aha/drivers/s390/crypto/ap_bus.c
Felix Beck 5314af693d [S390] zcrypt: Do not add/remove devices in s/r callbacks
Devices are no longer removed or added in the suspend and resume
callbacks. Instead they are marked unregistered in suspend. In the
resume callback the ap_scan_bus method is scheduled. The bus scan
function will remove the old device and add new ones. This way all
the device handling will be done in only one function. Additionaly
the case where the domain might change during suspend/resume is
caught. In that case the devices qid needs to re-calculated in
order of having it found by the scan method.

Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2009-09-22 22:58:46 +02:00

1733 lines
45 KiB
C

/*
* linux/drivers/s390/crypto/ap_bus.c
*
* Copyright (C) 2006 IBM Corporation
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Ralph Wuerthner <rwuerthn@de.ibm.com>
* Felix Beck <felix.beck@de.ibm.com>
*
* Adjunct processor bus.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define KMSG_COMPONENT "ap"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <asm/reset.h>
#include <asm/airq.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/isc.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include "ap_bus.h"
/* Some prototypes. */
static void ap_scan_bus(struct work_struct *);
static void ap_poll_all(unsigned long);
static enum hrtimer_restart ap_poll_timeout(struct hrtimer *);
static int ap_poll_thread_start(void);
static void ap_poll_thread_stop(void);
static void ap_request_timeout(unsigned long);
static inline void ap_schedule_poll_timer(void);
static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags);
static int ap_device_remove(struct device *dev);
static int ap_device_probe(struct device *dev);
static void ap_interrupt_handler(void *unused1, void *unused2);
static void ap_reset(struct ap_device *ap_dev);
static void ap_config_timeout(unsigned long ptr);
static int ap_select_domain(void);
/*
* Module description.
*/
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
"Copyright 2006 IBM Corporation");
MODULE_LICENSE("GPL");
/*
* Module parameter
*/
int ap_domain_index = -1; /* Adjunct Processor Domain Index */
module_param_named(domain, ap_domain_index, int, 0000);
MODULE_PARM_DESC(domain, "domain index for ap devices");
EXPORT_SYMBOL(ap_domain_index);
static int ap_thread_flag = 0;
module_param_named(poll_thread, ap_thread_flag, int, 0000);
MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
static struct device *ap_root_device = NULL;
static DEFINE_SPINLOCK(ap_device_list_lock);
static LIST_HEAD(ap_device_list);
/*
* Workqueue & timer for bus rescan.
*/
static struct workqueue_struct *ap_work_queue;
static struct timer_list ap_config_timer;
static int ap_config_time = AP_CONFIG_TIME;
static DECLARE_WORK(ap_config_work, ap_scan_bus);
/*
* Tasklet & timer for AP request polling and interrupts
*/
static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
static atomic_t ap_poll_requests = ATOMIC_INIT(0);
static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
static struct task_struct *ap_poll_kthread = NULL;
static DEFINE_MUTEX(ap_poll_thread_mutex);
static void *ap_interrupt_indicator;
static struct hrtimer ap_poll_timer;
/* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
* If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
static unsigned long long poll_timeout = 250000;
/* Suspend flag */
static int ap_suspend_flag;
/* Flag to check if domain was set through module parameter domain=. This is
* important when supsend and resume is done in a z/VM environment where the
* domain might change. */
static int user_set_domain = 0;
static struct bus_type ap_bus_type;
/**
* ap_using_interrupts() - Returns non-zero if interrupt support is
* available.
*/
static inline int ap_using_interrupts(void)
{
return ap_interrupt_indicator != NULL;
}
/**
* ap_intructions_available() - Test if AP instructions are available.
*
* Returns 0 if the AP instructions are installed.
*/
static inline int ap_instructions_available(void)
{
register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
register unsigned long reg1 asm ("1") = -ENODEV;
register unsigned long reg2 asm ("2") = 0UL;
asm volatile(
" .long 0xb2af0000\n" /* PQAP(TAPQ) */
"0: la %1,0\n"
"1:\n"
EX_TABLE(0b, 1b)
: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
return reg1;
}
/**
* ap_interrupts_available(): Test if AP interrupts are available.
*
* Returns 1 if AP interrupts are available.
*/
static int ap_interrupts_available(void)
{
unsigned long long facility_bits[2];
if (stfle(facility_bits, 2) <= 1)
return 0;
if (!(facility_bits[0] & (1ULL << 61)) ||
!(facility_bits[1] & (1ULL << 62)))
return 0;
return 1;
}
/**
* ap_test_queue(): Test adjunct processor queue.
* @qid: The AP queue number
* @queue_depth: Pointer to queue depth value
* @device_type: Pointer to device type value
*
* Returns AP queue status structure.
*/
static inline struct ap_queue_status
ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
{
register unsigned long reg0 asm ("0") = qid;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm ("2") = 0UL;
asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
*device_type = (int) (reg2 >> 24);
*queue_depth = (int) (reg2 & 0xff);
return reg1;
}
/**
* ap_reset_queue(): Reset adjunct processor queue.
* @qid: The AP queue number
*
* Returns AP queue status structure.
*/
static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
{
register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm ("2") = 0UL;
asm volatile(
".long 0xb2af0000" /* PQAP(RAPQ) */
: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
return reg1;
}
#ifdef CONFIG_64BIT
/**
* ap_queue_interruption_control(): Enable interruption for a specific AP.
* @qid: The AP queue number
* @ind: The notification indicator byte
*
* Returns AP queue status.
*/
static inline struct ap_queue_status
ap_queue_interruption_control(ap_qid_t qid, void *ind)
{
register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
register struct ap_queue_status reg1_out asm ("1");
register void *reg2 asm ("2") = ind;
asm volatile(
".long 0xb2af0000" /* PQAP(RAPQ) */
: "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
:
: "cc" );
return reg1_out;
}
#endif
/**
* ap_queue_enable_interruption(): Enable interruption on an AP.
* @qid: The AP queue number
* @ind: the notification indicator byte
*
* Enables interruption on AP queue via ap_queue_interruption_control(). Based
* on the return value it waits a while and tests the AP queue if interrupts
* have been switched on using ap_test_queue().
*/
static int ap_queue_enable_interruption(ap_qid_t qid, void *ind)
{
#ifdef CONFIG_64BIT
struct ap_queue_status status;
int t_depth, t_device_type, rc, i;
rc = -EBUSY;
status = ap_queue_interruption_control(qid, ind);
for (i = 0; i < AP_MAX_RESET; i++) {
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
if (status.int_enabled)
return 0;
break;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_BUSY:
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
case AP_RESPONSE_INVALID_ADDRESS:
return -ENODEV;
case AP_RESPONSE_OTHERWISE_CHANGED:
if (status.int_enabled)
return 0;
break;
default:
break;
}
if (i < AP_MAX_RESET - 1) {
udelay(5);
status = ap_test_queue(qid, &t_depth, &t_device_type);
}
}
return rc;
#else
return -EINVAL;
#endif
}
/**
* __ap_send(): Send message to adjunct processor queue.
* @qid: The AP queue number
* @psmid: The program supplied message identifier
* @msg: The message text
* @length: The message length
*
* Returns AP queue status structure.
* Condition code 1 on NQAP can't happen because the L bit is 1.
* Condition code 2 on NQAP also means the send is incomplete,
* because a segment boundary was reached. The NQAP is repeated.
*/
static inline struct ap_queue_status
__ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
{
typedef struct { char _[length]; } msgblock;
register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm ("2") = (unsigned long) msg;
register unsigned long reg3 asm ("3") = (unsigned long) length;
register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
register unsigned long reg5 asm ("5") = (unsigned int) psmid;
asm volatile (
"0: .long 0xb2ad0042\n" /* DQAP */
" brc 2,0b"
: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
: "cc" );
return reg1;
}
int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
{
struct ap_queue_status status;
status = __ap_send(qid, psmid, msg, length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
return 0;
case AP_RESPONSE_Q_FULL:
case AP_RESPONSE_RESET_IN_PROGRESS:
return -EBUSY;
default: /* Device is gone. */
return -ENODEV;
}
}
EXPORT_SYMBOL(ap_send);
/**
* __ap_recv(): Receive message from adjunct processor queue.
* @qid: The AP queue number
* @psmid: Pointer to program supplied message identifier
* @msg: The message text
* @length: The message length
*
* Returns AP queue status structure.
* Condition code 1 on DQAP means the receive has taken place
* but only partially. The response is incomplete, hence the
* DQAP is repeated.
* Condition code 2 on DQAP also means the receive is incomplete,
* this time because a segment boundary was reached. Again, the
* DQAP is repeated.
* Note that gpr2 is used by the DQAP instruction to keep track of
* any 'residual' length, in case the instruction gets interrupted.
* Hence it gets zeroed before the instruction.
*/
static inline struct ap_queue_status
__ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
{
typedef struct { char _[length]; } msgblock;
register unsigned long reg0 asm("0") = qid | 0x80000000UL;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm("2") = 0UL;
register unsigned long reg4 asm("4") = (unsigned long) msg;
register unsigned long reg5 asm("5") = (unsigned long) length;
register unsigned long reg6 asm("6") = 0UL;
register unsigned long reg7 asm("7") = 0UL;
asm volatile(
"0: .long 0xb2ae0064\n"
" brc 6,0b\n"
: "+d" (reg0), "=d" (reg1), "+d" (reg2),
"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
"=m" (*(msgblock *) msg) : : "cc" );
*psmid = (((unsigned long long) reg6) << 32) + reg7;
return reg1;
}
int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
{
struct ap_queue_status status;
status = __ap_recv(qid, psmid, msg, length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
return 0;
case AP_RESPONSE_NO_PENDING_REPLY:
if (status.queue_empty)
return -ENOENT;
return -EBUSY;
case AP_RESPONSE_RESET_IN_PROGRESS:
return -EBUSY;
default:
return -ENODEV;
}
}
EXPORT_SYMBOL(ap_recv);
/**
* ap_query_queue(): Check if an AP queue is available.
* @qid: The AP queue number
* @queue_depth: Pointer to queue depth value
* @device_type: Pointer to device type value
*
* The test is repeated for AP_MAX_RESET times.
*/
static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
{
struct ap_queue_status status;
int t_depth, t_device_type, rc, i;
rc = -EBUSY;
for (i = 0; i < AP_MAX_RESET; i++) {
status = ap_test_queue(qid, &t_depth, &t_device_type);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
*queue_depth = t_depth + 1;
*device_type = t_device_type;
rc = 0;
break;
case AP_RESPONSE_Q_NOT_AVAIL:
rc = -ENODEV;
break;
case AP_RESPONSE_RESET_IN_PROGRESS:
break;
case AP_RESPONSE_DECONFIGURED:
rc = -ENODEV;
break;
case AP_RESPONSE_CHECKSTOPPED:
rc = -ENODEV;
break;
case AP_RESPONSE_INVALID_ADDRESS:
rc = -ENODEV;
break;
case AP_RESPONSE_OTHERWISE_CHANGED:
break;
case AP_RESPONSE_BUSY:
break;
default:
BUG();
}
if (rc != -EBUSY)
break;
if (i < AP_MAX_RESET - 1)
udelay(5);
}
return rc;
}
/**
* ap_init_queue(): Reset an AP queue.
* @qid: The AP queue number
*
* Reset an AP queue and wait for it to become available again.
*/
static int ap_init_queue(ap_qid_t qid)
{
struct ap_queue_status status;
int rc, dummy, i;
rc = -ENODEV;
status = ap_reset_queue(qid);
for (i = 0; i < AP_MAX_RESET; i++) {
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
if (status.queue_empty)
rc = 0;
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
i = AP_MAX_RESET; /* return with -ENODEV */
break;
case AP_RESPONSE_RESET_IN_PROGRESS:
rc = -EBUSY;
case AP_RESPONSE_BUSY:
default:
break;
}
if (rc != -ENODEV && rc != -EBUSY)
break;
if (i < AP_MAX_RESET - 1) {
udelay(5);
status = ap_test_queue(qid, &dummy, &dummy);
}
}
if (rc == 0 && ap_using_interrupts()) {
rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator);
/* If interruption mode is supported by the machine,
* but an AP can not be enabled for interruption then
* the AP will be discarded. */
if (rc)
pr_err("Registering adapter interrupts for "
"AP %d failed\n", AP_QID_DEVICE(qid));
}
return rc;
}
/**
* ap_increase_queue_count(): Arm request timeout.
* @ap_dev: Pointer to an AP device.
*
* Arm request timeout if an AP device was idle and a new request is submitted.
*/
static void ap_increase_queue_count(struct ap_device *ap_dev)
{
int timeout = ap_dev->drv->request_timeout;
ap_dev->queue_count++;
if (ap_dev->queue_count == 1) {
mod_timer(&ap_dev->timeout, jiffies + timeout);
ap_dev->reset = AP_RESET_ARMED;
}
}
/**
* ap_decrease_queue_count(): Decrease queue count.
* @ap_dev: Pointer to an AP device.
*
* If AP device is still alive, re-schedule request timeout if there are still
* pending requests.
*/
static void ap_decrease_queue_count(struct ap_device *ap_dev)
{
int timeout = ap_dev->drv->request_timeout;
ap_dev->queue_count--;
if (ap_dev->queue_count > 0)
mod_timer(&ap_dev->timeout, jiffies + timeout);
else
/*
* The timeout timer should to be disabled now - since
* del_timer_sync() is very expensive, we just tell via the
* reset flag to ignore the pending timeout timer.
*/
ap_dev->reset = AP_RESET_IGNORE;
}
/*
* AP device related attributes.
*/
static ssize_t ap_hwtype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_device *ap_dev = to_ap_dev(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
}
static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ap_device *ap_dev = to_ap_dev(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
}
static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
static ssize_t ap_request_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ap_device *ap_dev = to_ap_dev(dev);
int rc;
spin_lock_bh(&ap_dev->lock);
rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
spin_unlock_bh(&ap_dev->lock);
return rc;
}
static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
static ssize_t ap_modalias_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
}
static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
static struct attribute *ap_dev_attrs[] = {
&dev_attr_hwtype.attr,
&dev_attr_depth.attr,
&dev_attr_request_count.attr,
&dev_attr_modalias.attr,
NULL
};
static struct attribute_group ap_dev_attr_group = {
.attrs = ap_dev_attrs
};
/**
* ap_bus_match()
* @dev: Pointer to device
* @drv: Pointer to device_driver
*
* AP bus driver registration/unregistration.
*/
static int ap_bus_match(struct device *dev, struct device_driver *drv)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(drv);
struct ap_device_id *id;
/*
* Compare device type of the device with the list of
* supported types of the device_driver.
*/
for (id = ap_drv->ids; id->match_flags; id++) {
if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
(id->dev_type != ap_dev->device_type))
continue;
return 1;
}
return 0;
}
/**
* ap_uevent(): Uevent function for AP devices.
* @dev: Pointer to device
* @env: Pointer to kobj_uevent_env
*
* It sets up a single environment variable DEV_TYPE which contains the
* hardware device type.
*/
static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
{
struct ap_device *ap_dev = to_ap_dev(dev);
int retval = 0;
if (!ap_dev)
return -ENODEV;
/* Set up DEV_TYPE environment variable. */
retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
if (retval)
return retval;
/* Add MODALIAS= */
retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
return retval;
}
static int ap_bus_suspend(struct device *dev, pm_message_t state)
{
struct ap_device *ap_dev = to_ap_dev(dev);
unsigned long flags;
if (!ap_suspend_flag) {
ap_suspend_flag = 1;
/* Disable scanning for devices, thus we do not want to scan
* for them after removing.
*/
del_timer_sync(&ap_config_timer);
if (ap_work_queue != NULL) {
destroy_workqueue(ap_work_queue);
ap_work_queue = NULL;
}
tasklet_disable(&ap_tasklet);
}
/* Poll on the device until all requests are finished. */
do {
flags = 0;
spin_lock_bh(&ap_dev->lock);
__ap_poll_device(ap_dev, &flags);
spin_unlock_bh(&ap_dev->lock);
} while ((flags & 1) || (flags & 2));
spin_lock_bh(&ap_dev->lock);
ap_dev->unregistered = 1;
spin_unlock_bh(&ap_dev->lock);
return 0;
}
static int ap_bus_resume(struct device *dev)
{
int rc = 0;
struct ap_device *ap_dev = to_ap_dev(dev);
if (ap_suspend_flag) {
ap_suspend_flag = 0;
if (!ap_interrupts_available())
ap_interrupt_indicator = NULL;
if (!user_set_domain) {
ap_domain_index = -1;
ap_select_domain();
}
init_timer(&ap_config_timer);
ap_config_timer.function = ap_config_timeout;
ap_config_timer.data = 0;
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
ap_work_queue = create_singlethread_workqueue("kapwork");
if (!ap_work_queue)
return -ENOMEM;
tasklet_enable(&ap_tasklet);
if (!ap_using_interrupts())
ap_schedule_poll_timer();
else
tasklet_schedule(&ap_tasklet);
if (ap_thread_flag)
rc = ap_poll_thread_start();
}
if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) {
spin_lock_bh(&ap_dev->lock);
ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid),
ap_domain_index);
spin_unlock_bh(&ap_dev->lock);
}
queue_work(ap_work_queue, &ap_config_work);
return rc;
}
static struct bus_type ap_bus_type = {
.name = "ap",
.match = &ap_bus_match,
.uevent = &ap_uevent,
.suspend = ap_bus_suspend,
.resume = ap_bus_resume
};
static int ap_device_probe(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(dev->driver);
int rc;
ap_dev->drv = ap_drv;
rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
if (!rc) {
spin_lock_bh(&ap_device_list_lock);
list_add(&ap_dev->list, &ap_device_list);
spin_unlock_bh(&ap_device_list_lock);
}
return rc;
}
/**
* __ap_flush_queue(): Flush requests.
* @ap_dev: Pointer to the AP device
*
* Flush all requests from the request/pending queue of an AP device.
*/
static void __ap_flush_queue(struct ap_device *ap_dev)
{
struct ap_message *ap_msg, *next;
list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
list_del_init(&ap_msg->list);
ap_dev->pendingq_count--;
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
}
list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
list_del_init(&ap_msg->list);
ap_dev->requestq_count--;
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
}
}
void ap_flush_queue(struct ap_device *ap_dev)
{
spin_lock_bh(&ap_dev->lock);
__ap_flush_queue(ap_dev);
spin_unlock_bh(&ap_dev->lock);
}
EXPORT_SYMBOL(ap_flush_queue);
static int ap_device_remove(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = ap_dev->drv;
ap_flush_queue(ap_dev);
del_timer_sync(&ap_dev->timeout);
spin_lock_bh(&ap_device_list_lock);
list_del_init(&ap_dev->list);
spin_unlock_bh(&ap_device_list_lock);
if (ap_drv->remove)
ap_drv->remove(ap_dev);
spin_lock_bh(&ap_dev->lock);
atomic_sub(ap_dev->queue_count, &ap_poll_requests);
spin_unlock_bh(&ap_dev->lock);
return 0;
}
int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
char *name)
{
struct device_driver *drv = &ap_drv->driver;
drv->bus = &ap_bus_type;
drv->probe = ap_device_probe;
drv->remove = ap_device_remove;
drv->owner = owner;
drv->name = name;
return driver_register(drv);
}
EXPORT_SYMBOL(ap_driver_register);
void ap_driver_unregister(struct ap_driver *ap_drv)
{
driver_unregister(&ap_drv->driver);
}
EXPORT_SYMBOL(ap_driver_unregister);
/*
* AP bus attributes.
*/
static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
}
static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
}
static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
ap_using_interrupts() ? 1 : 0);
}
static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
static ssize_t ap_config_time_store(struct bus_type *bus,
const char *buf, size_t count)
{
int time;
if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
return -EINVAL;
ap_config_time = time;
if (!timer_pending(&ap_config_timer) ||
!mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
}
return count;
}
static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
}
static ssize_t ap_poll_thread_store(struct bus_type *bus,
const char *buf, size_t count)
{
int flag, rc;
if (sscanf(buf, "%d\n", &flag) != 1)
return -EINVAL;
if (flag) {
rc = ap_poll_thread_start();
if (rc)
return rc;
}
else
ap_poll_thread_stop();
return count;
}
static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
}
static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
size_t count)
{
unsigned long long time;
ktime_t hr_time;
/* 120 seconds = maximum poll interval */
if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
time > 120000000000ULL)
return -EINVAL;
poll_timeout = time;
hr_time = ktime_set(0, poll_timeout);
if (!hrtimer_is_queued(&ap_poll_timer) ||
!hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
hrtimer_set_expires(&ap_poll_timer, hr_time);
hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
}
return count;
}
static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
static struct bus_attribute *const ap_bus_attrs[] = {
&bus_attr_ap_domain,
&bus_attr_config_time,
&bus_attr_poll_thread,
&bus_attr_ap_interrupts,
&bus_attr_poll_timeout,
NULL,
};
/**
* ap_select_domain(): Select an AP domain.
*
* Pick one of the 16 AP domains.
*/
static int ap_select_domain(void)
{
int queue_depth, device_type, count, max_count, best_domain;
int rc, i, j;
/*
* We want to use a single domain. Either the one specified with
* the "domain=" parameter or the domain with the maximum number
* of devices.
*/
if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
/* Domain has already been selected. */
return 0;
best_domain = -1;
max_count = 0;
for (i = 0; i < AP_DOMAINS; i++) {
count = 0;
for (j = 0; j < AP_DEVICES; j++) {
ap_qid_t qid = AP_MKQID(j, i);
rc = ap_query_queue(qid, &queue_depth, &device_type);
if (rc)
continue;
count++;
}
if (count > max_count) {
max_count = count;
best_domain = i;
}
}
if (best_domain >= 0){
ap_domain_index = best_domain;
return 0;
}
return -ENODEV;
}
/**
* ap_probe_device_type(): Find the device type of an AP.
* @ap_dev: pointer to the AP device.
*
* Find the device type if query queue returned a device type of 0.
*/
static int ap_probe_device_type(struct ap_device *ap_dev)
{
static unsigned char msg[] = {
0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
};
struct ap_queue_status status;
unsigned long long psmid;
char *reply;
int rc, i;
reply = (void *) get_zeroed_page(GFP_KERNEL);
if (!reply) {
rc = -ENOMEM;
goto out;
}
status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
msg, sizeof(msg));
if (status.response_code != AP_RESPONSE_NORMAL) {
rc = -ENODEV;
goto out_free;
}
/* Wait for the test message to complete. */
for (i = 0; i < 6; i++) {
mdelay(300);
status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
if (status.response_code == AP_RESPONSE_NORMAL &&
psmid == 0x0102030405060708ULL)
break;
}
if (i < 6) {
/* Got an answer. */
if (reply[0] == 0x00 && reply[1] == 0x86)
ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
else
ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
rc = 0;
} else
rc = -ENODEV;
out_free:
free_page((unsigned long) reply);
out:
return rc;
}
static void ap_interrupt_handler(void *unused1, void *unused2)
{
tasklet_schedule(&ap_tasklet);
}
/**
* __ap_scan_bus(): Scan the AP bus.
* @dev: Pointer to device
* @data: Pointer to data
*
* Scan the AP bus for new devices.
*/
static int __ap_scan_bus(struct device *dev, void *data)
{
return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
}
static void ap_device_release(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
kfree(ap_dev);
}
static void ap_scan_bus(struct work_struct *unused)
{
struct ap_device *ap_dev;
struct device *dev;
ap_qid_t qid;
int queue_depth, device_type;
int rc, i;
if (ap_select_domain() != 0)
return;
for (i = 0; i < AP_DEVICES; i++) {
qid = AP_MKQID(i, ap_domain_index);
dev = bus_find_device(&ap_bus_type, NULL,
(void *)(unsigned long)qid,
__ap_scan_bus);
rc = ap_query_queue(qid, &queue_depth, &device_type);
if (dev) {
if (rc == -EBUSY) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(AP_RESET_TIMEOUT);
rc = ap_query_queue(qid, &queue_depth,
&device_type);
}
ap_dev = to_ap_dev(dev);
spin_lock_bh(&ap_dev->lock);
if (rc || ap_dev->unregistered) {
spin_unlock_bh(&ap_dev->lock);
if (ap_dev->unregistered)
i--;
device_unregister(dev);
put_device(dev);
continue;
}
spin_unlock_bh(&ap_dev->lock);
put_device(dev);
continue;
}
if (rc)
continue;
rc = ap_init_queue(qid);
if (rc)
continue;
ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
if (!ap_dev)
break;
ap_dev->qid = qid;
ap_dev->queue_depth = queue_depth;
ap_dev->unregistered = 1;
spin_lock_init(&ap_dev->lock);
INIT_LIST_HEAD(&ap_dev->pendingq);
INIT_LIST_HEAD(&ap_dev->requestq);
INIT_LIST_HEAD(&ap_dev->list);
setup_timer(&ap_dev->timeout, ap_request_timeout,
(unsigned long) ap_dev);
if (device_type == 0)
ap_probe_device_type(ap_dev);
else
ap_dev->device_type = device_type;
ap_dev->device.bus = &ap_bus_type;
ap_dev->device.parent = ap_root_device;
if (dev_set_name(&ap_dev->device, "card%02x",
AP_QID_DEVICE(ap_dev->qid))) {
kfree(ap_dev);
continue;
}
ap_dev->device.release = ap_device_release;
rc = device_register(&ap_dev->device);
if (rc) {
put_device(&ap_dev->device);
continue;
}
/* Add device attributes. */
rc = sysfs_create_group(&ap_dev->device.kobj,
&ap_dev_attr_group);
if (!rc) {
spin_lock_bh(&ap_dev->lock);
ap_dev->unregistered = 0;
spin_unlock_bh(&ap_dev->lock);
}
else
device_unregister(&ap_dev->device);
}
}
static void
ap_config_timeout(unsigned long ptr)
{
queue_work(ap_work_queue, &ap_config_work);
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
}
/**
* ap_schedule_poll_timer(): Schedule poll timer.
*
* Set up the timer to run the poll tasklet
*/
static inline void ap_schedule_poll_timer(void)
{
ktime_t hr_time;
if (ap_using_interrupts() || ap_suspend_flag)
return;
if (hrtimer_is_queued(&ap_poll_timer))
return;
if (ktime_to_ns(hrtimer_expires_remaining(&ap_poll_timer)) <= 0) {
hr_time = ktime_set(0, poll_timeout);
hrtimer_forward_now(&ap_poll_timer, hr_time);
hrtimer_restart(&ap_poll_timer);
}
return;
}
/**
* ap_poll_read(): Receive pending reply messages from an AP device.
* @ap_dev: pointer to the AP device
* @flags: pointer to control flags, bit 2^0 is set if another poll is
* required, bit 2^1 is set if the poll timer needs to get armed
*
* Returns 0 if the device is still present, -ENODEV if not.
*/
static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
{
struct ap_queue_status status;
struct ap_message *ap_msg;
if (ap_dev->queue_count <= 0)
return 0;
status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
ap_dev->reply->message, ap_dev->reply->length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
atomic_dec(&ap_poll_requests);
ap_decrease_queue_count(ap_dev);
list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
if (ap_msg->psmid != ap_dev->reply->psmid)
continue;
list_del_init(&ap_msg->list);
ap_dev->pendingq_count--;
ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
break;
}
if (ap_dev->queue_count > 0)
*flags |= 1;
break;
case AP_RESPONSE_NO_PENDING_REPLY:
if (status.queue_empty) {
/* The card shouldn't forget requests but who knows. */
atomic_sub(ap_dev->queue_count, &ap_poll_requests);
ap_dev->queue_count = 0;
list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
ap_dev->requestq_count += ap_dev->pendingq_count;
ap_dev->pendingq_count = 0;
} else
*flags |= 2;
break;
default:
return -ENODEV;
}
return 0;
}
/**
* ap_poll_write(): Send messages from the request queue to an AP device.
* @ap_dev: pointer to the AP device
* @flags: pointer to control flags, bit 2^0 is set if another poll is
* required, bit 2^1 is set if the poll timer needs to get armed
*
* Returns 0 if the device is still present, -ENODEV if not.
*/
static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
{
struct ap_queue_status status;
struct ap_message *ap_msg;
if (ap_dev->requestq_count <= 0 ||
ap_dev->queue_count >= ap_dev->queue_depth)
return 0;
/* Start the next request on the queue. */
ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
status = __ap_send(ap_dev->qid, ap_msg->psmid,
ap_msg->message, ap_msg->length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
atomic_inc(&ap_poll_requests);
ap_increase_queue_count(ap_dev);
list_move_tail(&ap_msg->list, &ap_dev->pendingq);
ap_dev->requestq_count--;
ap_dev->pendingq_count++;
if (ap_dev->queue_count < ap_dev->queue_depth &&
ap_dev->requestq_count > 0)
*flags |= 1;
*flags |= 2;
break;
case AP_RESPONSE_Q_FULL:
case AP_RESPONSE_RESET_IN_PROGRESS:
*flags |= 2;
break;
case AP_RESPONSE_MESSAGE_TOO_BIG:
return -EINVAL;
default:
return -ENODEV;
}
return 0;
}
/**
* ap_poll_queue(): Poll AP device for pending replies and send new messages.
* @ap_dev: pointer to the bus device
* @flags: pointer to control flags, bit 2^0 is set if another poll is
* required, bit 2^1 is set if the poll timer needs to get armed
*
* Poll AP device for pending replies and send new messages. If either
* ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
* Returns 0.
*/
static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
{
int rc;
rc = ap_poll_read(ap_dev, flags);
if (rc)
return rc;
return ap_poll_write(ap_dev, flags);
}
/**
* __ap_queue_message(): Queue a message to a device.
* @ap_dev: pointer to the AP device
* @ap_msg: the message to be queued
*
* Queue a message to a device. Returns 0 if successful.
*/
static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
{
struct ap_queue_status status;
if (list_empty(&ap_dev->requestq) &&
ap_dev->queue_count < ap_dev->queue_depth) {
status = __ap_send(ap_dev->qid, ap_msg->psmid,
ap_msg->message, ap_msg->length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
list_add_tail(&ap_msg->list, &ap_dev->pendingq);
atomic_inc(&ap_poll_requests);
ap_dev->pendingq_count++;
ap_increase_queue_count(ap_dev);
ap_dev->total_request_count++;
break;
case AP_RESPONSE_Q_FULL:
case AP_RESPONSE_RESET_IN_PROGRESS:
list_add_tail(&ap_msg->list, &ap_dev->requestq);
ap_dev->requestq_count++;
ap_dev->total_request_count++;
return -EBUSY;
case AP_RESPONSE_MESSAGE_TOO_BIG:
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
return -EINVAL;
default: /* Device is gone. */
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
return -ENODEV;
}
} else {
list_add_tail(&ap_msg->list, &ap_dev->requestq);
ap_dev->requestq_count++;
ap_dev->total_request_count++;
return -EBUSY;
}
ap_schedule_poll_timer();
return 0;
}
void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
{
unsigned long flags;
int rc;
spin_lock_bh(&ap_dev->lock);
if (!ap_dev->unregistered) {
/* Make room on the queue by polling for finished requests. */
rc = ap_poll_queue(ap_dev, &flags);
if (!rc)
rc = __ap_queue_message(ap_dev, ap_msg);
if (!rc)
wake_up(&ap_poll_wait);
if (rc == -ENODEV)
ap_dev->unregistered = 1;
} else {
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
rc = -ENODEV;
}
spin_unlock_bh(&ap_dev->lock);
if (rc == -ENODEV)
device_unregister(&ap_dev->device);
}
EXPORT_SYMBOL(ap_queue_message);
/**
* ap_cancel_message(): Cancel a crypto request.
* @ap_dev: The AP device that has the message queued
* @ap_msg: The message that is to be removed
*
* Cancel a crypto request. This is done by removing the request
* from the device pending or request queue. Note that the
* request stays on the AP queue. When it finishes the message
* reply will be discarded because the psmid can't be found.
*/
void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
{
struct ap_message *tmp;
spin_lock_bh(&ap_dev->lock);
if (!list_empty(&ap_msg->list)) {
list_for_each_entry(tmp, &ap_dev->pendingq, list)
if (tmp->psmid == ap_msg->psmid) {
ap_dev->pendingq_count--;
goto found;
}
ap_dev->requestq_count--;
found:
list_del_init(&ap_msg->list);
}
spin_unlock_bh(&ap_dev->lock);
}
EXPORT_SYMBOL(ap_cancel_message);
/**
* ap_poll_timeout(): AP receive polling for finished AP requests.
* @unused: Unused pointer.
*
* Schedules the AP tasklet using a high resolution timer.
*/
static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
{
tasklet_schedule(&ap_tasklet);
return HRTIMER_NORESTART;
}
/**
* ap_reset(): Reset a not responding AP device.
* @ap_dev: Pointer to the AP device
*
* Reset a not responding AP device and move all requests from the
* pending queue to the request queue.
*/
static void ap_reset(struct ap_device *ap_dev)
{
int rc;
ap_dev->reset = AP_RESET_IGNORE;
atomic_sub(ap_dev->queue_count, &ap_poll_requests);
ap_dev->queue_count = 0;
list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
ap_dev->requestq_count += ap_dev->pendingq_count;
ap_dev->pendingq_count = 0;
rc = ap_init_queue(ap_dev->qid);
if (rc == -ENODEV)
ap_dev->unregistered = 1;
}
static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags)
{
if (!ap_dev->unregistered) {
if (ap_poll_queue(ap_dev, flags))
ap_dev->unregistered = 1;
if (ap_dev->reset == AP_RESET_DO)
ap_reset(ap_dev);
}
return 0;
}
/**
* ap_poll_all(): Poll all AP devices.
* @dummy: Unused variable
*
* Poll all AP devices on the bus in a round robin fashion. Continue
* polling until bit 2^0 of the control flags is not set. If bit 2^1
* of the control flags has been set arm the poll timer.
*/
static void ap_poll_all(unsigned long dummy)
{
unsigned long flags;
struct ap_device *ap_dev;
/* Reset the indicator if interrupts are used. Thus new interrupts can
* be received. Doing it in the beginning of the tasklet is therefor
* important that no requests on any AP get lost.
*/
if (ap_using_interrupts())
xchg((u8 *)ap_interrupt_indicator, 0);
do {
flags = 0;
spin_lock(&ap_device_list_lock);
list_for_each_entry(ap_dev, &ap_device_list, list) {
spin_lock(&ap_dev->lock);
__ap_poll_device(ap_dev, &flags);
spin_unlock(&ap_dev->lock);
}
spin_unlock(&ap_device_list_lock);
} while (flags & 1);
if (flags & 2)
ap_schedule_poll_timer();
}
/**
* ap_poll_thread(): Thread that polls for finished requests.
* @data: Unused pointer
*
* AP bus poll thread. The purpose of this thread is to poll for
* finished requests in a loop if there is a "free" cpu - that is
* a cpu that doesn't have anything better to do. The polling stops
* as soon as there is another task or if all messages have been
* delivered.
*/
static int ap_poll_thread(void *data)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int requests;
struct ap_device *ap_dev;
set_user_nice(current, 19);
while (1) {
if (ap_suspend_flag)
return 0;
if (need_resched()) {
schedule();
continue;
}
add_wait_queue(&ap_poll_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
break;
requests = atomic_read(&ap_poll_requests);
if (requests <= 0)
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&ap_poll_wait, &wait);
flags = 0;
spin_lock_bh(&ap_device_list_lock);
list_for_each_entry(ap_dev, &ap_device_list, list) {
spin_lock(&ap_dev->lock);
__ap_poll_device(ap_dev, &flags);
spin_unlock(&ap_dev->lock);
}
spin_unlock_bh(&ap_device_list_lock);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&ap_poll_wait, &wait);
return 0;
}
static int ap_poll_thread_start(void)
{
int rc;
if (ap_using_interrupts() || ap_suspend_flag)
return 0;
mutex_lock(&ap_poll_thread_mutex);
if (!ap_poll_kthread) {
ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
if (rc)
ap_poll_kthread = NULL;
}
else
rc = 0;
mutex_unlock(&ap_poll_thread_mutex);
return rc;
}
static void ap_poll_thread_stop(void)
{
mutex_lock(&ap_poll_thread_mutex);
if (ap_poll_kthread) {
kthread_stop(ap_poll_kthread);
ap_poll_kthread = NULL;
}
mutex_unlock(&ap_poll_thread_mutex);
}
/**
* ap_request_timeout(): Handling of request timeouts
* @data: Holds the AP device.
*
* Handles request timeouts.
*/
static void ap_request_timeout(unsigned long data)
{
struct ap_device *ap_dev = (struct ap_device *) data;
if (ap_dev->reset == AP_RESET_ARMED) {
ap_dev->reset = AP_RESET_DO;
if (ap_using_interrupts())
tasklet_schedule(&ap_tasklet);
}
}
static void ap_reset_domain(void)
{
int i;
if (ap_domain_index != -1)
for (i = 0; i < AP_DEVICES; i++)
ap_reset_queue(AP_MKQID(i, ap_domain_index));
}
static void ap_reset_all(void)
{
int i, j;
for (i = 0; i < AP_DOMAINS; i++)
for (j = 0; j < AP_DEVICES; j++)
ap_reset_queue(AP_MKQID(j, i));
}
static struct reset_call ap_reset_call = {
.fn = ap_reset_all,
};
/**
* ap_module_init(): The module initialization code.
*
* Initializes the module.
*/
int __init ap_module_init(void)
{
int rc, i;
if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
pr_warning("%d is not a valid cryptographic domain\n",
ap_domain_index);
return -EINVAL;
}
/* In resume callback we need to know if the user had set the domain.
* If so, we can not just reset it.
*/
if (ap_domain_index >= 0)
user_set_domain = 1;
if (ap_instructions_available() != 0) {
pr_warning("The hardware system does not support "
"AP instructions\n");
return -ENODEV;
}
if (ap_interrupts_available()) {
isc_register(AP_ISC);
ap_interrupt_indicator = s390_register_adapter_interrupt(
&ap_interrupt_handler, NULL, AP_ISC);
if (IS_ERR(ap_interrupt_indicator)) {
ap_interrupt_indicator = NULL;
isc_unregister(AP_ISC);
}
}
register_reset_call(&ap_reset_call);
/* Create /sys/bus/ap. */
rc = bus_register(&ap_bus_type);
if (rc)
goto out;
for (i = 0; ap_bus_attrs[i]; i++) {
rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
if (rc)
goto out_bus;
}
/* Create /sys/devices/ap. */
ap_root_device = root_device_register("ap");
rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
if (rc)
goto out_bus;
ap_work_queue = create_singlethread_workqueue("kapwork");
if (!ap_work_queue) {
rc = -ENOMEM;
goto out_root;
}
if (ap_select_domain() == 0)
ap_scan_bus(NULL);
/* Setup the AP bus rescan timer. */
init_timer(&ap_config_timer);
ap_config_timer.function = ap_config_timeout;
ap_config_timer.data = 0;
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
/* Setup the high resultion poll timer.
* If we are running under z/VM adjust polling to z/VM polling rate.
*/
if (MACHINE_IS_VM)
poll_timeout = 1500000;
hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ap_poll_timer.function = ap_poll_timeout;
/* Start the low priority AP bus poll thread. */
if (ap_thread_flag) {
rc = ap_poll_thread_start();
if (rc)
goto out_work;
}
return 0;
out_work:
del_timer_sync(&ap_config_timer);
hrtimer_cancel(&ap_poll_timer);
destroy_workqueue(ap_work_queue);
out_root:
root_device_unregister(ap_root_device);
out_bus:
while (i--)
bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
bus_unregister(&ap_bus_type);
out:
unregister_reset_call(&ap_reset_call);
if (ap_using_interrupts()) {
s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
isc_unregister(AP_ISC);
}
return rc;
}
static int __ap_match_all(struct device *dev, void *data)
{
return 1;
}
/**
* ap_modules_exit(): The module termination code
*
* Terminates the module.
*/
void ap_module_exit(void)
{
int i;
struct device *dev;
ap_reset_domain();
ap_poll_thread_stop();
del_timer_sync(&ap_config_timer);
hrtimer_cancel(&ap_poll_timer);
destroy_workqueue(ap_work_queue);
tasklet_kill(&ap_tasklet);
root_device_unregister(ap_root_device);
while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
__ap_match_all)))
{
device_unregister(dev);
put_device(dev);
}
for (i = 0; ap_bus_attrs[i]; i++)
bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
bus_unregister(&ap_bus_type);
unregister_reset_call(&ap_reset_call);
if (ap_using_interrupts()) {
s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
isc_unregister(AP_ISC);
}
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(ap_module_init);
module_exit(ap_module_exit);
#endif