mirror of
https://github.com/adulau/aha.git
synced 2025-01-03 22:53:18 +00:00
3c929c6f5a
Cavium OCTEON processor support was recently merged, so now we have this CF driver for your consideration. Most OCTEON variants have *no* DMA or interrupt support on the CF interface so for these, only PIO is supported. Although if DMA is available, we do take advantage of it. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
965 lines
25 KiB
C
965 lines
25 KiB
C
/*
|
|
* Driver for the Octeon bootbus compact flash.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2005 - 2009 Cavium Networks
|
|
* Copyright (C) 2008 Wind River Systems
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/workqueue.h>
|
|
#include <scsi/scsi_host.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
|
|
/*
|
|
* The Octeon bootbus compact flash interface is connected in at least
|
|
* 3 different configurations on various evaluation boards:
|
|
*
|
|
* -- 8 bits no irq, no DMA
|
|
* -- 16 bits no irq, no DMA
|
|
* -- 16 bits True IDE mode with DMA, but no irq.
|
|
*
|
|
* In the last case the DMA engine can generate an interrupt when the
|
|
* transfer is complete. For the first two cases only PIO is supported.
|
|
*
|
|
*/
|
|
|
|
#define DRV_NAME "pata_octeon_cf"
|
|
#define DRV_VERSION "2.1"
|
|
|
|
|
|
struct octeon_cf_port {
|
|
struct workqueue_struct *wq;
|
|
struct delayed_work delayed_finish;
|
|
struct ata_port *ap;
|
|
int dma_finished;
|
|
};
|
|
|
|
static struct scsi_host_template octeon_cf_sht = {
|
|
ATA_PIO_SHT(DRV_NAME),
|
|
};
|
|
|
|
/**
|
|
* Convert nanosecond based time to setting used in the
|
|
* boot bus timing register, based on timing multiple
|
|
*/
|
|
static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
|
|
{
|
|
unsigned int val;
|
|
|
|
/*
|
|
* Compute # of eclock periods to get desired duration in
|
|
* nanoseconds.
|
|
*/
|
|
val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
|
|
1000 * tim_mult);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void octeon_cf_set_boot_reg_cfg(int cs)
|
|
{
|
|
union cvmx_mio_boot_reg_cfgx reg_cfg;
|
|
reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
|
|
reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
|
|
reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
|
|
reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
|
|
reg_cfg.s.sam = 0; /* Don't combine write and output enable */
|
|
reg_cfg.s.we_ext = 0; /* No write enable extension */
|
|
reg_cfg.s.oe_ext = 0; /* No read enable extension */
|
|
reg_cfg.s.en = 1; /* Enable this region */
|
|
reg_cfg.s.orbit = 0; /* Don't combine with previous region */
|
|
reg_cfg.s.ale = 0; /* Don't do address multiplexing */
|
|
cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
|
|
}
|
|
|
|
/**
|
|
* Called after libata determines the needed PIO mode. This
|
|
* function programs the Octeon bootbus regions to support the
|
|
* timing requirements of the PIO mode.
|
|
*
|
|
* @ap: ATA port information
|
|
* @dev: ATA device
|
|
*/
|
|
static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
struct octeon_cf_data *ocd = ap->dev->platform_data;
|
|
union cvmx_mio_boot_reg_timx reg_tim;
|
|
int cs = ocd->base_region;
|
|
int T;
|
|
struct ata_timing timing;
|
|
|
|
int use_iordy;
|
|
int trh;
|
|
int pause;
|
|
/* These names are timing parameters from the ATA spec */
|
|
int t1;
|
|
int t2;
|
|
int t2i;
|
|
|
|
T = (int)(2000000000000LL / octeon_get_clock_rate());
|
|
|
|
if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
|
|
BUG();
|
|
|
|
t1 = timing.setup;
|
|
if (t1)
|
|
t1--;
|
|
t2 = timing.active;
|
|
if (t2)
|
|
t2--;
|
|
t2i = timing.act8b;
|
|
if (t2i)
|
|
t2i--;
|
|
|
|
trh = ns_to_tim_reg(2, 20);
|
|
if (trh)
|
|
trh--;
|
|
|
|
pause = timing.cycle - timing.active - timing.setup - trh;
|
|
if (pause)
|
|
pause--;
|
|
|
|
octeon_cf_set_boot_reg_cfg(cs);
|
|
if (ocd->dma_engine >= 0)
|
|
/* True IDE mode, program both chip selects. */
|
|
octeon_cf_set_boot_reg_cfg(cs + 1);
|
|
|
|
|
|
use_iordy = ata_pio_need_iordy(dev);
|
|
|
|
reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
|
|
/* Disable page mode */
|
|
reg_tim.s.pagem = 0;
|
|
/* Enable dynamic timing */
|
|
reg_tim.s.waitm = use_iordy;
|
|
/* Pages are disabled */
|
|
reg_tim.s.pages = 0;
|
|
/* We don't use multiplexed address mode */
|
|
reg_tim.s.ale = 0;
|
|
/* Not used */
|
|
reg_tim.s.page = 0;
|
|
/* Time after IORDY to coninue to assert the data */
|
|
reg_tim.s.wait = 0;
|
|
/* Time to wait to complete the cycle. */
|
|
reg_tim.s.pause = pause;
|
|
/* How long to hold after a write to de-assert CE. */
|
|
reg_tim.s.wr_hld = trh;
|
|
/* How long to wait after a read to de-assert CE. */
|
|
reg_tim.s.rd_hld = trh;
|
|
/* How long write enable is asserted */
|
|
reg_tim.s.we = t2;
|
|
/* How long read enable is asserted */
|
|
reg_tim.s.oe = t2;
|
|
/* Time after CE that read/write starts */
|
|
reg_tim.s.ce = ns_to_tim_reg(2, 5);
|
|
/* Time before CE that address is valid */
|
|
reg_tim.s.adr = 0;
|
|
|
|
/* Program the bootbus region timing for the data port chip select. */
|
|
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
|
|
if (ocd->dma_engine >= 0)
|
|
/* True IDE mode, program both chip selects. */
|
|
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
|
|
}
|
|
|
|
static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
|
|
union cvmx_mio_boot_dma_timx dma_tim;
|
|
unsigned int oe_a;
|
|
unsigned int oe_n;
|
|
unsigned int dma_ackh;
|
|
unsigned int dma_arq;
|
|
unsigned int pause;
|
|
unsigned int T0, Tkr, Td;
|
|
unsigned int tim_mult;
|
|
|
|
const struct ata_timing *timing;
|
|
|
|
timing = ata_timing_find_mode(dev->dma_mode);
|
|
T0 = timing->cycle;
|
|
Td = timing->active;
|
|
Tkr = timing->recover;
|
|
dma_ackh = timing->dmack_hold;
|
|
|
|
dma_tim.u64 = 0;
|
|
/* dma_tim.s.tim_mult = 0 --> 4x */
|
|
tim_mult = 4;
|
|
|
|
/* not spec'ed, value in eclocks, not affected by tim_mult */
|
|
dma_arq = 8;
|
|
pause = 25 - dma_arq * 1000 /
|
|
(octeon_get_clock_rate() / 1000000); /* Tz */
|
|
|
|
oe_a = Td;
|
|
/* Tkr from cf spec, lengthened to meet T0 */
|
|
oe_n = max(T0 - oe_a, Tkr);
|
|
|
|
dma_tim.s.dmack_pi = 1;
|
|
|
|
dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
|
|
dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
|
|
|
|
/*
|
|
* This is tI, C.F. spec. says 0, but Sony CF card requires
|
|
* more, we use 20 nS.
|
|
*/
|
|
dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);;
|
|
dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
|
|
|
|
dma_tim.s.dmarq = dma_arq;
|
|
dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
|
|
|
|
dma_tim.s.rd_dly = 0; /* Sample right on edge */
|
|
|
|
/* writes only */
|
|
dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
|
|
dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
|
|
|
|
pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
|
|
ns_to_tim_reg(tim_mult, 60));
|
|
pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
|
|
"%d, dmarq: %d, pause: %d\n",
|
|
dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
|
|
dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
|
|
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
|
|
dma_tim.u64);
|
|
|
|
}
|
|
|
|
/**
|
|
* Handle an 8 bit I/O request.
|
|
*
|
|
* @dev: Device to access
|
|
* @buffer: Data buffer
|
|
* @buflen: Length of the buffer.
|
|
* @rw: True to write.
|
|
*/
|
|
static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
|
|
unsigned char *buffer,
|
|
unsigned int buflen,
|
|
int rw)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
void __iomem *data_addr = ap->ioaddr.data_addr;
|
|
unsigned long words;
|
|
int count;
|
|
|
|
words = buflen;
|
|
if (rw) {
|
|
count = 16;
|
|
while (words--) {
|
|
iowrite8(*buffer, data_addr);
|
|
buffer++;
|
|
/*
|
|
* Every 16 writes do a read so the bootbus
|
|
* FIFO doesn't fill up.
|
|
*/
|
|
if (--count == 0) {
|
|
ioread8(ap->ioaddr.altstatus_addr);
|
|
count = 16;
|
|
}
|
|
}
|
|
} else {
|
|
ioread8_rep(data_addr, buffer, words);
|
|
}
|
|
return buflen;
|
|
}
|
|
|
|
/**
|
|
* Handle a 16 bit I/O request.
|
|
*
|
|
* @dev: Device to access
|
|
* @buffer: Data buffer
|
|
* @buflen: Length of the buffer.
|
|
* @rw: True to write.
|
|
*/
|
|
static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
|
|
unsigned char *buffer,
|
|
unsigned int buflen,
|
|
int rw)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
void __iomem *data_addr = ap->ioaddr.data_addr;
|
|
unsigned long words;
|
|
int count;
|
|
|
|
words = buflen / 2;
|
|
if (rw) {
|
|
count = 16;
|
|
while (words--) {
|
|
iowrite16(*(uint16_t *)buffer, data_addr);
|
|
buffer += sizeof(uint16_t);
|
|
/*
|
|
* Every 16 writes do a read so the bootbus
|
|
* FIFO doesn't fill up.
|
|
*/
|
|
if (--count == 0) {
|
|
ioread8(ap->ioaddr.altstatus_addr);
|
|
count = 16;
|
|
}
|
|
}
|
|
} else {
|
|
while (words--) {
|
|
*(uint16_t *)buffer = ioread16(data_addr);
|
|
buffer += sizeof(uint16_t);
|
|
}
|
|
}
|
|
/* Transfer trailing 1 byte, if any. */
|
|
if (unlikely(buflen & 0x01)) {
|
|
__le16 align_buf[1] = { 0 };
|
|
|
|
if (rw == READ) {
|
|
align_buf[0] = cpu_to_le16(ioread16(data_addr));
|
|
memcpy(buffer, align_buf, 1);
|
|
} else {
|
|
memcpy(align_buf, buffer, 1);
|
|
iowrite16(le16_to_cpu(align_buf[0]), data_addr);
|
|
}
|
|
words++;
|
|
}
|
|
return buflen;
|
|
}
|
|
|
|
/**
|
|
* Read the taskfile for 16bit non-True IDE only.
|
|
*/
|
|
static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
|
|
{
|
|
u16 blob;
|
|
/* The base of the registers is at ioaddr.data_addr. */
|
|
void __iomem *base = ap->ioaddr.data_addr;
|
|
|
|
blob = __raw_readw(base + 0xc);
|
|
tf->feature = blob >> 8;
|
|
|
|
blob = __raw_readw(base + 2);
|
|
tf->nsect = blob & 0xff;
|
|
tf->lbal = blob >> 8;
|
|
|
|
blob = __raw_readw(base + 4);
|
|
tf->lbam = blob & 0xff;
|
|
tf->lbah = blob >> 8;
|
|
|
|
blob = __raw_readw(base + 6);
|
|
tf->device = blob & 0xff;
|
|
tf->command = blob >> 8;
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
if (likely(ap->ioaddr.ctl_addr)) {
|
|
iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
|
|
|
|
blob = __raw_readw(base + 0xc);
|
|
tf->hob_feature = blob >> 8;
|
|
|
|
blob = __raw_readw(base + 2);
|
|
tf->hob_nsect = blob & 0xff;
|
|
tf->hob_lbal = blob >> 8;
|
|
|
|
blob = __raw_readw(base + 4);
|
|
tf->hob_lbam = blob & 0xff;
|
|
tf->hob_lbah = blob >> 8;
|
|
|
|
iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static u8 octeon_cf_check_status16(struct ata_port *ap)
|
|
{
|
|
u16 blob;
|
|
void __iomem *base = ap->ioaddr.data_addr;
|
|
|
|
blob = __raw_readw(base + 6);
|
|
return blob >> 8;
|
|
}
|
|
|
|
static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
void __iomem *base = ap->ioaddr.data_addr;
|
|
int rc;
|
|
u8 err;
|
|
|
|
DPRINTK("about to softreset\n");
|
|
__raw_writew(ap->ctl, base + 0xe);
|
|
udelay(20);
|
|
__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
|
|
udelay(20);
|
|
__raw_writew(ap->ctl, base + 0xe);
|
|
|
|
rc = ata_sff_wait_after_reset(link, 1, deadline);
|
|
if (rc) {
|
|
ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* determine by signature whether we have ATA or ATAPI devices */
|
|
classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
|
|
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Load the taskfile for 16bit non-True IDE only. The device_addr is
|
|
* not loaded, we do this as part of octeon_cf_exec_command16.
|
|
*/
|
|
static void octeon_cf_tf_load16(struct ata_port *ap,
|
|
const struct ata_taskfile *tf)
|
|
{
|
|
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
|
|
/* The base of the registers is at ioaddr.data_addr. */
|
|
void __iomem *base = ap->ioaddr.data_addr;
|
|
|
|
if (tf->ctl != ap->last_ctl) {
|
|
iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
ata_wait_idle(ap);
|
|
}
|
|
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
|
|
__raw_writew(tf->hob_feature << 8, base + 0xc);
|
|
__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
|
|
__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
|
|
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
|
|
tf->hob_feature,
|
|
tf->hob_nsect,
|
|
tf->hob_lbal,
|
|
tf->hob_lbam,
|
|
tf->hob_lbah);
|
|
}
|
|
if (is_addr) {
|
|
__raw_writew(tf->feature << 8, base + 0xc);
|
|
__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
|
|
__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
|
|
VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
|
|
tf->feature,
|
|
tf->nsect,
|
|
tf->lbal,
|
|
tf->lbam,
|
|
tf->lbah);
|
|
}
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
|
|
static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
|
|
{
|
|
/* There is only one device, do nothing. */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Issue ATA command to host controller. The device_addr is also sent
|
|
* as it must be written in a combined write with the command.
|
|
*/
|
|
static void octeon_cf_exec_command16(struct ata_port *ap,
|
|
const struct ata_taskfile *tf)
|
|
{
|
|
/* The base of the registers is at ioaddr.data_addr. */
|
|
void __iomem *base = ap->ioaddr.data_addr;
|
|
u16 blob;
|
|
|
|
if (tf->flags & ATA_TFLAG_DEVICE) {
|
|
VPRINTK("device 0x%X\n", tf->device);
|
|
blob = tf->device;
|
|
} else {
|
|
blob = 0;
|
|
}
|
|
|
|
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
|
|
blob |= (tf->command << 8);
|
|
__raw_writew(blob, base + 6);
|
|
|
|
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
static u8 octeon_cf_irq_on(struct ata_port *ap)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void octeon_cf_irq_clear(struct ata_port *ap)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct octeon_cf_port *cf_port;
|
|
|
|
cf_port = (struct octeon_cf_port *)ap->private_data;
|
|
DPRINTK("ENTER\n");
|
|
/* issue r/w command */
|
|
qc->cursg = qc->sg;
|
|
cf_port->dma_finished = 0;
|
|
ap->ops->sff_exec_command(ap, &qc->tf);
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* Start a DMA transfer that was already setup
|
|
*
|
|
* @qc: Information about the DMA
|
|
*/
|
|
static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
|
|
{
|
|
struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
|
|
union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
|
|
union cvmx_mio_boot_dma_intx mio_boot_dma_int;
|
|
struct scatterlist *sg;
|
|
|
|
VPRINTK("%d scatterlists\n", qc->n_elem);
|
|
|
|
/* Get the scatter list entry we need to DMA into */
|
|
sg = qc->cursg;
|
|
BUG_ON(!sg);
|
|
|
|
/*
|
|
* Clear the DMA complete status.
|
|
*/
|
|
mio_boot_dma_int.u64 = 0;
|
|
mio_boot_dma_int.s.done = 1;
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
|
|
mio_boot_dma_int.u64);
|
|
|
|
/* Enable the interrupt. */
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
|
|
mio_boot_dma_int.u64);
|
|
|
|
/* Set the direction of the DMA */
|
|
mio_boot_dma_cfg.u64 = 0;
|
|
mio_boot_dma_cfg.s.en = 1;
|
|
mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
|
|
|
|
/*
|
|
* Don't stop the DMA if the device deasserts DMARQ. Many
|
|
* compact flashes deassert DMARQ for a short time between
|
|
* sectors. Instead of stopping and restarting the DMA, we'll
|
|
* let the hardware do it. If the DMA is really stopped early
|
|
* due to an error condition, a later timeout will force us to
|
|
* stop.
|
|
*/
|
|
mio_boot_dma_cfg.s.clr = 0;
|
|
|
|
/* Size is specified in 16bit words and minus one notation */
|
|
mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
|
|
|
|
/* We need to swap the high and low bytes of every 16 bits */
|
|
mio_boot_dma_cfg.s.swap8 = 1;
|
|
|
|
mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
|
|
|
|
VPRINTK("%s %d bytes address=%p\n",
|
|
(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
|
|
(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
|
|
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
|
|
mio_boot_dma_cfg.u64);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
*/
|
|
static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
|
|
struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
struct octeon_cf_data *ocd = ap->dev->platform_data;
|
|
union cvmx_mio_boot_dma_cfgx dma_cfg;
|
|
union cvmx_mio_boot_dma_intx dma_int;
|
|
struct octeon_cf_port *cf_port;
|
|
u8 status;
|
|
|
|
VPRINTK("ata%u: protocol %d task_state %d\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state);
|
|
|
|
|
|
if (ap->hsm_task_state != HSM_ST_LAST)
|
|
return 0;
|
|
|
|
cf_port = (struct octeon_cf_port *)ap->private_data;
|
|
|
|
dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
|
|
if (dma_cfg.s.size != 0xfffff) {
|
|
/* Error, the transfer was not complete. */
|
|
qc->err_mask |= AC_ERR_HOST_BUS;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
|
|
/* Stop and clear the dma engine. */
|
|
dma_cfg.u64 = 0;
|
|
dma_cfg.s.size = -1;
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
|
|
|
|
/* Disable the interrupt. */
|
|
dma_int.u64 = 0;
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
|
|
|
|
/* Clear the DMA complete status */
|
|
dma_int.s.done = 1;
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
|
|
|
|
status = ap->ops->sff_check_status(ap);
|
|
|
|
ata_sff_hsm_move(ap, qc, status, 0);
|
|
|
|
if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
|
|
ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check if any queued commands have more DMAs, if so start the next
|
|
* transfer, else do end of transfer handling.
|
|
*/
|
|
static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct ata_host *host = dev_instance;
|
|
struct octeon_cf_port *cf_port;
|
|
int i;
|
|
unsigned int handled = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
DPRINTK("ENTER\n");
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
u8 status;
|
|
struct ata_port *ap;
|
|
struct ata_queued_cmd *qc;
|
|
union cvmx_mio_boot_dma_intx dma_int;
|
|
union cvmx_mio_boot_dma_cfgx dma_cfg;
|
|
struct octeon_cf_data *ocd;
|
|
|
|
ap = host->ports[i];
|
|
ocd = ap->dev->platform_data;
|
|
if (!ap || (ap->flags & ATA_FLAG_DISABLED))
|
|
continue;
|
|
|
|
ocd = ap->dev->platform_data;
|
|
cf_port = (struct octeon_cf_port *)ap->private_data;
|
|
dma_int.u64 =
|
|
cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
|
|
dma_cfg.u64 =
|
|
cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
|
|
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
|
|
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
|
|
(qc->flags & ATA_QCFLAG_ACTIVE)) {
|
|
if (dma_int.s.done && !dma_cfg.s.en) {
|
|
if (!sg_is_last(qc->cursg)) {
|
|
qc->cursg = sg_next(qc->cursg);
|
|
handled = 1;
|
|
octeon_cf_dma_start(qc);
|
|
continue;
|
|
} else {
|
|
cf_port->dma_finished = 1;
|
|
}
|
|
}
|
|
if (!cf_port->dma_finished)
|
|
continue;
|
|
status = ioread8(ap->ioaddr.altstatus_addr);
|
|
if (status & (ATA_BUSY | ATA_DRQ)) {
|
|
/*
|
|
* We are busy, try to handle it
|
|
* later. This is the DMA finished
|
|
* interrupt, and it could take a
|
|
* little while for the card to be
|
|
* ready for more commands.
|
|
*/
|
|
/* Clear DMA irq. */
|
|
dma_int.u64 = 0;
|
|
dma_int.s.done = 1;
|
|
cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
|
|
dma_int.u64);
|
|
|
|
queue_delayed_work(cf_port->wq,
|
|
&cf_port->delayed_finish, 1);
|
|
handled = 1;
|
|
} else {
|
|
handled |= octeon_cf_dma_finished(ap, qc);
|
|
}
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
DPRINTK("EXIT\n");
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void octeon_cf_delayed_finish(struct work_struct *work)
|
|
{
|
|
struct octeon_cf_port *cf_port = container_of(work,
|
|
struct octeon_cf_port,
|
|
delayed_finish.work);
|
|
struct ata_port *ap = cf_port->ap;
|
|
struct ata_host *host = ap->host;
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
u8 status;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
/*
|
|
* If the port is not waiting for completion, it must have
|
|
* handled it previously. The hsm_task_state is
|
|
* protected by host->lock.
|
|
*/
|
|
if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
|
|
goto out;
|
|
|
|
status = ioread8(ap->ioaddr.altstatus_addr);
|
|
if (status & (ATA_BUSY | ATA_DRQ)) {
|
|
/* Still busy, try again. */
|
|
queue_delayed_work(cf_port->wq,
|
|
&cf_port->delayed_finish, 1);
|
|
goto out;
|
|
}
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
|
|
(qc->flags & ATA_QCFLAG_ACTIVE))
|
|
octeon_cf_dma_finished(ap, qc);
|
|
out:
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static void octeon_cf_dev_config(struct ata_device *dev)
|
|
{
|
|
/*
|
|
* A maximum of 2^20 - 1 16 bit transfers are possible with
|
|
* the bootbus DMA. So we need to throttle max_sectors to
|
|
* (2^12 - 1 == 4095) to assure that this can never happen.
|
|
*/
|
|
dev->max_sectors = min(dev->max_sectors, 4095U);
|
|
}
|
|
|
|
/*
|
|
* Trap if driver tries to do standard bmdma commands. They are not
|
|
* supported.
|
|
*/
|
|
static void unreachable_qc(struct ata_queued_cmd *qc)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static u8 unreachable_port(struct ata_port *ap)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* We don't do ATAPI DMA so return 0.
|
|
*/
|
|
static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_DMA:
|
|
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
|
|
octeon_cf_dma_setup(qc); /* set up dma */
|
|
octeon_cf_dma_start(qc); /* initiate dma */
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
|
|
case ATAPI_PROT_DMA:
|
|
dev_err(ap->dev, "Error, ATAPI not supported\n");
|
|
BUG();
|
|
|
|
default:
|
|
return ata_sff_qc_issue(qc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct ata_port_operations octeon_cf_ops = {
|
|
.inherits = &ata_sff_port_ops,
|
|
.check_atapi_dma = octeon_cf_check_atapi_dma,
|
|
.qc_prep = ata_noop_qc_prep,
|
|
.qc_issue = octeon_cf_qc_issue,
|
|
.sff_dev_select = octeon_cf_dev_select,
|
|
.sff_irq_on = octeon_cf_irq_on,
|
|
.sff_irq_clear = octeon_cf_irq_clear,
|
|
.bmdma_setup = unreachable_qc,
|
|
.bmdma_start = unreachable_qc,
|
|
.bmdma_stop = unreachable_qc,
|
|
.bmdma_status = unreachable_port,
|
|
.cable_detect = ata_cable_40wire,
|
|
.set_piomode = octeon_cf_set_piomode,
|
|
.set_dmamode = octeon_cf_set_dmamode,
|
|
.dev_config = octeon_cf_dev_config,
|
|
};
|
|
|
|
static int __devinit octeon_cf_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res_cs0, *res_cs1;
|
|
|
|
void __iomem *cs0;
|
|
void __iomem *cs1 = NULL;
|
|
struct ata_host *host;
|
|
struct ata_port *ap;
|
|
struct octeon_cf_data *ocd;
|
|
int irq = 0;
|
|
irq_handler_t irq_handler = NULL;
|
|
void __iomem *base;
|
|
struct octeon_cf_port *cf_port;
|
|
|
|
res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
|
|
if (!res_cs0)
|
|
return -EINVAL;
|
|
|
|
ocd = pdev->dev.platform_data;
|
|
|
|
cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
|
|
res_cs0->end - res_cs0->start + 1);
|
|
|
|
if (!cs0)
|
|
return -ENOMEM;
|
|
|
|
/* Determine from availability of DMA if True IDE mode or not */
|
|
if (ocd->dma_engine >= 0) {
|
|
res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
if (!res_cs1)
|
|
return -EINVAL;
|
|
|
|
cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
|
|
res_cs0->end - res_cs1->start + 1);
|
|
|
|
if (!cs1)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
|
|
if (!cf_port)
|
|
return -ENOMEM;
|
|
|
|
/* allocate host */
|
|
host = ata_host_alloc(&pdev->dev, 1);
|
|
if (!host)
|
|
goto free_cf_port;
|
|
|
|
ap = host->ports[0];
|
|
ap->private_data = cf_port;
|
|
cf_port->ap = ap;
|
|
ap->ops = &octeon_cf_ops;
|
|
ap->pio_mask = 0x7f; /* Support PIO 0-6 */
|
|
ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
|
|
| ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
|
|
|
|
base = cs0 + ocd->base_region_bias;
|
|
if (!ocd->is16bit) {
|
|
ap->ioaddr.cmd_addr = base;
|
|
ata_sff_std_ports(&ap->ioaddr);
|
|
|
|
ap->ioaddr.altstatus_addr = base + 0xe;
|
|
ap->ioaddr.ctl_addr = base + 0xe;
|
|
octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
|
|
} else if (cs1) {
|
|
/* Presence of cs1 indicates True IDE mode. */
|
|
ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
|
|
ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
|
|
ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
|
|
ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
|
|
ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
|
|
ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
|
|
ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
|
|
ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
|
|
ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
|
|
ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
|
|
ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
|
|
ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
|
|
ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
|
|
octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
|
|
|
|
ap->mwdma_mask = 0x1f; /* Support MWDMA 0-4 */
|
|
irq = platform_get_irq(pdev, 0);
|
|
irq_handler = octeon_cf_interrupt;
|
|
|
|
/* True IDE mode needs delayed work to poll for not-busy. */
|
|
cf_port->wq = create_singlethread_workqueue(DRV_NAME);
|
|
if (!cf_port->wq)
|
|
goto free_cf_port;
|
|
INIT_DELAYED_WORK(&cf_port->delayed_finish,
|
|
octeon_cf_delayed_finish);
|
|
|
|
} else {
|
|
/* 16 bit but not True IDE */
|
|
octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
|
|
octeon_cf_ops.softreset = octeon_cf_softreset16;
|
|
octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
|
|
octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
|
|
octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
|
|
octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
|
|
|
|
ap->ioaddr.data_addr = base + ATA_REG_DATA;
|
|
ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
|
|
ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
|
|
ap->ioaddr.ctl_addr = base + 0xe;
|
|
ap->ioaddr.altstatus_addr = base + 0xe;
|
|
}
|
|
|
|
ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
|
|
|
|
|
|
dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
|
|
(ocd->is16bit) ? 16 : 8,
|
|
(cs1) ? ", True IDE" : "");
|
|
|
|
|
|
return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
|
|
|
|
free_cf_port:
|
|
kfree(cf_port);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static struct platform_driver octeon_cf_driver = {
|
|
.probe = octeon_cf_probe,
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init octeon_cf_init(void)
|
|
{
|
|
return platform_driver_register(&octeon_cf_driver);
|
|
}
|
|
|
|
|
|
MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
|
|
MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_ALIAS("platform:" DRV_NAME);
|
|
|
|
module_init(octeon_cf_init);
|