mirror of
https://github.com/adulau/aha.git
synced 2024-12-29 12:16:20 +00:00
3219445033
In relay's current read implementation, if the buffer is completely full but hasn't triggered the buffer-full condition (i.e. the last write didn't cross the subbuffer boundary) and the last subbuffer is exactly full, the subbuffer accounting code erroneously finds nothing available. This patch fixes the problem. Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org> Cc: Andrea Righi <righi.andrea@gmail.com> Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1362 lines
33 KiB
C
1362 lines
33 KiB
C
/*
|
|
* Public API and common code for kernel->userspace relay file support.
|
|
*
|
|
* See Documentation/filesystems/relay.txt for an overview.
|
|
*
|
|
* Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
|
|
* Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
|
|
*
|
|
* Moved to kernel/relay.c by Paul Mundt, 2006.
|
|
* November 2006 - CPU hotplug support by Mathieu Desnoyers
|
|
* (mathieu.desnoyers@polymtl.ca)
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <linux/relay.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/splice.h>
|
|
|
|
/* list of open channels, for cpu hotplug */
|
|
static DEFINE_MUTEX(relay_channels_mutex);
|
|
static LIST_HEAD(relay_channels);
|
|
|
|
/*
|
|
* close() vm_op implementation for relay file mapping.
|
|
*/
|
|
static void relay_file_mmap_close(struct vm_area_struct *vma)
|
|
{
|
|
struct rchan_buf *buf = vma->vm_private_data;
|
|
buf->chan->cb->buf_unmapped(buf, vma->vm_file);
|
|
}
|
|
|
|
/*
|
|
* fault() vm_op implementation for relay file mapping.
|
|
*/
|
|
static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct page *page;
|
|
struct rchan_buf *buf = vma->vm_private_data;
|
|
pgoff_t pgoff = vmf->pgoff;
|
|
|
|
if (!buf)
|
|
return VM_FAULT_OOM;
|
|
|
|
page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
|
|
if (!page)
|
|
return VM_FAULT_SIGBUS;
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vm_ops for relay file mappings.
|
|
*/
|
|
static struct vm_operations_struct relay_file_mmap_ops = {
|
|
.fault = relay_buf_fault,
|
|
.close = relay_file_mmap_close,
|
|
};
|
|
|
|
/*
|
|
* allocate an array of pointers of struct page
|
|
*/
|
|
static struct page **relay_alloc_page_array(unsigned int n_pages)
|
|
{
|
|
struct page **array;
|
|
size_t pa_size = n_pages * sizeof(struct page *);
|
|
|
|
if (pa_size > PAGE_SIZE) {
|
|
array = vmalloc(pa_size);
|
|
if (array)
|
|
memset(array, 0, pa_size);
|
|
} else {
|
|
array = kzalloc(pa_size, GFP_KERNEL);
|
|
}
|
|
return array;
|
|
}
|
|
|
|
/*
|
|
* free an array of pointers of struct page
|
|
*/
|
|
static void relay_free_page_array(struct page **array)
|
|
{
|
|
if (is_vmalloc_addr(array))
|
|
vfree(array);
|
|
else
|
|
kfree(array);
|
|
}
|
|
|
|
/**
|
|
* relay_mmap_buf: - mmap channel buffer to process address space
|
|
* @buf: relay channel buffer
|
|
* @vma: vm_area_struct describing memory to be mapped
|
|
*
|
|
* Returns 0 if ok, negative on error
|
|
*
|
|
* Caller should already have grabbed mmap_sem.
|
|
*/
|
|
static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long length = vma->vm_end - vma->vm_start;
|
|
struct file *filp = vma->vm_file;
|
|
|
|
if (!buf)
|
|
return -EBADF;
|
|
|
|
if (length != (unsigned long)buf->chan->alloc_size)
|
|
return -EINVAL;
|
|
|
|
vma->vm_ops = &relay_file_mmap_ops;
|
|
vma->vm_flags |= VM_DONTEXPAND;
|
|
vma->vm_private_data = buf;
|
|
buf->chan->cb->buf_mapped(buf, filp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* relay_alloc_buf - allocate a channel buffer
|
|
* @buf: the buffer struct
|
|
* @size: total size of the buffer
|
|
*
|
|
* Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
|
|
* passed in size will get page aligned, if it isn't already.
|
|
*/
|
|
static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
|
|
{
|
|
void *mem;
|
|
unsigned int i, j, n_pages;
|
|
|
|
*size = PAGE_ALIGN(*size);
|
|
n_pages = *size >> PAGE_SHIFT;
|
|
|
|
buf->page_array = relay_alloc_page_array(n_pages);
|
|
if (!buf->page_array)
|
|
return NULL;
|
|
|
|
for (i = 0; i < n_pages; i++) {
|
|
buf->page_array[i] = alloc_page(GFP_KERNEL);
|
|
if (unlikely(!buf->page_array[i]))
|
|
goto depopulate;
|
|
set_page_private(buf->page_array[i], (unsigned long)buf);
|
|
}
|
|
mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
|
|
if (!mem)
|
|
goto depopulate;
|
|
|
|
memset(mem, 0, *size);
|
|
buf->page_count = n_pages;
|
|
return mem;
|
|
|
|
depopulate:
|
|
for (j = 0; j < i; j++)
|
|
__free_page(buf->page_array[j]);
|
|
relay_free_page_array(buf->page_array);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* relay_create_buf - allocate and initialize a channel buffer
|
|
* @chan: the relay channel
|
|
*
|
|
* Returns channel buffer if successful, %NULL otherwise.
|
|
*/
|
|
static struct rchan_buf *relay_create_buf(struct rchan *chan)
|
|
{
|
|
struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
|
|
if (!buf->padding)
|
|
goto free_buf;
|
|
|
|
buf->start = relay_alloc_buf(buf, &chan->alloc_size);
|
|
if (!buf->start)
|
|
goto free_buf;
|
|
|
|
buf->chan = chan;
|
|
kref_get(&buf->chan->kref);
|
|
return buf;
|
|
|
|
free_buf:
|
|
kfree(buf->padding);
|
|
kfree(buf);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* relay_destroy_channel - free the channel struct
|
|
* @kref: target kernel reference that contains the relay channel
|
|
*
|
|
* Should only be called from kref_put().
|
|
*/
|
|
static void relay_destroy_channel(struct kref *kref)
|
|
{
|
|
struct rchan *chan = container_of(kref, struct rchan, kref);
|
|
kfree(chan);
|
|
}
|
|
|
|
/**
|
|
* relay_destroy_buf - destroy an rchan_buf struct and associated buffer
|
|
* @buf: the buffer struct
|
|
*/
|
|
static void relay_destroy_buf(struct rchan_buf *buf)
|
|
{
|
|
struct rchan *chan = buf->chan;
|
|
unsigned int i;
|
|
|
|
if (likely(buf->start)) {
|
|
vunmap(buf->start);
|
|
for (i = 0; i < buf->page_count; i++)
|
|
__free_page(buf->page_array[i]);
|
|
relay_free_page_array(buf->page_array);
|
|
}
|
|
chan->buf[buf->cpu] = NULL;
|
|
kfree(buf->padding);
|
|
kfree(buf);
|
|
kref_put(&chan->kref, relay_destroy_channel);
|
|
}
|
|
|
|
/**
|
|
* relay_remove_buf - remove a channel buffer
|
|
* @kref: target kernel reference that contains the relay buffer
|
|
*
|
|
* Removes the file from the fileystem, which also frees the
|
|
* rchan_buf_struct and the channel buffer. Should only be called from
|
|
* kref_put().
|
|
*/
|
|
static void relay_remove_buf(struct kref *kref)
|
|
{
|
|
struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
|
|
buf->chan->cb->remove_buf_file(buf->dentry);
|
|
relay_destroy_buf(buf);
|
|
}
|
|
|
|
/**
|
|
* relay_buf_empty - boolean, is the channel buffer empty?
|
|
* @buf: channel buffer
|
|
*
|
|
* Returns 1 if the buffer is empty, 0 otherwise.
|
|
*/
|
|
static int relay_buf_empty(struct rchan_buf *buf)
|
|
{
|
|
return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* relay_buf_full - boolean, is the channel buffer full?
|
|
* @buf: channel buffer
|
|
*
|
|
* Returns 1 if the buffer is full, 0 otherwise.
|
|
*/
|
|
int relay_buf_full(struct rchan_buf *buf)
|
|
{
|
|
size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
|
|
return (ready >= buf->chan->n_subbufs) ? 1 : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_buf_full);
|
|
|
|
/*
|
|
* High-level relay kernel API and associated functions.
|
|
*/
|
|
|
|
/*
|
|
* rchan_callback implementations defining default channel behavior. Used
|
|
* in place of corresponding NULL values in client callback struct.
|
|
*/
|
|
|
|
/*
|
|
* subbuf_start() default callback. Does nothing.
|
|
*/
|
|
static int subbuf_start_default_callback (struct rchan_buf *buf,
|
|
void *subbuf,
|
|
void *prev_subbuf,
|
|
size_t prev_padding)
|
|
{
|
|
if (relay_buf_full(buf))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* buf_mapped() default callback. Does nothing.
|
|
*/
|
|
static void buf_mapped_default_callback(struct rchan_buf *buf,
|
|
struct file *filp)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* buf_unmapped() default callback. Does nothing.
|
|
*/
|
|
static void buf_unmapped_default_callback(struct rchan_buf *buf,
|
|
struct file *filp)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* create_buf_file_create() default callback. Does nothing.
|
|
*/
|
|
static struct dentry *create_buf_file_default_callback(const char *filename,
|
|
struct dentry *parent,
|
|
int mode,
|
|
struct rchan_buf *buf,
|
|
int *is_global)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* remove_buf_file() default callback. Does nothing.
|
|
*/
|
|
static int remove_buf_file_default_callback(struct dentry *dentry)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* relay channel default callbacks */
|
|
static struct rchan_callbacks default_channel_callbacks = {
|
|
.subbuf_start = subbuf_start_default_callback,
|
|
.buf_mapped = buf_mapped_default_callback,
|
|
.buf_unmapped = buf_unmapped_default_callback,
|
|
.create_buf_file = create_buf_file_default_callback,
|
|
.remove_buf_file = remove_buf_file_default_callback,
|
|
};
|
|
|
|
/**
|
|
* wakeup_readers - wake up readers waiting on a channel
|
|
* @data: contains the channel buffer
|
|
*
|
|
* This is the timer function used to defer reader waking.
|
|
*/
|
|
static void wakeup_readers(unsigned long data)
|
|
{
|
|
struct rchan_buf *buf = (struct rchan_buf *)data;
|
|
wake_up_interruptible(&buf->read_wait);
|
|
}
|
|
|
|
/**
|
|
* __relay_reset - reset a channel buffer
|
|
* @buf: the channel buffer
|
|
* @init: 1 if this is a first-time initialization
|
|
*
|
|
* See relay_reset() for description of effect.
|
|
*/
|
|
static void __relay_reset(struct rchan_buf *buf, unsigned int init)
|
|
{
|
|
size_t i;
|
|
|
|
if (init) {
|
|
init_waitqueue_head(&buf->read_wait);
|
|
kref_init(&buf->kref);
|
|
setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
|
|
} else
|
|
del_timer_sync(&buf->timer);
|
|
|
|
buf->subbufs_produced = 0;
|
|
buf->subbufs_consumed = 0;
|
|
buf->bytes_consumed = 0;
|
|
buf->finalized = 0;
|
|
buf->data = buf->start;
|
|
buf->offset = 0;
|
|
|
|
for (i = 0; i < buf->chan->n_subbufs; i++)
|
|
buf->padding[i] = 0;
|
|
|
|
buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* relay_reset - reset the channel
|
|
* @chan: the channel
|
|
*
|
|
* This has the effect of erasing all data from all channel buffers
|
|
* and restarting the channel in its initial state. The buffers
|
|
* are not freed, so any mappings are still in effect.
|
|
*
|
|
* NOTE. Care should be taken that the channel isn't actually
|
|
* being used by anything when this call is made.
|
|
*/
|
|
void relay_reset(struct rchan *chan)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!chan)
|
|
return;
|
|
|
|
if (chan->is_global && chan->buf[0]) {
|
|
__relay_reset(chan->buf[0], 0);
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&relay_channels_mutex);
|
|
for_each_online_cpu(i)
|
|
if (chan->buf[i])
|
|
__relay_reset(chan->buf[i], 0);
|
|
mutex_unlock(&relay_channels_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_reset);
|
|
|
|
static inline void relay_set_buf_dentry(struct rchan_buf *buf,
|
|
struct dentry *dentry)
|
|
{
|
|
buf->dentry = dentry;
|
|
buf->dentry->d_inode->i_size = buf->early_bytes;
|
|
}
|
|
|
|
static struct dentry *relay_create_buf_file(struct rchan *chan,
|
|
struct rchan_buf *buf,
|
|
unsigned int cpu)
|
|
{
|
|
struct dentry *dentry;
|
|
char *tmpname;
|
|
|
|
tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
|
|
if (!tmpname)
|
|
return NULL;
|
|
snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
|
|
|
|
/* Create file in fs */
|
|
dentry = chan->cb->create_buf_file(tmpname, chan->parent,
|
|
S_IRUSR, buf,
|
|
&chan->is_global);
|
|
|
|
kfree(tmpname);
|
|
|
|
return dentry;
|
|
}
|
|
|
|
/*
|
|
* relay_open_buf - create a new relay channel buffer
|
|
*
|
|
* used by relay_open() and CPU hotplug.
|
|
*/
|
|
static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
|
|
{
|
|
struct rchan_buf *buf = NULL;
|
|
struct dentry *dentry;
|
|
|
|
if (chan->is_global)
|
|
return chan->buf[0];
|
|
|
|
buf = relay_create_buf(chan);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
if (chan->has_base_filename) {
|
|
dentry = relay_create_buf_file(chan, buf, cpu);
|
|
if (!dentry)
|
|
goto free_buf;
|
|
relay_set_buf_dentry(buf, dentry);
|
|
}
|
|
|
|
buf->cpu = cpu;
|
|
__relay_reset(buf, 1);
|
|
|
|
if(chan->is_global) {
|
|
chan->buf[0] = buf;
|
|
buf->cpu = 0;
|
|
}
|
|
|
|
return buf;
|
|
|
|
free_buf:
|
|
relay_destroy_buf(buf);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* relay_close_buf - close a channel buffer
|
|
* @buf: channel buffer
|
|
*
|
|
* Marks the buffer finalized and restores the default callbacks.
|
|
* The channel buffer and channel buffer data structure are then freed
|
|
* automatically when the last reference is given up.
|
|
*/
|
|
static void relay_close_buf(struct rchan_buf *buf)
|
|
{
|
|
buf->finalized = 1;
|
|
del_timer_sync(&buf->timer);
|
|
kref_put(&buf->kref, relay_remove_buf);
|
|
}
|
|
|
|
static void setup_callbacks(struct rchan *chan,
|
|
struct rchan_callbacks *cb)
|
|
{
|
|
if (!cb) {
|
|
chan->cb = &default_channel_callbacks;
|
|
return;
|
|
}
|
|
|
|
if (!cb->subbuf_start)
|
|
cb->subbuf_start = subbuf_start_default_callback;
|
|
if (!cb->buf_mapped)
|
|
cb->buf_mapped = buf_mapped_default_callback;
|
|
if (!cb->buf_unmapped)
|
|
cb->buf_unmapped = buf_unmapped_default_callback;
|
|
if (!cb->create_buf_file)
|
|
cb->create_buf_file = create_buf_file_default_callback;
|
|
if (!cb->remove_buf_file)
|
|
cb->remove_buf_file = remove_buf_file_default_callback;
|
|
chan->cb = cb;
|
|
}
|
|
|
|
/**
|
|
* relay_hotcpu_callback - CPU hotplug callback
|
|
* @nb: notifier block
|
|
* @action: hotplug action to take
|
|
* @hcpu: CPU number
|
|
*
|
|
* Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
|
|
*/
|
|
static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
unsigned int hotcpu = (unsigned long)hcpu;
|
|
struct rchan *chan;
|
|
|
|
switch(action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
mutex_lock(&relay_channels_mutex);
|
|
list_for_each_entry(chan, &relay_channels, list) {
|
|
if (chan->buf[hotcpu])
|
|
continue;
|
|
chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
|
|
if(!chan->buf[hotcpu]) {
|
|
printk(KERN_ERR
|
|
"relay_hotcpu_callback: cpu %d buffer "
|
|
"creation failed\n", hotcpu);
|
|
mutex_unlock(&relay_channels_mutex);
|
|
return NOTIFY_BAD;
|
|
}
|
|
}
|
|
mutex_unlock(&relay_channels_mutex);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
/* No need to flush the cpu : will be flushed upon
|
|
* final relay_flush() call. */
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/**
|
|
* relay_open - create a new relay channel
|
|
* @base_filename: base name of files to create, %NULL for buffering only
|
|
* @parent: dentry of parent directory, %NULL for root directory or buffer
|
|
* @subbuf_size: size of sub-buffers
|
|
* @n_subbufs: number of sub-buffers
|
|
* @cb: client callback functions
|
|
* @private_data: user-defined data
|
|
*
|
|
* Returns channel pointer if successful, %NULL otherwise.
|
|
*
|
|
* Creates a channel buffer for each cpu using the sizes and
|
|
* attributes specified. The created channel buffer files
|
|
* will be named base_filename0...base_filenameN-1. File
|
|
* permissions will be %S_IRUSR.
|
|
*/
|
|
struct rchan *relay_open(const char *base_filename,
|
|
struct dentry *parent,
|
|
size_t subbuf_size,
|
|
size_t n_subbufs,
|
|
struct rchan_callbacks *cb,
|
|
void *private_data)
|
|
{
|
|
unsigned int i;
|
|
struct rchan *chan;
|
|
|
|
if (!(subbuf_size && n_subbufs))
|
|
return NULL;
|
|
|
|
chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
|
|
if (!chan)
|
|
return NULL;
|
|
|
|
chan->version = RELAYFS_CHANNEL_VERSION;
|
|
chan->n_subbufs = n_subbufs;
|
|
chan->subbuf_size = subbuf_size;
|
|
chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
|
|
chan->parent = parent;
|
|
chan->private_data = private_data;
|
|
if (base_filename) {
|
|
chan->has_base_filename = 1;
|
|
strlcpy(chan->base_filename, base_filename, NAME_MAX);
|
|
}
|
|
setup_callbacks(chan, cb);
|
|
kref_init(&chan->kref);
|
|
|
|
mutex_lock(&relay_channels_mutex);
|
|
for_each_online_cpu(i) {
|
|
chan->buf[i] = relay_open_buf(chan, i);
|
|
if (!chan->buf[i])
|
|
goto free_bufs;
|
|
}
|
|
list_add(&chan->list, &relay_channels);
|
|
mutex_unlock(&relay_channels_mutex);
|
|
|
|
return chan;
|
|
|
|
free_bufs:
|
|
for_each_online_cpu(i) {
|
|
if (!chan->buf[i])
|
|
break;
|
|
relay_close_buf(chan->buf[i]);
|
|
}
|
|
|
|
kref_put(&chan->kref, relay_destroy_channel);
|
|
mutex_unlock(&relay_channels_mutex);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_open);
|
|
|
|
struct rchan_percpu_buf_dispatcher {
|
|
struct rchan_buf *buf;
|
|
struct dentry *dentry;
|
|
};
|
|
|
|
/* Called in atomic context. */
|
|
static void __relay_set_buf_dentry(void *info)
|
|
{
|
|
struct rchan_percpu_buf_dispatcher *p = info;
|
|
|
|
relay_set_buf_dentry(p->buf, p->dentry);
|
|
}
|
|
|
|
/**
|
|
* relay_late_setup_files - triggers file creation
|
|
* @chan: channel to operate on
|
|
* @base_filename: base name of files to create
|
|
* @parent: dentry of parent directory, %NULL for root directory
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*
|
|
* Use to setup files for a previously buffer-only channel.
|
|
* Useful to do early tracing in kernel, before VFS is up, for example.
|
|
*/
|
|
int relay_late_setup_files(struct rchan *chan,
|
|
const char *base_filename,
|
|
struct dentry *parent)
|
|
{
|
|
int err = 0;
|
|
unsigned int i, curr_cpu;
|
|
unsigned long flags;
|
|
struct dentry *dentry;
|
|
struct rchan_percpu_buf_dispatcher disp;
|
|
|
|
if (!chan || !base_filename)
|
|
return -EINVAL;
|
|
|
|
strlcpy(chan->base_filename, base_filename, NAME_MAX);
|
|
|
|
mutex_lock(&relay_channels_mutex);
|
|
/* Is chan already set up? */
|
|
if (unlikely(chan->has_base_filename))
|
|
return -EEXIST;
|
|
chan->has_base_filename = 1;
|
|
chan->parent = parent;
|
|
curr_cpu = get_cpu();
|
|
/*
|
|
* The CPU hotplug notifier ran before us and created buffers with
|
|
* no files associated. So it's safe to call relay_setup_buf_file()
|
|
* on all currently online CPUs.
|
|
*/
|
|
for_each_online_cpu(i) {
|
|
if (unlikely(!chan->buf[i])) {
|
|
printk(KERN_ERR "relay_late_setup_files: CPU %u "
|
|
"has no buffer, it must have!\n", i);
|
|
BUG();
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
dentry = relay_create_buf_file(chan, chan->buf[i], i);
|
|
if (unlikely(!dentry)) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (curr_cpu == i) {
|
|
local_irq_save(flags);
|
|
relay_set_buf_dentry(chan->buf[i], dentry);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
disp.buf = chan->buf[i];
|
|
disp.dentry = dentry;
|
|
smp_mb();
|
|
/* relay_channels_mutex must be held, so wait. */
|
|
err = smp_call_function_single(i,
|
|
__relay_set_buf_dentry,
|
|
&disp, 1);
|
|
}
|
|
if (unlikely(err))
|
|
break;
|
|
}
|
|
put_cpu();
|
|
mutex_unlock(&relay_channels_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* relay_switch_subbuf - switch to a new sub-buffer
|
|
* @buf: channel buffer
|
|
* @length: size of current event
|
|
*
|
|
* Returns either the length passed in or 0 if full.
|
|
*
|
|
* Performs sub-buffer-switch tasks such as invoking callbacks,
|
|
* updating padding counts, waking up readers, etc.
|
|
*/
|
|
size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
|
|
{
|
|
void *old, *new;
|
|
size_t old_subbuf, new_subbuf;
|
|
|
|
if (unlikely(length > buf->chan->subbuf_size))
|
|
goto toobig;
|
|
|
|
if (buf->offset != buf->chan->subbuf_size + 1) {
|
|
buf->prev_padding = buf->chan->subbuf_size - buf->offset;
|
|
old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
|
|
buf->padding[old_subbuf] = buf->prev_padding;
|
|
buf->subbufs_produced++;
|
|
if (buf->dentry)
|
|
buf->dentry->d_inode->i_size +=
|
|
buf->chan->subbuf_size -
|
|
buf->padding[old_subbuf];
|
|
else
|
|
buf->early_bytes += buf->chan->subbuf_size -
|
|
buf->padding[old_subbuf];
|
|
smp_mb();
|
|
if (waitqueue_active(&buf->read_wait))
|
|
/*
|
|
* Calling wake_up_interruptible() from here
|
|
* will deadlock if we happen to be logging
|
|
* from the scheduler (trying to re-grab
|
|
* rq->lock), so defer it.
|
|
*/
|
|
__mod_timer(&buf->timer, jiffies + 1);
|
|
}
|
|
|
|
old = buf->data;
|
|
new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
|
|
new = buf->start + new_subbuf * buf->chan->subbuf_size;
|
|
buf->offset = 0;
|
|
if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
|
|
buf->offset = buf->chan->subbuf_size + 1;
|
|
return 0;
|
|
}
|
|
buf->data = new;
|
|
buf->padding[new_subbuf] = 0;
|
|
|
|
if (unlikely(length + buf->offset > buf->chan->subbuf_size))
|
|
goto toobig;
|
|
|
|
return length;
|
|
|
|
toobig:
|
|
buf->chan->last_toobig = length;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_switch_subbuf);
|
|
|
|
/**
|
|
* relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
|
|
* @chan: the channel
|
|
* @cpu: the cpu associated with the channel buffer to update
|
|
* @subbufs_consumed: number of sub-buffers to add to current buf's count
|
|
*
|
|
* Adds to the channel buffer's consumed sub-buffer count.
|
|
* subbufs_consumed should be the number of sub-buffers newly consumed,
|
|
* not the total consumed.
|
|
*
|
|
* NOTE. Kernel clients don't need to call this function if the channel
|
|
* mode is 'overwrite'.
|
|
*/
|
|
void relay_subbufs_consumed(struct rchan *chan,
|
|
unsigned int cpu,
|
|
size_t subbufs_consumed)
|
|
{
|
|
struct rchan_buf *buf;
|
|
|
|
if (!chan)
|
|
return;
|
|
|
|
if (cpu >= NR_CPUS || !chan->buf[cpu])
|
|
return;
|
|
|
|
buf = chan->buf[cpu];
|
|
buf->subbufs_consumed += subbufs_consumed;
|
|
if (buf->subbufs_consumed > buf->subbufs_produced)
|
|
buf->subbufs_consumed = buf->subbufs_produced;
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
|
|
|
|
/**
|
|
* relay_close - close the channel
|
|
* @chan: the channel
|
|
*
|
|
* Closes all channel buffers and frees the channel.
|
|
*/
|
|
void relay_close(struct rchan *chan)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!chan)
|
|
return;
|
|
|
|
mutex_lock(&relay_channels_mutex);
|
|
if (chan->is_global && chan->buf[0])
|
|
relay_close_buf(chan->buf[0]);
|
|
else
|
|
for_each_possible_cpu(i)
|
|
if (chan->buf[i])
|
|
relay_close_buf(chan->buf[i]);
|
|
|
|
if (chan->last_toobig)
|
|
printk(KERN_WARNING "relay: one or more items not logged "
|
|
"[item size (%Zd) > sub-buffer size (%Zd)]\n",
|
|
chan->last_toobig, chan->subbuf_size);
|
|
|
|
list_del(&chan->list);
|
|
kref_put(&chan->kref, relay_destroy_channel);
|
|
mutex_unlock(&relay_channels_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_close);
|
|
|
|
/**
|
|
* relay_flush - close the channel
|
|
* @chan: the channel
|
|
*
|
|
* Flushes all channel buffers, i.e. forces buffer switch.
|
|
*/
|
|
void relay_flush(struct rchan *chan)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!chan)
|
|
return;
|
|
|
|
if (chan->is_global && chan->buf[0]) {
|
|
relay_switch_subbuf(chan->buf[0], 0);
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&relay_channels_mutex);
|
|
for_each_possible_cpu(i)
|
|
if (chan->buf[i])
|
|
relay_switch_subbuf(chan->buf[i], 0);
|
|
mutex_unlock(&relay_channels_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(relay_flush);
|
|
|
|
/**
|
|
* relay_file_open - open file op for relay files
|
|
* @inode: the inode
|
|
* @filp: the file
|
|
*
|
|
* Increments the channel buffer refcount.
|
|
*/
|
|
static int relay_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
struct rchan_buf *buf = inode->i_private;
|
|
kref_get(&buf->kref);
|
|
filp->private_data = buf;
|
|
|
|
return nonseekable_open(inode, filp);
|
|
}
|
|
|
|
/**
|
|
* relay_file_mmap - mmap file op for relay files
|
|
* @filp: the file
|
|
* @vma: the vma describing what to map
|
|
*
|
|
* Calls upon relay_mmap_buf() to map the file into user space.
|
|
*/
|
|
static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct rchan_buf *buf = filp->private_data;
|
|
return relay_mmap_buf(buf, vma);
|
|
}
|
|
|
|
/**
|
|
* relay_file_poll - poll file op for relay files
|
|
* @filp: the file
|
|
* @wait: poll table
|
|
*
|
|
* Poll implemention.
|
|
*/
|
|
static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
|
|
{
|
|
unsigned int mask = 0;
|
|
struct rchan_buf *buf = filp->private_data;
|
|
|
|
if (buf->finalized)
|
|
return POLLERR;
|
|
|
|
if (filp->f_mode & FMODE_READ) {
|
|
poll_wait(filp, &buf->read_wait, wait);
|
|
if (!relay_buf_empty(buf))
|
|
mask |= POLLIN | POLLRDNORM;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* relay_file_release - release file op for relay files
|
|
* @inode: the inode
|
|
* @filp: the file
|
|
*
|
|
* Decrements the channel refcount, as the filesystem is
|
|
* no longer using it.
|
|
*/
|
|
static int relay_file_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct rchan_buf *buf = filp->private_data;
|
|
kref_put(&buf->kref, relay_remove_buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* relay_file_read_consume - update the consumed count for the buffer
|
|
*/
|
|
static void relay_file_read_consume(struct rchan_buf *buf,
|
|
size_t read_pos,
|
|
size_t bytes_consumed)
|
|
{
|
|
size_t subbuf_size = buf->chan->subbuf_size;
|
|
size_t n_subbufs = buf->chan->n_subbufs;
|
|
size_t read_subbuf;
|
|
|
|
if (buf->subbufs_produced == buf->subbufs_consumed &&
|
|
buf->offset == buf->bytes_consumed)
|
|
return;
|
|
|
|
if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
|
|
relay_subbufs_consumed(buf->chan, buf->cpu, 1);
|
|
buf->bytes_consumed = 0;
|
|
}
|
|
|
|
buf->bytes_consumed += bytes_consumed;
|
|
if (!read_pos)
|
|
read_subbuf = buf->subbufs_consumed % n_subbufs;
|
|
else
|
|
read_subbuf = read_pos / buf->chan->subbuf_size;
|
|
if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
|
|
if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
|
|
(buf->offset == subbuf_size))
|
|
return;
|
|
relay_subbufs_consumed(buf->chan, buf->cpu, 1);
|
|
buf->bytes_consumed = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* relay_file_read_avail - boolean, are there unconsumed bytes available?
|
|
*/
|
|
static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
|
|
{
|
|
size_t subbuf_size = buf->chan->subbuf_size;
|
|
size_t n_subbufs = buf->chan->n_subbufs;
|
|
size_t produced = buf->subbufs_produced;
|
|
size_t consumed = buf->subbufs_consumed;
|
|
|
|
relay_file_read_consume(buf, read_pos, 0);
|
|
|
|
consumed = buf->subbufs_consumed;
|
|
|
|
if (unlikely(buf->offset > subbuf_size)) {
|
|
if (produced == consumed)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
if (unlikely(produced - consumed >= n_subbufs)) {
|
|
consumed = produced - n_subbufs + 1;
|
|
buf->subbufs_consumed = consumed;
|
|
buf->bytes_consumed = 0;
|
|
}
|
|
|
|
produced = (produced % n_subbufs) * subbuf_size + buf->offset;
|
|
consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
|
|
|
|
if (consumed > produced)
|
|
produced += n_subbufs * subbuf_size;
|
|
|
|
if (consumed == produced) {
|
|
if (buf->offset == subbuf_size &&
|
|
buf->subbufs_produced > buf->subbufs_consumed)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* relay_file_read_subbuf_avail - return bytes available in sub-buffer
|
|
* @read_pos: file read position
|
|
* @buf: relay channel buffer
|
|
*/
|
|
static size_t relay_file_read_subbuf_avail(size_t read_pos,
|
|
struct rchan_buf *buf)
|
|
{
|
|
size_t padding, avail = 0;
|
|
size_t read_subbuf, read_offset, write_subbuf, write_offset;
|
|
size_t subbuf_size = buf->chan->subbuf_size;
|
|
|
|
write_subbuf = (buf->data - buf->start) / subbuf_size;
|
|
write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
|
|
read_subbuf = read_pos / subbuf_size;
|
|
read_offset = read_pos % subbuf_size;
|
|
padding = buf->padding[read_subbuf];
|
|
|
|
if (read_subbuf == write_subbuf) {
|
|
if (read_offset + padding < write_offset)
|
|
avail = write_offset - (read_offset + padding);
|
|
} else
|
|
avail = (subbuf_size - padding) - read_offset;
|
|
|
|
return avail;
|
|
}
|
|
|
|
/**
|
|
* relay_file_read_start_pos - find the first available byte to read
|
|
* @read_pos: file read position
|
|
* @buf: relay channel buffer
|
|
*
|
|
* If the @read_pos is in the middle of padding, return the
|
|
* position of the first actually available byte, otherwise
|
|
* return the original value.
|
|
*/
|
|
static size_t relay_file_read_start_pos(size_t read_pos,
|
|
struct rchan_buf *buf)
|
|
{
|
|
size_t read_subbuf, padding, padding_start, padding_end;
|
|
size_t subbuf_size = buf->chan->subbuf_size;
|
|
size_t n_subbufs = buf->chan->n_subbufs;
|
|
size_t consumed = buf->subbufs_consumed % n_subbufs;
|
|
|
|
if (!read_pos)
|
|
read_pos = consumed * subbuf_size + buf->bytes_consumed;
|
|
read_subbuf = read_pos / subbuf_size;
|
|
padding = buf->padding[read_subbuf];
|
|
padding_start = (read_subbuf + 1) * subbuf_size - padding;
|
|
padding_end = (read_subbuf + 1) * subbuf_size;
|
|
if (read_pos >= padding_start && read_pos < padding_end) {
|
|
read_subbuf = (read_subbuf + 1) % n_subbufs;
|
|
read_pos = read_subbuf * subbuf_size;
|
|
}
|
|
|
|
return read_pos;
|
|
}
|
|
|
|
/**
|
|
* relay_file_read_end_pos - return the new read position
|
|
* @read_pos: file read position
|
|
* @buf: relay channel buffer
|
|
* @count: number of bytes to be read
|
|
*/
|
|
static size_t relay_file_read_end_pos(struct rchan_buf *buf,
|
|
size_t read_pos,
|
|
size_t count)
|
|
{
|
|
size_t read_subbuf, padding, end_pos;
|
|
size_t subbuf_size = buf->chan->subbuf_size;
|
|
size_t n_subbufs = buf->chan->n_subbufs;
|
|
|
|
read_subbuf = read_pos / subbuf_size;
|
|
padding = buf->padding[read_subbuf];
|
|
if (read_pos % subbuf_size + count + padding == subbuf_size)
|
|
end_pos = (read_subbuf + 1) * subbuf_size;
|
|
else
|
|
end_pos = read_pos + count;
|
|
if (end_pos >= subbuf_size * n_subbufs)
|
|
end_pos = 0;
|
|
|
|
return end_pos;
|
|
}
|
|
|
|
/*
|
|
* subbuf_read_actor - read up to one subbuf's worth of data
|
|
*/
|
|
static int subbuf_read_actor(size_t read_start,
|
|
struct rchan_buf *buf,
|
|
size_t avail,
|
|
read_descriptor_t *desc,
|
|
read_actor_t actor)
|
|
{
|
|
void *from;
|
|
int ret = 0;
|
|
|
|
from = buf->start + read_start;
|
|
ret = avail;
|
|
if (copy_to_user(desc->arg.buf, from, avail)) {
|
|
desc->error = -EFAULT;
|
|
ret = 0;
|
|
}
|
|
desc->arg.data += ret;
|
|
desc->written += ret;
|
|
desc->count -= ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
typedef int (*subbuf_actor_t) (size_t read_start,
|
|
struct rchan_buf *buf,
|
|
size_t avail,
|
|
read_descriptor_t *desc,
|
|
read_actor_t actor);
|
|
|
|
/*
|
|
* relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
|
|
*/
|
|
static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
|
|
subbuf_actor_t subbuf_actor,
|
|
read_actor_t actor,
|
|
read_descriptor_t *desc)
|
|
{
|
|
struct rchan_buf *buf = filp->private_data;
|
|
size_t read_start, avail;
|
|
int ret;
|
|
|
|
if (!desc->count)
|
|
return 0;
|
|
|
|
mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
|
|
do {
|
|
if (!relay_file_read_avail(buf, *ppos))
|
|
break;
|
|
|
|
read_start = relay_file_read_start_pos(*ppos, buf);
|
|
avail = relay_file_read_subbuf_avail(read_start, buf);
|
|
if (!avail)
|
|
break;
|
|
|
|
avail = min(desc->count, avail);
|
|
ret = subbuf_actor(read_start, buf, avail, desc, actor);
|
|
if (desc->error < 0)
|
|
break;
|
|
|
|
if (ret) {
|
|
relay_file_read_consume(buf, read_start, ret);
|
|
*ppos = relay_file_read_end_pos(buf, read_start, ret);
|
|
}
|
|
} while (desc->count && ret);
|
|
mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
|
|
|
|
return desc->written;
|
|
}
|
|
|
|
static ssize_t relay_file_read(struct file *filp,
|
|
char __user *buffer,
|
|
size_t count,
|
|
loff_t *ppos)
|
|
{
|
|
read_descriptor_t desc;
|
|
desc.written = 0;
|
|
desc.count = count;
|
|
desc.arg.buf = buffer;
|
|
desc.error = 0;
|
|
return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
|
|
NULL, &desc);
|
|
}
|
|
|
|
static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
|
|
{
|
|
rbuf->bytes_consumed += bytes_consumed;
|
|
|
|
if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
|
|
relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
|
|
rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
|
|
}
|
|
}
|
|
|
|
static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct rchan_buf *rbuf;
|
|
|
|
rbuf = (struct rchan_buf *)page_private(buf->page);
|
|
relay_consume_bytes(rbuf, buf->private);
|
|
}
|
|
|
|
static struct pipe_buf_operations relay_pipe_buf_ops = {
|
|
.can_merge = 0,
|
|
.map = generic_pipe_buf_map,
|
|
.unmap = generic_pipe_buf_unmap,
|
|
.confirm = generic_pipe_buf_confirm,
|
|
.release = relay_pipe_buf_release,
|
|
.steal = generic_pipe_buf_steal,
|
|
.get = generic_pipe_buf_get,
|
|
};
|
|
|
|
static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* subbuf_splice_actor - splice up to one subbuf's worth of data
|
|
*/
|
|
static int subbuf_splice_actor(struct file *in,
|
|
loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len,
|
|
unsigned int flags,
|
|
int *nonpad_ret)
|
|
{
|
|
unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
|
|
struct rchan_buf *rbuf = in->private_data;
|
|
unsigned int subbuf_size = rbuf->chan->subbuf_size;
|
|
uint64_t pos = (uint64_t) *ppos;
|
|
uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
|
|
size_t read_start = (size_t) do_div(pos, alloc_size);
|
|
size_t read_subbuf = read_start / subbuf_size;
|
|
size_t padding = rbuf->padding[read_subbuf];
|
|
size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
|
|
struct page *pages[PIPE_BUFFERS];
|
|
struct partial_page partial[PIPE_BUFFERS];
|
|
struct splice_pipe_desc spd = {
|
|
.pages = pages,
|
|
.nr_pages = 0,
|
|
.partial = partial,
|
|
.flags = flags,
|
|
.ops = &relay_pipe_buf_ops,
|
|
.spd_release = relay_page_release,
|
|
};
|
|
|
|
if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
|
|
return 0;
|
|
|
|
/*
|
|
* Adjust read len, if longer than what is available
|
|
*/
|
|
if (len > (subbuf_size - read_start % subbuf_size))
|
|
len = subbuf_size - read_start % subbuf_size;
|
|
|
|
subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
|
|
pidx = (read_start / PAGE_SIZE) % subbuf_pages;
|
|
poff = read_start & ~PAGE_MASK;
|
|
nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
|
|
|
|
for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
|
|
unsigned int this_len, this_end, private;
|
|
unsigned int cur_pos = read_start + total_len;
|
|
|
|
if (!len)
|
|
break;
|
|
|
|
this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
|
|
private = this_len;
|
|
|
|
spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
|
|
spd.partial[spd.nr_pages].offset = poff;
|
|
|
|
this_end = cur_pos + this_len;
|
|
if (this_end >= nonpad_end) {
|
|
this_len = nonpad_end - cur_pos;
|
|
private = this_len + padding;
|
|
}
|
|
spd.partial[spd.nr_pages].len = this_len;
|
|
spd.partial[spd.nr_pages].private = private;
|
|
|
|
len -= this_len;
|
|
total_len += this_len;
|
|
poff = 0;
|
|
pidx = (pidx + 1) % subbuf_pages;
|
|
|
|
if (this_end >= nonpad_end) {
|
|
spd.nr_pages++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!spd.nr_pages)
|
|
return 0;
|
|
|
|
ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
|
|
if (ret < 0 || ret < total_len)
|
|
return ret;
|
|
|
|
if (read_start + ret == nonpad_end)
|
|
ret += padding;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t relay_file_splice_read(struct file *in,
|
|
loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len,
|
|
unsigned int flags)
|
|
{
|
|
ssize_t spliced;
|
|
int ret;
|
|
int nonpad_ret = 0;
|
|
|
|
ret = 0;
|
|
spliced = 0;
|
|
|
|
while (len && !spliced) {
|
|
ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
|
|
if (ret < 0)
|
|
break;
|
|
else if (!ret) {
|
|
if (spliced)
|
|
break;
|
|
if (flags & SPLICE_F_NONBLOCK) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
*ppos += ret;
|
|
if (ret > len)
|
|
len = 0;
|
|
else
|
|
len -= ret;
|
|
spliced += nonpad_ret;
|
|
nonpad_ret = 0;
|
|
}
|
|
|
|
if (spliced)
|
|
return spliced;
|
|
|
|
return ret;
|
|
}
|
|
|
|
const struct file_operations relay_file_operations = {
|
|
.open = relay_file_open,
|
|
.poll = relay_file_poll,
|
|
.mmap = relay_file_mmap,
|
|
.read = relay_file_read,
|
|
.llseek = no_llseek,
|
|
.release = relay_file_release,
|
|
.splice_read = relay_file_splice_read,
|
|
};
|
|
EXPORT_SYMBOL_GPL(relay_file_operations);
|
|
|
|
static __init int relay_init(void)
|
|
{
|
|
|
|
hotcpu_notifier(relay_hotcpu_callback, 0);
|
|
return 0;
|
|
}
|
|
|
|
early_initcall(relay_init);
|