duplex ? "full" : "half");
|
|
}
|
|
mdio_write(dev, tp->phys[0], MII_BMCR, reg0);
|
|
}
|
|
|
|
|
|
/* The interrupt handler does all of the Rx thread work and cleans up
|
|
after the Tx thread. */
|
|
static irqreturn_t xircom_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
int csr5, work_budget = max_interrupt_work;
|
|
int handled = 0;
|
|
|
|
spin_lock (&tp->lock);
|
|
|
|
do {
|
|
csr5 = inl(ioaddr + CSR5);
|
|
/* Acknowledge all of the current interrupt sources ASAP. */
|
|
outl(csr5 & 0x0001ffff, ioaddr + CSR5);
|
|
|
|
if (xircom_debug > 4)
|
|
printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n",
|
|
dev->name, csr5, inl(dev->base_addr + CSR5));
|
|
|
|
if (csr5 == 0xffffffff)
|
|
break; /* all bits set, assume PCMCIA card removed */
|
|
|
|
if ((csr5 & (NormalIntr|AbnormalIntr)) == 0)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
if (csr5 & (RxIntr | RxNoBuf))
|
|
work_budget -= xircom_rx(dev);
|
|
|
|
if (csr5 & (TxNoBuf | TxDied | TxIntr)) {
|
|
unsigned int dirty_tx;
|
|
|
|
for (dirty_tx = tp->dirty_tx; tp->cur_tx - dirty_tx > 0;
|
|
dirty_tx++) {
|
|
int entry = dirty_tx % TX_RING_SIZE;
|
|
int status = tp->tx_ring[entry].status;
|
|
|
|
if (status < 0)
|
|
break; /* It still hasn't been Txed */
|
|
/* Check for Rx filter setup frames. */
|
|
if (tp->tx_skbuff[entry] == NULL)
|
|
continue;
|
|
|
|
if (status & Tx0DescError) {
|
|
/* There was an major error, log it. */
|
|
#ifndef final_version
|
|
if (xircom_debug > 1)
|
|
printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
|
|
dev->name, status);
|
|
#endif
|
|
tp->stats.tx_errors++;
|
|
if (status & Tx0ManyColl) {
|
|
tp->stats.tx_aborted_errors++;
|
|
}
|
|
if (status & Tx0NoCarrier) tp->stats.tx_carrier_errors++;
|
|
if (status & Tx0LateColl) tp->stats.tx_window_errors++;
|
|
if (status & Tx0Underflow) tp->stats.tx_fifo_errors++;
|
|
} else {
|
|
tp->stats.tx_bytes += tp->tx_ring[entry].length & 0x7ff;
|
|
tp->stats.collisions += (status >> 3) & 15;
|
|
tp->stats.tx_packets++;
|
|
}
|
|
|
|
/* Free the original skb. */
|
|
dev_kfree_skb_irq(tp->tx_skbuff[entry]);
|
|
tp->tx_skbuff[entry] = NULL;
|
|
}
|
|
|
|
#ifndef final_version
|
|
if (tp->cur_tx - dirty_tx > TX_RING_SIZE) {
|
|
printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
|
|
dev->name, dirty_tx, tp->cur_tx, tp->tx_full);
|
|
dirty_tx += TX_RING_SIZE;
|
|
}
|
|
#endif
|
|
|
|
if (tp->tx_full &&
|
|
tp->cur_tx - dirty_tx < TX_RING_SIZE - 2)
|
|
/* The ring is no longer full */
|
|
tp->tx_full = 0;
|
|
|
|
if (tp->tx_full)
|
|
netif_stop_queue (dev);
|
|
else
|
|
netif_wake_queue (dev);
|
|
|
|
tp->dirty_tx = dirty_tx;
|
|
if (csr5 & TxDied) {
|
|
if (xircom_debug > 2)
|
|
printk(KERN_WARNING "%s: The transmitter stopped."
|
|
" CSR5 is %x, CSR6 %x, new CSR6 %x.\n",
|
|
dev->name, csr5, inl(ioaddr + CSR6), tp->csr6);
|
|
outl_CSR6(tp->csr6 | EnableRx, ioaddr);
|
|
outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
|
|
}
|
|
}
|
|
|
|
/* Log errors. */
|
|
if (csr5 & AbnormalIntr) { /* Abnormal error summary bit. */
|
|
if (csr5 & LinkChange)
|
|
xircom_media_change(dev);
|
|
if (csr5 & TxFIFOUnderflow) {
|
|
if ((tp->csr6 & TxThreshMask) != TxThreshMask)
|
|
tp->csr6 += (1 << TxThreshShift); /* Bump up the Tx threshold */
|
|
else
|
|
tp->csr6 |= TxStoreForw; /* Store-n-forward. */
|
|
/* Restart the transmit process. */
|
|
outl_CSR6(tp->csr6 | EnableRx, ioaddr);
|
|
outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
|
|
}
|
|
if (csr5 & RxDied) { /* Missed a Rx frame. */
|
|
tp->stats.rx_errors++;
|
|
tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
|
|
outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
|
|
}
|
|
/* Clear all error sources, included undocumented ones! */
|
|
outl(0x0800f7ba, ioaddr + CSR5);
|
|
}
|
|
if (--work_budget < 0) {
|
|
if (xircom_debug > 1)
|
|
printk(KERN_WARNING "%s: Too much work during an interrupt, "
|
|
"csr5=0x%8.8x.\n", dev->name, csr5);
|
|
/* Acknowledge all interrupt sources. */
|
|
outl(0x8001ffff, ioaddr + CSR5);
|
|
break;
|
|
}
|
|
} while (1);
|
|
|
|
if (xircom_debug > 3)
|
|
printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n",
|
|
dev->name, inl(ioaddr + CSR5));
|
|
|
|
spin_unlock (&tp->lock);
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
|
|
static int
|
|
xircom_rx(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
int entry = tp->cur_rx % RX_RING_SIZE;
|
|
int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx;
|
|
int work_done = 0;
|
|
|
|
if (xircom_debug > 4)
|
|
printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry,
|
|
tp->rx_ring[entry].status);
|
|
/* If we own the next entry, it's a new packet. Send it up. */
|
|
while (tp->rx_ring[entry].status >= 0) {
|
|
s32 status = tp->rx_ring[entry].status;
|
|
|
|
if (xircom_debug > 5)
|
|
printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry,
|
|
tp->rx_ring[entry].status);
|
|
if (--rx_work_limit < 0)
|
|
break;
|
|
if ((status & 0x38008300) != 0x0300) {
|
|
if ((status & 0x38000300) != 0x0300) {
|
|
/* Ignore earlier buffers. */
|
|
if ((status & 0xffff) != 0x7fff) {
|
|
if (xircom_debug > 1)
|
|
printk(KERN_WARNING "%s: Oversized Ethernet frame "
|
|
"spanned multiple buffers, status %8.8x!\n",
|
|
dev->name, status);
|
|
tp->stats.rx_length_errors++;
|
|
}
|
|
} else if (status & Rx0DescError) {
|
|
/* There was a fatal error. */
|
|
if (xircom_debug > 2)
|
|
printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n",
|
|
dev->name, status);
|
|
tp->stats.rx_errors++; /* end of a packet.*/
|
|
if (status & (Rx0Runt | Rx0HugeFrame)) tp->stats.rx_length_errors++;
|
|
if (status & Rx0CRCError) tp->stats.rx_crc_errors++;
|
|
}
|
|
} else {
|
|
/* Omit the four octet CRC from the length. */
|
|
short pkt_len = ((status >> 16) & 0x7ff) - 4;
|
|
struct sk_buff *skb;
|
|
|
|
#ifndef final_version
|
|
if (pkt_len > 1518) {
|
|
printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n",
|
|
dev->name, pkt_len, pkt_len);
|
|
pkt_len = 1518;
|
|
tp->stats.rx_length_errors++;
|
|
}
|
|
#endif
|
|
/* Check if the packet is long enough to accept without copying
|
|
to a minimally-sized skbuff. */
|
|
if (pkt_len < rx_copybreak
|
|
&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
|
|
skb->dev = dev;
|
|
skb_reserve(skb, 2); /* 16 byte align the IP header */
|
|
#if ! defined(__alpha__)
|
|
eth_copy_and_sum(skb, bus_to_virt(tp->rx_ring[entry].buffer1),
|
|
pkt_len, 0);
|
|
skb_put(skb, pkt_len);
|
|
#else
|
|
memcpy(skb_put(skb, pkt_len),
|
|
bus_to_virt(tp->rx_ring[entry].buffer1), pkt_len);
|
|
#endif
|
|
work_done++;
|
|
} else { /* Pass up the skb already on the Rx ring. */
|
|
skb_put(skb = tp->rx_skbuff[entry], pkt_len);
|
|
tp->rx_skbuff[entry] = NULL;
|
|
}
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
netif_rx(skb);
|
|
dev->last_rx = jiffies;
|
|
tp->stats.rx_packets++;
|
|
tp->stats.rx_bytes += pkt_len;
|
|
}
|
|
entry = (++tp->cur_rx) % RX_RING_SIZE;
|
|
}
|
|
|
|
/* Refill the Rx ring buffers. */
|
|
for (; tp->cur_rx - tp->dirty_rx > 0; tp->dirty_rx++) {
|
|
entry = tp->dirty_rx % RX_RING_SIZE;
|
|
if (tp->rx_skbuff[entry] == NULL) {
|
|
struct sk_buff *skb;
|
|
skb = tp->rx_skbuff[entry] = dev_alloc_skb(PKT_BUF_SZ);
|
|
if (skb == NULL)
|
|
break;
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
tp->rx_ring[entry].buffer1 = virt_to_bus(skb->tail);
|
|
work_done++;
|
|
}
|
|
tp->rx_ring[entry].status = Rx0DescOwned;
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
|
|
static void
|
|
xircom_down(struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
|
|
/* Disable interrupts by clearing the interrupt mask. */
|
|
outl(0, ioaddr + CSR7);
|
|
/* Stop the chip's Tx and Rx processes. */
|
|
outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr);
|
|
|
|
if (inl(ioaddr + CSR6) != 0xffffffff)
|
|
tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
|
|
|
|
dev->if_port = tp->saved_if_port;
|
|
}
|
|
|
|
|
|
static int
|
|
xircom_close(struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
int i;
|
|
|
|
if (xircom_debug > 1)
|
|
printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
|
|
dev->name, inl(ioaddr + CSR5));
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
if (netif_device_present(dev))
|
|
xircom_down(dev);
|
|
|
|
free_irq(dev->irq, dev);
|
|
|
|
/* Free all the skbuffs in the Rx queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
struct sk_buff *skb = tp->rx_skbuff[i];
|
|
tp->rx_skbuff[i] = NULL;
|
|
tp->rx_ring[i].status = 0; /* Not owned by Xircom chip. */
|
|
tp->rx_ring[i].length = 0;
|
|
tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
|
|
if (skb) {
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
if (tp->tx_skbuff[i])
|
|
dev_kfree_skb(tp->tx_skbuff[i]);
|
|
tp->tx_skbuff[i] = NULL;
|
|
}
|
|
|
|
tp->open = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct net_device_stats *xircom_get_stats(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
|
|
if (netif_device_present(dev))
|
|
tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
|
|
|
|
return &tp->stats;
|
|
}
|
|
|
|
static int xircom_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
ecmd->supported =
|
|
SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half |
|
|
SUPPORTED_100baseT_Full |
|
|
SUPPORTED_Autoneg |
|
|
SUPPORTED_MII;
|
|
|
|
ecmd->advertising = ADVERTISED_MII;
|
|
if (tp->advertising[0] & ADVERTISE_10HALF)
|
|
ecmd->advertising |= ADVERTISED_10baseT_Half;
|
|
if (tp->advertising[0] & ADVERTISE_10FULL)
|
|
ecmd->advertising |= ADVERTISED_10baseT_Full;
|
|
if (tp->advertising[0] & ADVERTISE_100HALF)
|
|
ecmd->advertising |= ADVERTISED_100baseT_Half;
|
|
if (tp->advertising[0] & ADVERTISE_100FULL)
|
|
ecmd->advertising |= ADVERTISED_100baseT_Full;
|
|
if (tp->autoneg) {
|
|
ecmd->advertising |= ADVERTISED_Autoneg;
|
|
ecmd->autoneg = AUTONEG_ENABLE;
|
|
} else
|
|
ecmd->autoneg = AUTONEG_DISABLE;
|
|
|
|
ecmd->port = PORT_MII;
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
ecmd->phy_address = tp->phys[0];
|
|
ecmd->speed = tp->speed100 ? SPEED_100 : SPEED_10;
|
|
ecmd->duplex = tp->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
|
|
ecmd->maxtxpkt = TX_RING_SIZE / 2;
|
|
ecmd->maxrxpkt = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int xircom_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
u16 autoneg, speed100, full_duplex;
|
|
|
|
autoneg = (ecmd->autoneg == AUTONEG_ENABLE);
|
|
speed100 = (ecmd->speed == SPEED_100);
|
|
full_duplex = (ecmd->duplex == DUPLEX_FULL);
|
|
|
|
tp->autoneg = autoneg;
|
|
if (speed100 != tp->speed100 ||
|
|
full_duplex != tp->full_duplex) {
|
|
tp->speed100 = speed100;
|
|
tp->full_duplex = full_duplex;
|
|
/* change advertising bits */
|
|
tp->advertising[0] &= ~(ADVERTISE_10HALF |
|
|
ADVERTISE_10FULL |
|
|
ADVERTISE_100HALF |
|
|
ADVERTISE_100FULL |
|
|
ADVERTISE_100BASE4);
|
|
if (speed100) {
|
|
if (full_duplex)
|
|
tp->advertising[0] |= ADVERTISE_100FULL;
|
|
else
|
|
tp->advertising[0] |= ADVERTISE_100HALF;
|
|
} else {
|
|
if (full_duplex)
|
|
tp->advertising[0] |= ADVERTISE_10FULL;
|
|
else
|
|
tp->advertising[0] |= ADVERTISE_10HALF;
|
|
}
|
|
}
|
|
check_duplex(dev);
|
|
return 0;
|
|
}
|
|
|
|
static void xircom_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
strcpy(info->driver, DRV_NAME);
|
|
strcpy(info->version, DRV_VERSION);
|
|
strcpy(info->bus_info, pci_name(tp->pdev));
|
|
}
|
|
|
|
static struct ethtool_ops ops = {
|
|
.get_settings = xircom_get_settings,
|
|
.set_settings = xircom_set_settings,
|
|
.get_drvinfo = xircom_get_drvinfo,
|
|
};
|
|
|
|
/* Provide ioctl() calls to examine the MII xcvr state. */
|
|
static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
u16 *data = (u16 *)&rq->ifr_ifru;
|
|
int phy = tp->phys[0] & 0x1f;
|
|
unsigned long flags;
|
|
|
|
switch(cmd) {
|
|
/* Legacy mii-diag interface */
|
|
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
|
|
if (tp->mii_cnt)
|
|
data[0] = phy;
|
|
else
|
|
return -ENODEV;
|
|
return 0;
|
|
case SIOCGMIIREG: /* Read MII PHY register. */
|
|
save_flags(flags);
|
|
cli();
|
|
data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
|
|
restore_flags(flags);
|
|
return 0;
|
|
case SIOCSMIIREG: /* Write MII PHY register. */
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
save_flags(flags);
|
|
cli();
|
|
if (data[0] == tp->phys[0]) {
|
|
u16 value = data[2];
|
|
switch (data[1]) {
|
|
case 0:
|
|
if (value & (BMCR_RESET | BMCR_ANENABLE))
|
|
/* Autonegotiation. */
|
|
tp->autoneg = 1;
|
|
else {
|
|
tp->full_duplex = (value & BMCR_FULLDPLX) ? 1 : 0;
|
|
tp->autoneg = 0;
|
|
}
|
|
break;
|
|
case 4:
|
|
tp->advertising[0] = value;
|
|
break;
|
|
}
|
|
check_duplex(dev);
|
|
}
|
|
mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
|
|
restore_flags(flags);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
Note that we only use exclusion around actually queueing the
|
|
new frame, not around filling tp->setup_frame. This is non-deterministic
|
|
when re-entered but still correct. */
|
|
static void set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
struct dev_mc_list *mclist;
|
|
long ioaddr = dev->base_addr;
|
|
int csr6 = inl(ioaddr + CSR6);
|
|
u16 *eaddrs, *setup_frm;
|
|
u32 tx_flags;
|
|
int i;
|
|
|
|
tp->csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit);
|
|
csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit);
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
tp->csr6 |= PromiscBit;
|
|
csr6 |= PromiscBit;
|
|
goto out;
|
|
}
|
|
|
|
if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
|
|
/* Too many to filter well -- accept all multicasts. */
|
|
tp->csr6 |= AllMultiBit;
|
|
csr6 |= AllMultiBit;
|
|
goto out;
|
|
}
|
|
|
|
tx_flags = Tx1WholePkt | Tx1SetupPkt | PKT_SETUP_SZ;
|
|
|
|
/* Note that only the low-address shortword of setup_frame is valid! */
|
|
setup_frm = tp->setup_frame;
|
|
mclist = dev->mc_list;
|
|
|
|
/* Fill the first entry with our physical address. */
|
|
eaddrs = (u16 *)dev->dev_addr;
|
|
*setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2;
|
|
*setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2;
|
|
*setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2;
|
|
|
|
if (dev->mc_count > 14) { /* Must use a multicast hash table. */
|
|
u32 *hash_table = (u32 *)(tp->setup_frame + 4 * 12);
|
|
u32 hash, hash2;
|
|
|
|
tx_flags |= Tx1HashSetup;
|
|
tp->csr6 |= HashFilterBit;
|
|
csr6 |= HashFilterBit;
|
|
|
|
/* Fill the unused 3 entries with the broadcast address.
|
|
At least one entry *must* contain the broadcast address!!!*/
|
|
for (i = 0; i < 3; i++) {
|
|
*setup_frm = 0xffff; setup_frm += 2;
|
|
*setup_frm = 0xffff; setup_frm += 2;
|
|
*setup_frm = 0xffff; setup_frm += 2;
|
|
}
|
|
|
|
/* Truly brain-damaged hash filter layout */
|
|
/* XXX: not sure if I should take the last or the first 9 bits */
|
|
for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) {
|
|
u32 *hptr;
|
|
hash = ether_crc(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
|
|
if (hash < 384) {
|
|
hash2 = hash + ((hash >> 4) << 4) +
|
|
((hash >> 5) << 5);
|
|
} else {
|
|
hash -= 384;
|
|
hash2 = 64 + hash + (hash >> 4) * 80;
|
|
}
|
|
hptr = &hash_table[hash2 & ~0x1f];
|
|
*hptr |= cpu_to_le32(1 << (hash2 & 0x1f));
|
|
}
|
|
} else {
|
|
/* We have <= 14 mcast addresses so we can use Xircom's
|
|
wonderful 16-address perfect filter. */
|
|
for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) {
|
|
eaddrs = (u16 *)mclist->dmi_addr;
|
|
*setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2;
|
|
*setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2;
|
|
*setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2;
|
|
}
|
|
/* Fill the unused entries with the broadcast address.
|
|
At least one entry *must* contain the broadcast address!!!*/
|
|
for (; i < 15; i++) {
|
|
*setup_frm = 0xffff; setup_frm += 2;
|
|
*setup_frm = 0xffff; setup_frm += 2;
|
|
*setup_frm = 0xffff; setup_frm += 2;
|
|
}
|
|
}
|
|
|
|
/* Now add this frame to the Tx list. */
|
|
if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
|
|
/* Same setup recently queued, we need not add it. */
|
|
/* XXX: Huh? All it means is that the Tx list is full...*/
|
|
} else {
|
|
unsigned long flags;
|
|
unsigned int entry;
|
|
int dummy = -1;
|
|
|
|
save_flags(flags); cli();
|
|
entry = tp->cur_tx++ % TX_RING_SIZE;
|
|
|
|
if (entry != 0) {
|
|
/* Avoid a chip errata by prefixing a dummy entry. */
|
|
tp->tx_skbuff[entry] = NULL;
|
|
tp->tx_ring[entry].length =
|
|
(entry == TX_RING_SIZE - 1) ? Tx1RingWrap : 0;
|
|
tp->tx_ring[entry].buffer1 = 0;
|
|
/* race with chip, set Tx0DescOwned later */
|
|
dummy = entry;
|
|
entry = tp->cur_tx++ % TX_RING_SIZE;
|
|
}
|
|
|
|
tp->tx_skbuff[entry] = NULL;
|
|
/* Put the setup frame on the Tx list. */
|
|
if (entry == TX_RING_SIZE - 1)
|
|
tx_flags |= Tx1RingWrap; /* Wrap ring. */
|
|
tp->tx_ring[entry].length = tx_flags;
|
|
tp->tx_ring[entry].buffer1 = virt_to_bus(tp->setup_frame);
|
|
tp->tx_ring[entry].status = Tx0DescOwned;
|
|
if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) {
|
|
tp->tx_full = 1;
|
|
netif_stop_queue (dev);
|
|
}
|
|
if (dummy >= 0)
|
|
tp->tx_ring[dummy].status = Tx0DescOwned;
|
|
restore_flags(flags);
|
|
/* Trigger an immediate transmit demand. */
|
|
outl(0, ioaddr + CSR1);
|
|
}
|
|
|
|
out:
|
|
outl_CSR6(csr6, ioaddr);
|
|
}
|
|
|
|
|
|
static struct pci_device_id xircom_pci_table[] = {
|
|
{ 0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, X3201_3 },
|
|
{0},
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, xircom_pci_table);
|
|
|
|
|
|
#ifdef CONFIG_PM
|
|
static int xircom_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
printk(KERN_INFO "xircom_suspend(%s)\n", dev->name);
|
|
if (tp->open)
|
|
xircom_down(dev);
|
|
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_power_state(pdev, 3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int xircom_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct xircom_private *tp = netdev_priv(dev);
|
|
printk(KERN_INFO "xircom_resume(%s)\n", dev->name);
|
|
|
|
pci_set_power_state(pdev,0);
|
|
pci_enable_device(pdev);
|
|
pci_restore_state(pdev);
|
|
|
|
/* Bring the chip out of sleep mode.
|
|
Caution: Snooze mode does not work with some boards! */
|
|
if (xircom_tbl[tp->chip_id].flags & HAS_ACPI)
|
|
pci_write_config_dword(tp->pdev, PCI_POWERMGMT, 0);
|
|
|
|
transceiver_voodoo(dev);
|
|
if (xircom_tbl[tp->chip_id].flags & HAS_MII)
|
|
check_duplex(dev);
|
|
|
|
if (tp->open)
|
|
xircom_up(dev);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
static void __devexit xircom_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
|
|
printk(KERN_INFO "xircom_remove_one(%s)\n", dev->name);
|
|
unregister_netdev(dev);
|
|
pci_release_regions(pdev);
|
|
free_netdev(dev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
|
|
static struct pci_driver xircom_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = xircom_pci_table,
|
|
.probe = xircom_init_one,
|
|
.remove = __devexit_p(xircom_remove_one),
|
|
#ifdef CONFIG_PM
|
|
.suspend = xircom_suspend,
|
|
.resume = xircom_resume
|
|
#endif /* CONFIG_PM */
|
|
};
|
|
|
|
|
|
static int __init xircom_init(void)
|
|
{
|
|
/* when a module, this is printed whether or not devices are found in probe */
|
|
#ifdef MODULE
|
|
printk(version);
|
|
#endif
|
|
return pci_module_init(&xircom_driver);
|
|
}
|
|
|
|
|
|
static void __exit xircom_exit(void)
|
|
{
|
|
pci_unregister_driver(&xircom_driver);
|
|
}
|
|
|
|
module_init(xircom_init)
|
|
module_exit(xircom_exit)
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 4
|
|
* c-basic-offset: 4
|
|
* tab-width: 4
|
|
* End:
|
|
*/
|