aha/sound/core/pcm_lib.c
Takashi Iwai 0981a260a1 [ALSA] Fix possible invalid memory access in PCM core
snd_internval_list() may access invalid memory in the case count = 0
is given.  It shouldn't be passed, but it'd better to make the code
a bit more robust.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2007-02-09 09:03:31 +01:00

2130 lines
57 KiB
C

/*
* Digital Audio (PCM) abstract layer
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
* Abramo Bagnara <abramo@alsa-project.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/timer.h>
/*
* fill ring buffer with silence
* runtime->silence_start: starting pointer to silence area
* runtime->silence_filled: size filled with silence
* runtime->silence_threshold: threshold from application
* runtime->silence_size: maximal size from application
*
* when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
*/
void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t frames, ofs, transfer;
if (runtime->silence_size < runtime->boundary) {
snd_pcm_sframes_t noise_dist, n;
if (runtime->silence_start != runtime->control->appl_ptr) {
n = runtime->control->appl_ptr - runtime->silence_start;
if (n < 0)
n += runtime->boundary;
if ((snd_pcm_uframes_t)n < runtime->silence_filled)
runtime->silence_filled -= n;
else
runtime->silence_filled = 0;
runtime->silence_start = runtime->control->appl_ptr;
}
if (runtime->silence_filled >= runtime->buffer_size)
return;
noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
return;
frames = runtime->silence_threshold - noise_dist;
if (frames > runtime->silence_size)
frames = runtime->silence_size;
} else {
if (new_hw_ptr == ULONG_MAX) { /* initialization */
snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
runtime->silence_filled = avail > 0 ? avail : 0;
runtime->silence_start = (runtime->status->hw_ptr +
runtime->silence_filled) %
runtime->boundary;
} else {
ofs = runtime->status->hw_ptr;
frames = new_hw_ptr - ofs;
if ((snd_pcm_sframes_t)frames < 0)
frames += runtime->boundary;
runtime->silence_filled -= frames;
if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
runtime->silence_filled = 0;
runtime->silence_start = new_hw_ptr;
} else {
runtime->silence_start = ofs;
}
}
frames = runtime->buffer_size - runtime->silence_filled;
}
snd_assert(frames <= runtime->buffer_size, return);
if (frames == 0)
return;
ofs = runtime->silence_start % runtime->buffer_size;
while (frames > 0) {
transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
if (substream->ops->silence) {
int err;
err = substream->ops->silence(substream, -1, ofs, transfer);
snd_assert(err >= 0, );
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
}
} else {
unsigned int c;
unsigned int channels = runtime->channels;
if (substream->ops->silence) {
for (c = 0; c < channels; ++c) {
int err;
err = substream->ops->silence(substream, c, ofs, transfer);
snd_assert(err >= 0, );
}
} else {
size_t dma_csize = runtime->dma_bytes / channels;
for (c = 0; c < channels; ++c) {
char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
}
}
}
runtime->silence_filled += transfer;
frames -= transfer;
ofs = 0;
}
}
static void xrun(struct snd_pcm_substream *substream)
{
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
if (substream->pstr->xrun_debug) {
snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
substream->pcm->card->number,
substream->pcm->device,
substream->stream ? 'c' : 'p');
if (substream->pstr->xrun_debug > 1)
dump_stack();
}
#endif
}
static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
struct snd_pcm_runtime *runtime)
{
snd_pcm_uframes_t pos;
pos = substream->ops->pointer(substream);
if (pos == SNDRV_PCM_POS_XRUN)
return pos; /* XRUN */
if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
getnstimeofday((struct timespec *)&runtime->status->tstamp);
#ifdef CONFIG_SND_DEBUG
if (pos >= runtime->buffer_size) {
snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
}
#endif
pos -= pos % runtime->min_align;
return pos;
}
static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
struct snd_pcm_runtime *runtime)
{
snd_pcm_uframes_t avail;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
avail = snd_pcm_playback_avail(runtime);
else
avail = snd_pcm_capture_avail(runtime);
if (avail > runtime->avail_max)
runtime->avail_max = avail;
if (avail >= runtime->stop_threshold) {
if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
snd_pcm_drain_done(substream);
else
xrun(substream);
return -EPIPE;
}
if (avail >= runtime->control->avail_min)
wake_up(&runtime->sleep);
return 0;
}
static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t pos;
snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
snd_pcm_sframes_t delta;
pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
if (pos == SNDRV_PCM_POS_XRUN) {
xrun(substream);
return -EPIPE;
}
if (runtime->period_size == runtime->buffer_size)
goto __next_buf;
new_hw_ptr = runtime->hw_ptr_base + pos;
hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
delta = hw_ptr_interrupt - new_hw_ptr;
if (delta > 0) {
if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
if (runtime->periods > 1 && substream->pstr->xrun_debug) {
snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
if (substream->pstr->xrun_debug > 1)
dump_stack();
}
#endif
return 0;
}
__next_buf:
runtime->hw_ptr_base += runtime->buffer_size;
if (runtime->hw_ptr_base == runtime->boundary)
runtime->hw_ptr_base = 0;
new_hw_ptr = runtime->hw_ptr_base + pos;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
runtime->silence_size > 0)
snd_pcm_playback_silence(substream, new_hw_ptr);
runtime->status->hw_ptr = new_hw_ptr;
runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
return snd_pcm_update_hw_ptr_post(substream, runtime);
}
/* CAUTION: call it with irq disabled */
int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t pos;
snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
snd_pcm_sframes_t delta;
old_hw_ptr = runtime->status->hw_ptr;
pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
if (pos == SNDRV_PCM_POS_XRUN) {
xrun(substream);
return -EPIPE;
}
new_hw_ptr = runtime->hw_ptr_base + pos;
delta = old_hw_ptr - new_hw_ptr;
if (delta > 0) {
if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
if (runtime->periods > 2 && substream->pstr->xrun_debug) {
snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
if (substream->pstr->xrun_debug > 1)
dump_stack();
}
#endif
return 0;
}
runtime->hw_ptr_base += runtime->buffer_size;
if (runtime->hw_ptr_base == runtime->boundary)
runtime->hw_ptr_base = 0;
new_hw_ptr = runtime->hw_ptr_base + pos;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
runtime->silence_size > 0)
snd_pcm_playback_silence(substream, new_hw_ptr);
runtime->status->hw_ptr = new_hw_ptr;
return snd_pcm_update_hw_ptr_post(substream, runtime);
}
/**
* snd_pcm_set_ops - set the PCM operators
* @pcm: the pcm instance
* @direction: stream direction, SNDRV_PCM_STREAM_XXX
* @ops: the operator table
*
* Sets the given PCM operators to the pcm instance.
*/
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
{
struct snd_pcm_str *stream = &pcm->streams[direction];
struct snd_pcm_substream *substream;
for (substream = stream->substream; substream != NULL; substream = substream->next)
substream->ops = ops;
}
EXPORT_SYMBOL(snd_pcm_set_ops);
/**
* snd_pcm_sync - set the PCM sync id
* @substream: the pcm substream
*
* Sets the PCM sync identifier for the card.
*/
void snd_pcm_set_sync(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
runtime->sync.id32[0] = substream->pcm->card->number;
runtime->sync.id32[1] = -1;
runtime->sync.id32[2] = -1;
runtime->sync.id32[3] = -1;
}
EXPORT_SYMBOL(snd_pcm_set_sync);
/*
* Standard ioctl routine
*/
static inline unsigned int div32(unsigned int a, unsigned int b,
unsigned int *r)
{
if (b == 0) {
*r = 0;
return UINT_MAX;
}
*r = a % b;
return a / b;
}
static inline unsigned int div_down(unsigned int a, unsigned int b)
{
if (b == 0)
return UINT_MAX;
return a / b;
}
static inline unsigned int div_up(unsigned int a, unsigned int b)
{
unsigned int r;
unsigned int q;
if (b == 0)
return UINT_MAX;
q = div32(a, b, &r);
if (r)
++q;
return q;
}
static inline unsigned int mul(unsigned int a, unsigned int b)
{
if (a == 0)
return 0;
if (div_down(UINT_MAX, a) < b)
return UINT_MAX;
return a * b;
}
static inline unsigned int muldiv32(unsigned int a, unsigned int b,
unsigned int c, unsigned int *r)
{
u_int64_t n = (u_int64_t) a * b;
if (c == 0) {
snd_assert(n > 0, );
*r = 0;
return UINT_MAX;
}
div64_32(&n, c, r);
if (n >= UINT_MAX) {
*r = 0;
return UINT_MAX;
}
return n;
}
/**
* snd_interval_refine - refine the interval value of configurator
* @i: the interval value to refine
* @v: the interval value to refer to
*
* Refines the interval value with the reference value.
* The interval is changed to the range satisfying both intervals.
* The interval status (min, max, integer, etc.) are evaluated.
*
* Returns non-zero if the value is changed, zero if not changed.
*/
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
{
int changed = 0;
snd_assert(!snd_interval_empty(i), return -EINVAL);
if (i->min < v->min) {
i->min = v->min;
i->openmin = v->openmin;
changed = 1;
} else if (i->min == v->min && !i->openmin && v->openmin) {
i->openmin = 1;
changed = 1;
}
if (i->max > v->max) {
i->max = v->max;
i->openmax = v->openmax;
changed = 1;
} else if (i->max == v->max && !i->openmax && v->openmax) {
i->openmax = 1;
changed = 1;
}
if (!i->integer && v->integer) {
i->integer = 1;
changed = 1;
}
if (i->integer) {
if (i->openmin) {
i->min++;
i->openmin = 0;
}
if (i->openmax) {
i->max--;
i->openmax = 0;
}
} else if (!i->openmin && !i->openmax && i->min == i->max)
i->integer = 1;
if (snd_interval_checkempty(i)) {
snd_interval_none(i);
return -EINVAL;
}
return changed;
}
EXPORT_SYMBOL(snd_interval_refine);
static int snd_interval_refine_first(struct snd_interval *i)
{
snd_assert(!snd_interval_empty(i), return -EINVAL);
if (snd_interval_single(i))
return 0;
i->max = i->min;
i->openmax = i->openmin;
if (i->openmax)
i->max++;
return 1;
}
static int snd_interval_refine_last(struct snd_interval *i)
{
snd_assert(!snd_interval_empty(i), return -EINVAL);
if (snd_interval_single(i))
return 0;
i->min = i->max;
i->openmin = i->openmax;
if (i->openmin)
i->min--;
return 1;
}
void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = mul(a->min, b->min);
c->openmin = (a->openmin || b->openmin);
c->max = mul(a->max, b->max);
c->openmax = (a->openmax || b->openmax);
c->integer = (a->integer && b->integer);
}
/**
* snd_interval_div - refine the interval value with division
* @a: dividend
* @b: divisor
* @c: quotient
*
* c = a / b
*
* Returns non-zero if the value is changed, zero if not changed.
*/
void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
unsigned int r;
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = div32(a->min, b->max, &r);
c->openmin = (r || a->openmin || b->openmax);
if (b->min > 0) {
c->max = div32(a->max, b->min, &r);
if (r) {
c->max++;
c->openmax = 1;
} else
c->openmax = (a->openmax || b->openmin);
} else {
c->max = UINT_MAX;
c->openmax = 0;
}
c->integer = 0;
}
/**
* snd_interval_muldivk - refine the interval value
* @a: dividend 1
* @b: dividend 2
* @k: divisor (as integer)
* @c: result
*
* c = a * b / k
*
* Returns non-zero if the value is changed, zero if not changed.
*/
void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
unsigned int k, struct snd_interval *c)
{
unsigned int r;
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = muldiv32(a->min, b->min, k, &r);
c->openmin = (r || a->openmin || b->openmin);
c->max = muldiv32(a->max, b->max, k, &r);
if (r) {
c->max++;
c->openmax = 1;
} else
c->openmax = (a->openmax || b->openmax);
c->integer = 0;
}
/**
* snd_interval_mulkdiv - refine the interval value
* @a: dividend 1
* @k: dividend 2 (as integer)
* @b: divisor
* @c: result
*
* c = a * k / b
*
* Returns non-zero if the value is changed, zero if not changed.
*/
void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
const struct snd_interval *b, struct snd_interval *c)
{
unsigned int r;
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = muldiv32(a->min, k, b->max, &r);
c->openmin = (r || a->openmin || b->openmax);
if (b->min > 0) {
c->max = muldiv32(a->max, k, b->min, &r);
if (r) {
c->max++;
c->openmax = 1;
} else
c->openmax = (a->openmax || b->openmin);
} else {
c->max = UINT_MAX;
c->openmax = 0;
}
c->integer = 0;
}
/* ---- */
/**
* snd_interval_ratnum - refine the interval value
* @i: interval to refine
* @rats_count: number of ratnum_t
* @rats: ratnum_t array
* @nump: pointer to store the resultant numerator
* @denp: pointer to store the resultant denominator
*
* Returns non-zero if the value is changed, zero if not changed.
*/
int snd_interval_ratnum(struct snd_interval *i,
unsigned int rats_count, struct snd_ratnum *rats,
unsigned int *nump, unsigned int *denp)
{
unsigned int best_num, best_diff, best_den;
unsigned int k;
struct snd_interval t;
int err;
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num = rats[k].num;
unsigned int den;
unsigned int q = i->min;
int diff;
if (q == 0)
q = 1;
den = div_down(num, q);
if (den < rats[k].den_min)
continue;
if (den > rats[k].den_max)
den = rats[k].den_max;
else {
unsigned int r;
r = (den - rats[k].den_min) % rats[k].den_step;
if (r != 0)
den -= r;
}
diff = num - q * den;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.min = div_down(best_num, best_den);
t.openmin = !!(best_num % best_den);
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num = rats[k].num;
unsigned int den;
unsigned int q = i->max;
int diff;
if (q == 0) {
i->empty = 1;
return -EINVAL;
}
den = div_up(num, q);
if (den > rats[k].den_max)
continue;
if (den < rats[k].den_min)
den = rats[k].den_min;
else {
unsigned int r;
r = (den - rats[k].den_min) % rats[k].den_step;
if (r != 0)
den += rats[k].den_step - r;
}
diff = q * den - num;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.max = div_up(best_num, best_den);
t.openmax = !!(best_num % best_den);
t.integer = 0;
err = snd_interval_refine(i, &t);
if (err < 0)
return err;
if (snd_interval_single(i)) {
if (nump)
*nump = best_num;
if (denp)
*denp = best_den;
}
return err;
}
EXPORT_SYMBOL(snd_interval_ratnum);
/**
* snd_interval_ratden - refine the interval value
* @i: interval to refine
* @rats_count: number of struct ratden
* @rats: struct ratden array
* @nump: pointer to store the resultant numerator
* @denp: pointer to store the resultant denominator
*
* Returns non-zero if the value is changed, zero if not changed.
*/
static int snd_interval_ratden(struct snd_interval *i,
unsigned int rats_count, struct snd_ratden *rats,
unsigned int *nump, unsigned int *denp)
{
unsigned int best_num, best_diff, best_den;
unsigned int k;
struct snd_interval t;
int err;
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num;
unsigned int den = rats[k].den;
unsigned int q = i->min;
int diff;
num = mul(q, den);
if (num > rats[k].num_max)
continue;
if (num < rats[k].num_min)
num = rats[k].num_max;
else {
unsigned int r;
r = (num - rats[k].num_min) % rats[k].num_step;
if (r != 0)
num += rats[k].num_step - r;
}
diff = num - q * den;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.min = div_down(best_num, best_den);
t.openmin = !!(best_num % best_den);
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num;
unsigned int den = rats[k].den;
unsigned int q = i->max;
int diff;
num = mul(q, den);
if (num < rats[k].num_min)
continue;
if (num > rats[k].num_max)
num = rats[k].num_max;
else {
unsigned int r;
r = (num - rats[k].num_min) % rats[k].num_step;
if (r != 0)
num -= r;
}
diff = q * den - num;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.max = div_up(best_num, best_den);
t.openmax = !!(best_num % best_den);
t.integer = 0;
err = snd_interval_refine(i, &t);
if (err < 0)
return err;
if (snd_interval_single(i)) {
if (nump)
*nump = best_num;
if (denp)
*denp = best_den;
}
return err;
}
/**
* snd_interval_list - refine the interval value from the list
* @i: the interval value to refine
* @count: the number of elements in the list
* @list: the value list
* @mask: the bit-mask to evaluate
*
* Refines the interval value from the list.
* When mask is non-zero, only the elements corresponding to bit 1 are
* evaluated.
*
* Returns non-zero if the value is changed, zero if not changed.
*/
int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
{
unsigned int k;
int changed = 0;
if (!count) {
i->empty = 1;
return -EINVAL;
}
for (k = 0; k < count; k++) {
if (mask && !(mask & (1 << k)))
continue;
if (i->min == list[k] && !i->openmin)
goto _l1;
if (i->min < list[k]) {
i->min = list[k];
i->openmin = 0;
changed = 1;
goto _l1;
}
}
i->empty = 1;
return -EINVAL;
_l1:
for (k = count; k-- > 0;) {
if (mask && !(mask & (1 << k)))
continue;
if (i->max == list[k] && !i->openmax)
goto _l2;
if (i->max > list[k]) {
i->max = list[k];
i->openmax = 0;
changed = 1;
goto _l2;
}
}
i->empty = 1;
return -EINVAL;
_l2:
if (snd_interval_checkempty(i)) {
i->empty = 1;
return -EINVAL;
}
return changed;
}
EXPORT_SYMBOL(snd_interval_list);
static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
{
unsigned int n;
int changed = 0;
n = (i->min - min) % step;
if (n != 0 || i->openmin) {
i->min += step - n;
changed = 1;
}
n = (i->max - min) % step;
if (n != 0 || i->openmax) {
i->max -= n;
changed = 1;
}
if (snd_interval_checkempty(i)) {
i->empty = 1;
return -EINVAL;
}
return changed;
}
/* Info constraints helpers */
/**
* snd_pcm_hw_rule_add - add the hw-constraint rule
* @runtime: the pcm runtime instance
* @cond: condition bits
* @var: the variable to evaluate
* @func: the evaluation function
* @private: the private data pointer passed to function
* @dep: the dependent variables
*
* Returns zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
int var,
snd_pcm_hw_rule_func_t func, void *private,
int dep, ...)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_pcm_hw_rule *c;
unsigned int k;
va_list args;
va_start(args, dep);
if (constrs->rules_num >= constrs->rules_all) {
struct snd_pcm_hw_rule *new;
unsigned int new_rules = constrs->rules_all + 16;
new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
if (!new)
return -ENOMEM;
if (constrs->rules) {
memcpy(new, constrs->rules,
constrs->rules_num * sizeof(*c));
kfree(constrs->rules);
}
constrs->rules = new;
constrs->rules_all = new_rules;
}
c = &constrs->rules[constrs->rules_num];
c->cond = cond;
c->func = func;
c->var = var;
c->private = private;
k = 0;
while (1) {
snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
c->deps[k++] = dep;
if (dep < 0)
break;
dep = va_arg(args, int);
}
constrs->rules_num++;
va_end(args);
return 0;
}
EXPORT_SYMBOL(snd_pcm_hw_rule_add);
/**
* snd_pcm_hw_constraint_mask
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the mask
* @mask: the bitmap mask
*
* Apply the constraint of the given bitmap mask to a mask parameter.
*/
int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
u_int32_t mask)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_mask *maskp = constrs_mask(constrs, var);
*maskp->bits &= mask;
memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
if (*maskp->bits == 0)
return -EINVAL;
return 0;
}
/**
* snd_pcm_hw_constraint_mask64
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the mask
* @mask: the 64bit bitmap mask
*
* Apply the constraint of the given bitmap mask to a mask parameter.
*/
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
u_int64_t mask)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_mask *maskp = constrs_mask(constrs, var);
maskp->bits[0] &= (u_int32_t)mask;
maskp->bits[1] &= (u_int32_t)(mask >> 32);
memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
if (! maskp->bits[0] && ! maskp->bits[1])
return -EINVAL;
return 0;
}
/**
* snd_pcm_hw_constraint_integer
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the integer constraint
*
* Apply the constraint of integer to an interval parameter.
*/
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
return snd_interval_setinteger(constrs_interval(constrs, var));
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
/**
* snd_pcm_hw_constraint_minmax
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the range
* @min: the minimal value
* @max: the maximal value
*
* Apply the min/max range constraint to an interval parameter.
*/
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
unsigned int min, unsigned int max)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_interval t;
t.min = min;
t.max = max;
t.openmin = t.openmax = 0;
t.integer = 0;
return snd_interval_refine(constrs_interval(constrs, var), &t);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hw_constraint_list *list = rule->private;
return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
}
/**
* snd_pcm_hw_constraint_list
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the list constraint
* @l: list
*
* Apply the list of constraints to an interval parameter.
*/
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
struct snd_pcm_hw_constraint_list *l)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_list, l,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hw_constraint_ratnums *r = rule->private;
unsigned int num = 0, den = 0;
int err;
err = snd_interval_ratnum(hw_param_interval(params, rule->var),
r->nrats, r->rats, &num, &den);
if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
params->rate_num = num;
params->rate_den = den;
}
return err;
}
/**
* snd_pcm_hw_constraint_ratnums
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the ratnums constraint
* @r: struct snd_ratnums constriants
*/
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
struct snd_pcm_hw_constraint_ratnums *r)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_ratnums, r,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hw_constraint_ratdens *r = rule->private;
unsigned int num = 0, den = 0;
int err = snd_interval_ratden(hw_param_interval(params, rule->var),
r->nrats, r->rats, &num, &den);
if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
params->rate_num = num;
params->rate_den = den;
}
return err;
}
/**
* snd_pcm_hw_constraint_ratdens
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the ratdens constraint
* @r: struct snd_ratdens constriants
*/
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
struct snd_pcm_hw_constraint_ratdens *r)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_ratdens, r,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
unsigned int l = (unsigned long) rule->private;
int width = l & 0xffff;
unsigned int msbits = l >> 16;
struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
if (snd_interval_single(i) && snd_interval_value(i) == width)
params->msbits = msbits;
return 0;
}
/**
* snd_pcm_hw_constraint_msbits
* @runtime: PCM runtime instance
* @cond: condition bits
* @width: sample bits width
* @msbits: msbits width
*/
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
unsigned int cond,
unsigned int width,
unsigned int msbits)
{
unsigned long l = (msbits << 16) | width;
return snd_pcm_hw_rule_add(runtime, cond, -1,
snd_pcm_hw_rule_msbits,
(void*) l,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
unsigned long step = (unsigned long) rule->private;
return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
}
/**
* snd_pcm_hw_constraint_step
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the step constraint
* @step: step size
*/
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
unsigned long step)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_step, (void *) step,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
static int pow2_sizes[] = {
1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
};
return snd_interval_list(hw_param_interval(params, rule->var),
ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
}
/**
* snd_pcm_hw_constraint_pow2
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the power-of-2 constraint
*/
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_pow2, NULL,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
if (hw_is_mask(var)) {
snd_mask_any(hw_param_mask(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
return;
}
if (hw_is_interval(var)) {
snd_interval_any(hw_param_interval(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
return;
}
snd_BUG();
}
void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
{
unsigned int k;
memset(params, 0, sizeof(*params));
for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
_snd_pcm_hw_param_any(params, k);
for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
_snd_pcm_hw_param_any(params, k);
params->info = ~0U;
}
EXPORT_SYMBOL(_snd_pcm_hw_params_any);
/**
* snd_pcm_hw_param_value
* @params: the hw_params instance
* @var: parameter to retrieve
* @dir: pointer to the direction (-1,0,1) or NULL
*
* Return the value for field PAR if it's fixed in configuration space
* defined by PARAMS. Return -EINVAL otherwise
*/
int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var, int *dir)
{
if (hw_is_mask(var)) {
const struct snd_mask *mask = hw_param_mask_c(params, var);
if (!snd_mask_single(mask))
return -EINVAL;
if (dir)
*dir = 0;
return snd_mask_value(mask);
}
if (hw_is_interval(var)) {
const struct snd_interval *i = hw_param_interval_c(params, var);
if (!snd_interval_single(i))
return -EINVAL;
if (dir)
*dir = i->openmin;
return snd_interval_value(i);
}
return -EINVAL;
}
EXPORT_SYMBOL(snd_pcm_hw_param_value);
void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
if (hw_is_mask(var)) {
snd_mask_none(hw_param_mask(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
} else if (hw_is_interval(var)) {
snd_interval_none(hw_param_interval(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
} else {
snd_BUG();
}
}
EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
int changed;
if (hw_is_mask(var))
changed = snd_mask_refine_first(hw_param_mask(params, var));
else if (hw_is_interval(var))
changed = snd_interval_refine_first(hw_param_interval(params, var));
else
return -EINVAL;
if (changed) {
params->cmask |= 1 << var;
params->rmask |= 1 << var;
}
return changed;
}
/**
* snd_pcm_hw_param_first
* @pcm: PCM instance
* @params: the hw_params instance
* @var: parameter to retrieve
* @dir: pointer to the direction (-1,0,1) or NULL
*
* Inside configuration space defined by PARAMS remove from PAR all
* values > minimum. Reduce configuration space accordingly.
* Return the minimum.
*/
int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var, int *dir)
{
int changed = _snd_pcm_hw_param_first(params, var);
if (changed < 0)
return changed;
if (params->rmask) {
int err = snd_pcm_hw_refine(pcm, params);
snd_assert(err >= 0, return err);
}
return snd_pcm_hw_param_value(params, var, dir);
}
EXPORT_SYMBOL(snd_pcm_hw_param_first);
static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
int changed;
if (hw_is_mask(var))
changed = snd_mask_refine_last(hw_param_mask(params, var));
else if (hw_is_interval(var))
changed = snd_interval_refine_last(hw_param_interval(params, var));
else
return -EINVAL;
if (changed) {
params->cmask |= 1 << var;
params->rmask |= 1 << var;
}
return changed;
}
/**
* snd_pcm_hw_param_last
* @pcm: PCM instance
* @params: the hw_params instance
* @var: parameter to retrieve
* @dir: pointer to the direction (-1,0,1) or NULL
*
* Inside configuration space defined by PARAMS remove from PAR all
* values < maximum. Reduce configuration space accordingly.
* Return the maximum.
*/
int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var, int *dir)
{
int changed = _snd_pcm_hw_param_last(params, var);
if (changed < 0)
return changed;
if (params->rmask) {
int err = snd_pcm_hw_refine(pcm, params);
snd_assert(err >= 0, return err);
}
return snd_pcm_hw_param_value(params, var, dir);
}
EXPORT_SYMBOL(snd_pcm_hw_param_last);
/**
* snd_pcm_hw_param_choose
* @pcm: PCM instance
* @params: the hw_params instance
*
* Choose one configuration from configuration space defined by PARAMS
* The configuration chosen is that obtained fixing in this order:
* first access, first format, first subformat, min channels,
* min rate, min period time, max buffer size, min tick time
*/
int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
struct snd_pcm_hw_params *params)
{
static int vars[] = {
SNDRV_PCM_HW_PARAM_ACCESS,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_HW_PARAM_SUBFORMAT,
SNDRV_PCM_HW_PARAM_CHANNELS,
SNDRV_PCM_HW_PARAM_RATE,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
SNDRV_PCM_HW_PARAM_TICK_TIME,
-1
};
int err, *v;
for (v = vars; *v != -1; v++) {
if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
else
err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
snd_assert(err >= 0, return err);
}
return 0;
}
static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
void *arg)
{
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long flags;
snd_pcm_stream_lock_irqsave(substream, flags);
if (snd_pcm_running(substream) &&
snd_pcm_update_hw_ptr(substream) >= 0)
runtime->status->hw_ptr %= runtime->buffer_size;
else
runtime->status->hw_ptr = 0;
snd_pcm_stream_unlock_irqrestore(substream, flags);
return 0;
}
static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
void *arg)
{
struct snd_pcm_channel_info *info = arg;
struct snd_pcm_runtime *runtime = substream->runtime;
int width;
if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
info->offset = -1;
return 0;
}
width = snd_pcm_format_physical_width(runtime->format);
if (width < 0)
return width;
info->offset = 0;
switch (runtime->access) {
case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
info->first = info->channel * width;
info->step = runtime->channels * width;
break;
case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
{
size_t size = runtime->dma_bytes / runtime->channels;
info->first = info->channel * size * 8;
info->step = width;
break;
}
default:
snd_BUG();
break;
}
return 0;
}
/**
* snd_pcm_lib_ioctl - a generic PCM ioctl callback
* @substream: the pcm substream instance
* @cmd: ioctl command
* @arg: ioctl argument
*
* Processes the generic ioctl commands for PCM.
* Can be passed as the ioctl callback for PCM ops.
*
* Returns zero if successful, or a negative error code on failure.
*/
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg)
{
switch (cmd) {
case SNDRV_PCM_IOCTL1_INFO:
return 0;
case SNDRV_PCM_IOCTL1_RESET:
return snd_pcm_lib_ioctl_reset(substream, arg);
case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
return snd_pcm_lib_ioctl_channel_info(substream, arg);
}
return -ENXIO;
}
EXPORT_SYMBOL(snd_pcm_lib_ioctl);
/*
* Conditions
*/
static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream,
unsigned long ticks)
{
struct snd_pcm_runtime *runtime = substream->runtime;
if (ticks == 0)
del_timer(&runtime->tick_timer);
else {
ticks += (1000000 / HZ) - 1;
ticks /= (1000000 / HZ);
mod_timer(&runtime->tick_timer, jiffies + ticks);
}
}
/* Temporary alias */
void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
{
snd_pcm_system_tick_set(substream, ticks);
}
void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t frames = ULONG_MAX;
snd_pcm_uframes_t avail, dist;
unsigned int ticks;
u_int64_t n;
u_int32_t r;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (runtime->silence_size >= runtime->boundary) {
frames = 1;
} else if (runtime->silence_size > 0 &&
runtime->silence_filled < runtime->buffer_size) {
snd_pcm_sframes_t noise_dist;
noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
frames = noise_dist - runtime->silence_threshold;
}
avail = snd_pcm_playback_avail(runtime);
} else {
avail = snd_pcm_capture_avail(runtime);
}
if (avail < runtime->control->avail_min) {
snd_pcm_sframes_t n = runtime->control->avail_min - avail;
if (n > 0 && frames > (snd_pcm_uframes_t)n)
frames = n;
}
if (avail < runtime->buffer_size) {
snd_pcm_sframes_t n = runtime->buffer_size - avail;
if (n > 0 && frames > (snd_pcm_uframes_t)n)
frames = n;
}
if (frames == ULONG_MAX) {
snd_pcm_tick_set(substream, 0);
return;
}
dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
/* Distance to next interrupt */
dist = runtime->period_size - dist % runtime->period_size;
if (dist <= frames) {
snd_pcm_tick_set(substream, 0);
return;
}
/* the base time is us */
n = frames;
n *= 1000000;
div64_32(&n, runtime->tick_time * runtime->rate, &r);
ticks = n + (r > 0 ? 1 : 0);
if (ticks < runtime->sleep_min)
ticks = runtime->sleep_min;
snd_pcm_tick_set(substream, (unsigned long) ticks);
}
void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime;
unsigned long flags;
snd_assert(substream != NULL, return);
runtime = substream->runtime;
snd_assert(runtime != NULL, return);
snd_pcm_stream_lock_irqsave(substream, flags);
if (!snd_pcm_running(substream) ||
snd_pcm_update_hw_ptr(substream) < 0)
goto _end;
if (runtime->sleep_min)
snd_pcm_tick_prepare(substream);
_end:
snd_pcm_stream_unlock_irqrestore(substream, flags);
}
/**
* snd_pcm_period_elapsed - update the pcm status for the next period
* @substream: the pcm substream instance
*
* This function is called from the interrupt handler when the
* PCM has processed the period size. It will update the current
* pointer, set up the tick, wake up sleepers, etc.
*
* Even if more than one periods have elapsed since the last call, you
* have to call this only once.
*/
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime;
unsigned long flags;
snd_assert(substream != NULL, return);
runtime = substream->runtime;
snd_assert(runtime != NULL, return);
if (runtime->transfer_ack_begin)
runtime->transfer_ack_begin(substream);
snd_pcm_stream_lock_irqsave(substream, flags);
if (!snd_pcm_running(substream) ||
snd_pcm_update_hw_ptr_interrupt(substream) < 0)
goto _end;
if (substream->timer_running)
snd_timer_interrupt(substream->timer, 1);
if (runtime->sleep_min)
snd_pcm_tick_prepare(substream);
_end:
snd_pcm_stream_unlock_irqrestore(substream, flags);
if (runtime->transfer_ack_end)
runtime->transfer_ack_end(substream);
kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
}
EXPORT_SYMBOL(snd_pcm_period_elapsed);
static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
if (substream->ops->copy) {
if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
return err;
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
snd_assert(runtime->dma_area, return -EFAULT);
if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
return -EFAULT;
}
return 0;
}
typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t size);
static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
unsigned long data,
snd_pcm_uframes_t size,
int nonblock,
transfer_f transfer)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t xfer = 0;
snd_pcm_uframes_t offset = 0;
int err = 0;
if (size == 0)
return 0;
if (size > runtime->xfer_align)
size -= size % runtime->xfer_align;
snd_pcm_stream_lock_irq(substream);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_PREPARED:
case SNDRV_PCM_STATE_RUNNING:
case SNDRV_PCM_STATE_PAUSED:
break;
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
err = -EBADFD;
goto _end_unlock;
}
while (size > 0) {
snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
snd_pcm_uframes_t avail;
snd_pcm_uframes_t cont;
if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_update_hw_ptr(substream);
avail = snd_pcm_playback_avail(runtime);
if (((avail < runtime->control->avail_min && size > avail) ||
(size >= runtime->xfer_align && avail < runtime->xfer_align))) {
wait_queue_t wait;
enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
long tout;
if (nonblock) {
err = -EAGAIN;
goto _end_unlock;
}
init_waitqueue_entry(&wait, current);
add_wait_queue(&runtime->sleep, &wait);
while (1) {
if (signal_pending(current)) {
state = SIGNALED;
break;
}
set_current_state(TASK_INTERRUPTIBLE);
snd_pcm_stream_unlock_irq(substream);
tout = schedule_timeout(10 * HZ);
snd_pcm_stream_lock_irq(substream);
if (tout == 0) {
if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
break;
}
}
switch (runtime->status->state) {
case SNDRV_PCM_STATE_XRUN:
case SNDRV_PCM_STATE_DRAINING:
state = ERROR;
goto _end_loop;
case SNDRV_PCM_STATE_SUSPENDED:
state = SUSPENDED;
goto _end_loop;
case SNDRV_PCM_STATE_SETUP:
state = DROPPED;
goto _end_loop;
default:
break;
}
avail = snd_pcm_playback_avail(runtime);
if (avail >= runtime->control->avail_min) {
state = READY;
break;
}
}
_end_loop:
remove_wait_queue(&runtime->sleep, &wait);
switch (state) {
case ERROR:
err = -EPIPE;
goto _end_unlock;
case SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
case SIGNALED:
err = -ERESTARTSYS;
goto _end_unlock;
case EXPIRED:
snd_printd("playback write error (DMA or IRQ trouble?)\n");
err = -EIO;
goto _end_unlock;
case DROPPED:
err = -EBADFD;
goto _end_unlock;
default:
break;
}
}
if (avail > runtime->xfer_align)
avail -= avail % runtime->xfer_align;
frames = size > avail ? avail : size;
cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
if (frames > cont)
frames = cont;
snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
appl_ptr = runtime->control->appl_ptr;
appl_ofs = appl_ptr % runtime->buffer_size;
snd_pcm_stream_unlock_irq(substream);
if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
goto _end;
snd_pcm_stream_lock_irq(substream);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
break;
}
appl_ptr += frames;
if (appl_ptr >= runtime->boundary)
appl_ptr -= runtime->boundary;
runtime->control->appl_ptr = appl_ptr;
if (substream->ops->ack)
substream->ops->ack(substream);
offset += frames;
size -= frames;
xfer += frames;
if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
err = snd_pcm_start(substream);
if (err < 0)
goto _end_unlock;
}
if (runtime->sleep_min &&
runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_tick_prepare(substream);
}
_end_unlock:
snd_pcm_stream_unlock_irq(substream);
_end:
return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}
snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
{
struct snd_pcm_runtime *runtime;
int nonblock;
snd_assert(substream != NULL, return -ENXIO);
runtime = substream->runtime;
snd_assert(runtime != NULL, return -ENXIO);
snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
runtime->channels > 1)
return -EINVAL;
return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
snd_pcm_lib_write_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_write);
static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
void __user **bufs = (void __user **)data;
int channels = runtime->channels;
int c;
if (substream->ops->copy) {
snd_assert(substream->ops->silence != NULL, return -EINVAL);
for (c = 0; c < channels; ++c, ++bufs) {
if (*bufs == NULL) {
if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
return err;
} else {
char __user *buf = *bufs + samples_to_bytes(runtime, off);
if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
return err;
}
}
} else {
/* default transfer behaviour */
size_t dma_csize = runtime->dma_bytes / channels;
snd_assert(runtime->dma_area, return -EFAULT);
for (c = 0; c < channels; ++c, ++bufs) {
char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
if (*bufs == NULL) {
snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
} else {
char __user *buf = *bufs + samples_to_bytes(runtime, off);
if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
return -EFAULT;
}
}
}
return 0;
}
snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
void __user **bufs,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime;
int nonblock;
snd_assert(substream != NULL, return -ENXIO);
runtime = substream->runtime;
snd_assert(runtime != NULL, return -ENXIO);
snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
return -EINVAL;
return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
nonblock, snd_pcm_lib_writev_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_writev);
static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
if (substream->ops->copy) {
if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
return err;
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
snd_assert(runtime->dma_area, return -EFAULT);
if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
return -EFAULT;
}
return 0;
}
static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
unsigned long data,
snd_pcm_uframes_t size,
int nonblock,
transfer_f transfer)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t xfer = 0;
snd_pcm_uframes_t offset = 0;
int err = 0;
if (size == 0)
return 0;
if (size > runtime->xfer_align)
size -= size % runtime->xfer_align;
snd_pcm_stream_lock_irq(substream);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_PREPARED:
if (size >= runtime->start_threshold) {
err = snd_pcm_start(substream);
if (err < 0)
goto _end_unlock;
}
break;
case SNDRV_PCM_STATE_DRAINING:
case SNDRV_PCM_STATE_RUNNING:
case SNDRV_PCM_STATE_PAUSED:
break;
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
err = -EBADFD;
goto _end_unlock;
}
while (size > 0) {
snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
snd_pcm_uframes_t avail;
snd_pcm_uframes_t cont;
if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_update_hw_ptr(substream);
__draining:
avail = snd_pcm_capture_avail(runtime);
if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
if (avail < runtime->xfer_align) {
err = -EPIPE;
goto _end_unlock;
}
} else if ((avail < runtime->control->avail_min && size > avail) ||
(size >= runtime->xfer_align && avail < runtime->xfer_align)) {
wait_queue_t wait;
enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
long tout;
if (nonblock) {
err = -EAGAIN;
goto _end_unlock;
}
init_waitqueue_entry(&wait, current);
add_wait_queue(&runtime->sleep, &wait);
while (1) {
if (signal_pending(current)) {
state = SIGNALED;
break;
}
set_current_state(TASK_INTERRUPTIBLE);
snd_pcm_stream_unlock_irq(substream);
tout = schedule_timeout(10 * HZ);
snd_pcm_stream_lock_irq(substream);
if (tout == 0) {
if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
break;
}
}
switch (runtime->status->state) {
case SNDRV_PCM_STATE_XRUN:
state = ERROR;
goto _end_loop;
case SNDRV_PCM_STATE_SUSPENDED:
state = SUSPENDED;
goto _end_loop;
case SNDRV_PCM_STATE_DRAINING:
goto __draining;
case SNDRV_PCM_STATE_SETUP:
state = DROPPED;
goto _end_loop;
default:
break;
}
avail = snd_pcm_capture_avail(runtime);
if (avail >= runtime->control->avail_min) {
state = READY;
break;
}
}
_end_loop:
remove_wait_queue(&runtime->sleep, &wait);
switch (state) {
case ERROR:
err = -EPIPE;
goto _end_unlock;
case SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
case SIGNALED:
err = -ERESTARTSYS;
goto _end_unlock;
case EXPIRED:
snd_printd("capture read error (DMA or IRQ trouble?)\n");
err = -EIO;
goto _end_unlock;
case DROPPED:
err = -EBADFD;
goto _end_unlock;
default:
break;
}
}
if (avail > runtime->xfer_align)
avail -= avail % runtime->xfer_align;
frames = size > avail ? avail : size;
cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
if (frames > cont)
frames = cont;
snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
appl_ptr = runtime->control->appl_ptr;
appl_ofs = appl_ptr % runtime->buffer_size;
snd_pcm_stream_unlock_irq(substream);
if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
goto _end;
snd_pcm_stream_lock_irq(substream);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
break;
}
appl_ptr += frames;
if (appl_ptr >= runtime->boundary)
appl_ptr -= runtime->boundary;
runtime->control->appl_ptr = appl_ptr;
if (substream->ops->ack)
substream->ops->ack(substream);
offset += frames;
size -= frames;
xfer += frames;
if (runtime->sleep_min &&
runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_tick_prepare(substream);
}
_end_unlock:
snd_pcm_stream_unlock_irq(substream);
_end:
return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}
snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
{
struct snd_pcm_runtime *runtime;
int nonblock;
snd_assert(substream != NULL, return -ENXIO);
runtime = substream->runtime;
snd_assert(runtime != NULL, return -ENXIO);
snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
return -EINVAL;
return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_read);
static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
void __user **bufs = (void __user **)data;
int channels = runtime->channels;
int c;
if (substream->ops->copy) {
for (c = 0; c < channels; ++c, ++bufs) {
char __user *buf;
if (*bufs == NULL)
continue;
buf = *bufs + samples_to_bytes(runtime, off);
if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
return err;
}
} else {
snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
snd_assert(runtime->dma_area, return -EFAULT);
for (c = 0; c < channels; ++c, ++bufs) {
char *hwbuf;
char __user *buf;
if (*bufs == NULL)
continue;
hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
buf = *bufs + samples_to_bytes(runtime, off);
if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
return -EFAULT;
}
}
return 0;
}
snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
void __user **bufs,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime;
int nonblock;
snd_assert(substream != NULL, return -ENXIO);
runtime = substream->runtime;
snd_assert(runtime != NULL, return -ENXIO);
snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
return -EINVAL;
return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_readv);