mirror of
https://github.com/adulau/aha.git
synced 2024-12-30 20:56:23 +00:00
71b7d0d90d
This patch allows i.MX27 to support 2KiB pagesize NAND flash. We are using a 1.8V NAND flash which datasheet (unfortunately only available under NDA) says : Page size: x8: 2,112 bytes (2,048 + 64 bytes). Without this patch, all sectors are marked as bad eraseblock. Signed-off-by: Eric Benard <ebenard@eukrea.com> Acked-by : Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
1137 lines
27 KiB
C
1137 lines
27 KiB
C
/*
|
|
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
|
|
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/mach/flash.h>
|
|
#include <mach/mxc_nand.h>
|
|
|
|
#define DRIVER_NAME "mxc_nand"
|
|
|
|
/* Addresses for NFC registers */
|
|
#define NFC_BUF_SIZE 0xE00
|
|
#define NFC_BUF_ADDR 0xE04
|
|
#define NFC_FLASH_ADDR 0xE06
|
|
#define NFC_FLASH_CMD 0xE08
|
|
#define NFC_CONFIG 0xE0A
|
|
#define NFC_ECC_STATUS_RESULT 0xE0C
|
|
#define NFC_RSLTMAIN_AREA 0xE0E
|
|
#define NFC_RSLTSPARE_AREA 0xE10
|
|
#define NFC_WRPROT 0xE12
|
|
#define NFC_UNLOCKSTART_BLKADDR 0xE14
|
|
#define NFC_UNLOCKEND_BLKADDR 0xE16
|
|
#define NFC_NF_WRPRST 0xE18
|
|
#define NFC_CONFIG1 0xE1A
|
|
#define NFC_CONFIG2 0xE1C
|
|
|
|
/* Addresses for NFC RAM BUFFER Main area 0 */
|
|
#define MAIN_AREA0 0x000
|
|
#define MAIN_AREA1 0x200
|
|
#define MAIN_AREA2 0x400
|
|
#define MAIN_AREA3 0x600
|
|
|
|
/* Addresses for NFC SPARE BUFFER Spare area 0 */
|
|
#define SPARE_AREA0 0x800
|
|
#define SPARE_AREA1 0x810
|
|
#define SPARE_AREA2 0x820
|
|
#define SPARE_AREA3 0x830
|
|
|
|
/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
|
|
* for Command operation */
|
|
#define NFC_CMD 0x1
|
|
|
|
/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
|
|
* for Address operation */
|
|
#define NFC_ADDR 0x2
|
|
|
|
/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
|
|
* for Input operation */
|
|
#define NFC_INPUT 0x4
|
|
|
|
/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
|
|
* for Data Output operation */
|
|
#define NFC_OUTPUT 0x8
|
|
|
|
/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
|
|
* for Read ID operation */
|
|
#define NFC_ID 0x10
|
|
|
|
/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
|
|
* for Read Status operation */
|
|
#define NFC_STATUS 0x20
|
|
|
|
/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
|
|
* Status operation */
|
|
#define NFC_INT 0x8000
|
|
|
|
#define NFC_SP_EN (1 << 2)
|
|
#define NFC_ECC_EN (1 << 3)
|
|
#define NFC_INT_MSK (1 << 4)
|
|
#define NFC_BIG (1 << 5)
|
|
#define NFC_RST (1 << 6)
|
|
#define NFC_CE (1 << 7)
|
|
#define NFC_ONE_CYCLE (1 << 8)
|
|
|
|
struct mxc_nand_host {
|
|
struct mtd_info mtd;
|
|
struct nand_chip nand;
|
|
struct mtd_partition *parts;
|
|
struct device *dev;
|
|
|
|
void __iomem *regs;
|
|
int spare_only;
|
|
int status_request;
|
|
int pagesize_2k;
|
|
uint16_t col_addr;
|
|
struct clk *clk;
|
|
int clk_act;
|
|
int irq;
|
|
|
|
wait_queue_head_t irq_waitq;
|
|
};
|
|
|
|
/* Define delays in microsec for NAND device operations */
|
|
#define TROP_US_DELAY 2000
|
|
/* Macros to get byte and bit positions of ECC */
|
|
#define COLPOS(x) ((x) >> 3)
|
|
#define BITPOS(x) ((x) & 0xf)
|
|
|
|
/* Define single bit Error positions in Main & Spare area */
|
|
#define MAIN_SINGLEBIT_ERROR 0x4
|
|
#define SPARE_SINGLEBIT_ERROR 0x1
|
|
|
|
/* OOB placement block for use with hardware ecc generation */
|
|
static struct nand_ecclayout nand_hw_eccoob_8 = {
|
|
.eccbytes = 5,
|
|
.eccpos = {6, 7, 8, 9, 10},
|
|
.oobfree = {{0, 5}, {11, 5}, }
|
|
};
|
|
|
|
static struct nand_ecclayout nand_hw_eccoob_16 = {
|
|
.eccbytes = 5,
|
|
.eccpos = {6, 7, 8, 9, 10},
|
|
.oobfree = {{0, 5}, {11, 5}, }
|
|
};
|
|
|
|
static struct nand_ecclayout nand_hw_eccoob_64 = {
|
|
.eccbytes = 20,
|
|
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
|
|
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
|
|
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
|
|
};
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
|
|
#endif
|
|
|
|
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
|
|
{
|
|
struct mxc_nand_host *host = dev_id;
|
|
|
|
uint16_t tmp;
|
|
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp |= NFC_INT_MSK; /* Disable interrupt */
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
|
|
wake_up(&host->irq_waitq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* This function polls the NANDFC to wait for the basic operation to
|
|
* complete by checking the INT bit of config2 register.
|
|
*/
|
|
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
|
|
uint16_t param, int useirq)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (useirq) {
|
|
if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
|
|
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp &= ~NFC_INT_MSK; /* Enable interrupt */
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
|
|
wait_event(host->irq_waitq,
|
|
readw(host->regs + NFC_CONFIG2) & NFC_INT);
|
|
|
|
tmp = readw(host->regs + NFC_CONFIG2);
|
|
tmp &= ~NFC_INT;
|
|
writew(tmp, host->regs + NFC_CONFIG2);
|
|
}
|
|
} else {
|
|
while (max_retries-- > 0) {
|
|
if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
|
|
tmp = readw(host->regs + NFC_CONFIG2);
|
|
tmp &= ~NFC_INT;
|
|
writew(tmp, host->regs + NFC_CONFIG2);
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (max_retries < 0)
|
|
DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
|
|
__func__, param);
|
|
}
|
|
}
|
|
|
|
/* This function issues the specified command to the NAND device and
|
|
* waits for completion. */
|
|
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
|
|
|
|
writew(cmd, host->regs + NFC_FLASH_CMD);
|
|
writew(NFC_CMD, host->regs + NFC_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, cmd, useirq);
|
|
}
|
|
|
|
/* This function sends an address (or partial address) to the
|
|
* NAND device. The address is used to select the source/destination for
|
|
* a NAND command. */
|
|
static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
|
|
|
|
writew(addr, host->regs + NFC_FLASH_ADDR);
|
|
writew(NFC_ADDR, host->regs + NFC_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, addr, islast);
|
|
}
|
|
|
|
/* This function requests the NANDFC to initate the transfer
|
|
* of data currently in the NANDFC RAM buffer to the NAND device. */
|
|
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
|
|
int spare_only)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
|
|
|
|
/* NANDFC buffer 0 is used for page read/write */
|
|
writew(buf_id, host->regs + NFC_BUF_ADDR);
|
|
|
|
/* Configure spare or page+spare access */
|
|
if (!host->pagesize_2k) {
|
|
uint16_t config1 = readw(host->regs + NFC_CONFIG1);
|
|
if (spare_only)
|
|
config1 |= NFC_SP_EN;
|
|
else
|
|
config1 &= ~(NFC_SP_EN);
|
|
writew(config1, host->regs + NFC_CONFIG1);
|
|
}
|
|
|
|
writew(NFC_INPUT, host->regs + NFC_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, spare_only, true);
|
|
}
|
|
|
|
/* Requests NANDFC to initated the transfer of data from the
|
|
* NAND device into in the NANDFC ram buffer. */
|
|
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
|
|
int spare_only)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
|
|
|
|
/* NANDFC buffer 0 is used for page read/write */
|
|
writew(buf_id, host->regs + NFC_BUF_ADDR);
|
|
|
|
/* Configure spare or page+spare access */
|
|
if (!host->pagesize_2k) {
|
|
uint32_t config1 = readw(host->regs + NFC_CONFIG1);
|
|
if (spare_only)
|
|
config1 |= NFC_SP_EN;
|
|
else
|
|
config1 &= ~NFC_SP_EN;
|
|
writew(config1, host->regs + NFC_CONFIG1);
|
|
}
|
|
|
|
writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, spare_only, true);
|
|
}
|
|
|
|
/* Request the NANDFC to perform a read of the NAND device ID. */
|
|
static void send_read_id(struct mxc_nand_host *host)
|
|
{
|
|
struct nand_chip *this = &host->nand;
|
|
uint16_t tmp;
|
|
|
|
/* NANDFC buffer 0 is used for device ID output */
|
|
writew(0x0, host->regs + NFC_BUF_ADDR);
|
|
|
|
/* Read ID into main buffer */
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp &= ~NFC_SP_EN;
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
|
|
writew(NFC_ID, host->regs + NFC_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, 0, true);
|
|
|
|
if (this->options & NAND_BUSWIDTH_16) {
|
|
void __iomem *main_buf = host->regs + MAIN_AREA0;
|
|
/* compress the ID info */
|
|
writeb(readb(main_buf + 2), main_buf + 1);
|
|
writeb(readb(main_buf + 4), main_buf + 2);
|
|
writeb(readb(main_buf + 6), main_buf + 3);
|
|
writeb(readb(main_buf + 8), main_buf + 4);
|
|
writeb(readb(main_buf + 10), main_buf + 5);
|
|
}
|
|
}
|
|
|
|
/* This function requests the NANDFC to perform a read of the
|
|
* NAND device status and returns the current status. */
|
|
static uint16_t get_dev_status(struct mxc_nand_host *host)
|
|
{
|
|
void __iomem *main_buf = host->regs + MAIN_AREA1;
|
|
uint32_t store;
|
|
uint16_t ret, tmp;
|
|
/* Issue status request to NAND device */
|
|
|
|
/* store the main area1 first word, later do recovery */
|
|
store = readl(main_buf);
|
|
/* NANDFC buffer 1 is used for device status to prevent
|
|
* corruption of read/write buffer on status requests. */
|
|
writew(1, host->regs + NFC_BUF_ADDR);
|
|
|
|
/* Read status into main buffer */
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp &= ~NFC_SP_EN;
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
|
|
writew(NFC_STATUS, host->regs + NFC_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, 0, true);
|
|
|
|
/* Status is placed in first word of main buffer */
|
|
/* get status, then recovery area 1 data */
|
|
ret = readw(main_buf);
|
|
writel(store, main_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This functions is used by upper layer to checks if device is ready */
|
|
static int mxc_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
/*
|
|
* NFC handles R/B internally. Therefore, this function
|
|
* always returns status as ready.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
/*
|
|
* If HW ECC is enabled, we turn it on during init. There is
|
|
* no need to enable again here.
|
|
*/
|
|
}
|
|
|
|
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
|
|
/*
|
|
* 1-Bit errors are automatically corrected in HW. No need for
|
|
* additional correction. 2-Bit errors cannot be corrected by
|
|
* HW ECC, so we need to return failure
|
|
*/
|
|
uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
|
|
|
|
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
|
|
DEBUG(MTD_DEBUG_LEVEL0,
|
|
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
uint8_t ret = 0;
|
|
uint16_t col, rd_word;
|
|
uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
|
|
uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
|
|
|
|
/* Check for status request */
|
|
if (host->status_request)
|
|
return get_dev_status(host) & 0xFF;
|
|
|
|
/* Get column for 16-bit access */
|
|
col = host->col_addr >> 1;
|
|
|
|
/* If we are accessing the spare region */
|
|
if (host->spare_only)
|
|
rd_word = readw(&spare_buf[col]);
|
|
else
|
|
rd_word = readw(&main_buf[col]);
|
|
|
|
/* Pick upper/lower byte of word from RAM buffer */
|
|
if (host->col_addr & 0x1)
|
|
ret = (rd_word >> 8) & 0xFF;
|
|
else
|
|
ret = rd_word & 0xFF;
|
|
|
|
/* Update saved column address */
|
|
host->col_addr++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
uint16_t col, rd_word, ret;
|
|
uint16_t __iomem *p;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_read_word(col = %d)\n", host->col_addr);
|
|
|
|
col = host->col_addr;
|
|
/* Adjust saved column address */
|
|
if (col < mtd->writesize && host->spare_only)
|
|
col += mtd->writesize;
|
|
|
|
if (col < mtd->writesize)
|
|
p = (host->regs + MAIN_AREA0) + (col >> 1);
|
|
else
|
|
p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
|
|
|
|
if (col & 1) {
|
|
rd_word = readw(p);
|
|
ret = (rd_word >> 8) & 0xff;
|
|
rd_word = readw(&p[1]);
|
|
ret |= (rd_word << 8) & 0xff00;
|
|
|
|
} else
|
|
ret = readw(p);
|
|
|
|
/* Update saved column address */
|
|
host->col_addr = col + 2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Write data of length len to buffer buf. The data to be
|
|
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
|
|
* Operation by the NFC, the data is written to NAND Flash */
|
|
static void mxc_nand_write_buf(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
int n, col, i = 0;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
|
|
len);
|
|
|
|
col = host->col_addr;
|
|
|
|
/* Adjust saved column address */
|
|
if (col < mtd->writesize && host->spare_only)
|
|
col += mtd->writesize;
|
|
|
|
n = mtd->writesize + mtd->oobsize - col;
|
|
n = min(len, n);
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
|
|
|
|
while (n) {
|
|
void __iomem *p;
|
|
|
|
if (col < mtd->writesize)
|
|
p = host->regs + MAIN_AREA0 + (col & ~3);
|
|
else
|
|
p = host->regs + SPARE_AREA0 -
|
|
mtd->writesize + (col & ~3);
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
|
|
__LINE__, p);
|
|
|
|
if (((col | (int)&buf[i]) & 3) || n < 16) {
|
|
uint32_t data = 0;
|
|
|
|
if (col & 3 || n < 4)
|
|
data = readl(p);
|
|
|
|
switch (col & 3) {
|
|
case 0:
|
|
if (n) {
|
|
data = (data & 0xffffff00) |
|
|
(buf[i++] << 0);
|
|
n--;
|
|
col++;
|
|
}
|
|
case 1:
|
|
if (n) {
|
|
data = (data & 0xffff00ff) |
|
|
(buf[i++] << 8);
|
|
n--;
|
|
col++;
|
|
}
|
|
case 2:
|
|
if (n) {
|
|
data = (data & 0xff00ffff) |
|
|
(buf[i++] << 16);
|
|
n--;
|
|
col++;
|
|
}
|
|
case 3:
|
|
if (n) {
|
|
data = (data & 0x00ffffff) |
|
|
(buf[i++] << 24);
|
|
n--;
|
|
col++;
|
|
}
|
|
}
|
|
|
|
writel(data, p);
|
|
} else {
|
|
int m = mtd->writesize - col;
|
|
|
|
if (col >= mtd->writesize)
|
|
m += mtd->oobsize;
|
|
|
|
m = min(n, m) & ~3;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"%s:%d: n = %d, m = %d, i = %d, col = %d\n",
|
|
__func__, __LINE__, n, m, i, col);
|
|
|
|
memcpy(p, &buf[i], m);
|
|
col += m;
|
|
i += m;
|
|
n -= m;
|
|
}
|
|
}
|
|
/* Update saved column address */
|
|
host->col_addr = col;
|
|
}
|
|
|
|
/* Read the data buffer from the NAND Flash. To read the data from NAND
|
|
* Flash first the data output cycle is initiated by the NFC, which copies
|
|
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
|
|
*/
|
|
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
int n, col, i = 0;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
|
|
|
|
col = host->col_addr;
|
|
|
|
/* Adjust saved column address */
|
|
if (col < mtd->writesize && host->spare_only)
|
|
col += mtd->writesize;
|
|
|
|
n = mtd->writesize + mtd->oobsize - col;
|
|
n = min(len, n);
|
|
|
|
while (n) {
|
|
void __iomem *p;
|
|
|
|
if (col < mtd->writesize)
|
|
p = host->regs + MAIN_AREA0 + (col & ~3);
|
|
else
|
|
p = host->regs + SPARE_AREA0 -
|
|
mtd->writesize + (col & ~3);
|
|
|
|
if (((col | (int)&buf[i]) & 3) || n < 16) {
|
|
uint32_t data;
|
|
|
|
data = readl(p);
|
|
switch (col & 3) {
|
|
case 0:
|
|
if (n) {
|
|
buf[i++] = (uint8_t) (data);
|
|
n--;
|
|
col++;
|
|
}
|
|
case 1:
|
|
if (n) {
|
|
buf[i++] = (uint8_t) (data >> 8);
|
|
n--;
|
|
col++;
|
|
}
|
|
case 2:
|
|
if (n) {
|
|
buf[i++] = (uint8_t) (data >> 16);
|
|
n--;
|
|
col++;
|
|
}
|
|
case 3:
|
|
if (n) {
|
|
buf[i++] = (uint8_t) (data >> 24);
|
|
n--;
|
|
col++;
|
|
}
|
|
}
|
|
} else {
|
|
int m = mtd->writesize - col;
|
|
|
|
if (col >= mtd->writesize)
|
|
m += mtd->oobsize;
|
|
|
|
m = min(n, m) & ~3;
|
|
memcpy(&buf[i], p, m);
|
|
col += m;
|
|
i += m;
|
|
n -= m;
|
|
}
|
|
}
|
|
/* Update saved column address */
|
|
host->col_addr = col;
|
|
|
|
}
|
|
|
|
/* Used by the upper layer to verify the data in NAND Flash
|
|
* with the data in the buf. */
|
|
static int mxc_nand_verify_buf(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* This function is used by upper layer for select and
|
|
* deselect of the NAND chip */
|
|
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
|
|
#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
|
|
if (chip > 0) {
|
|
DEBUG(MTD_DEBUG_LEVEL0,
|
|
"ERROR: Illegal chip select (chip = %d)\n", chip);
|
|
return;
|
|
}
|
|
|
|
if (chip == -1) {
|
|
writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
|
|
host->regs + NFC_CONFIG1);
|
|
return;
|
|
}
|
|
|
|
writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
|
|
host->regs + NFC_CONFIG1);
|
|
#endif
|
|
|
|
switch (chip) {
|
|
case -1:
|
|
/* Disable the NFC clock */
|
|
if (host->clk_act) {
|
|
clk_disable(host->clk);
|
|
host->clk_act = 0;
|
|
}
|
|
break;
|
|
case 0:
|
|
/* Enable the NFC clock */
|
|
if (!host->clk_act) {
|
|
clk_enable(host->clk);
|
|
host->clk_act = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Used by the upper layer to write command to NAND Flash for
|
|
* different operations to be carried out on NAND Flash */
|
|
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
|
|
int column, int page_addr)
|
|
{
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
int useirq = true;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
|
|
command, column, page_addr);
|
|
|
|
/* Reset command state information */
|
|
host->status_request = false;
|
|
|
|
/* Command pre-processing step */
|
|
switch (command) {
|
|
|
|
case NAND_CMD_STATUS:
|
|
host->col_addr = 0;
|
|
host->status_request = true;
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
host->col_addr = column;
|
|
host->spare_only = false;
|
|
useirq = false;
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
host->col_addr = column;
|
|
host->spare_only = true;
|
|
useirq = false;
|
|
if (host->pagesize_2k)
|
|
command = NAND_CMD_READ0; /* only READ0 is valid */
|
|
break;
|
|
|
|
case NAND_CMD_SEQIN:
|
|
if (column >= mtd->writesize) {
|
|
/*
|
|
* FIXME: before send SEQIN command for write OOB,
|
|
* We must read one page out.
|
|
* For K9F1GXX has no READ1 command to set current HW
|
|
* pointer to spare area, we must write the whole page
|
|
* including OOB together.
|
|
*/
|
|
if (host->pagesize_2k)
|
|
/* call ourself to read a page */
|
|
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
|
|
page_addr);
|
|
|
|
host->col_addr = column - mtd->writesize;
|
|
host->spare_only = true;
|
|
|
|
/* Set program pointer to spare region */
|
|
if (!host->pagesize_2k)
|
|
send_cmd(host, NAND_CMD_READOOB, false);
|
|
} else {
|
|
host->spare_only = false;
|
|
host->col_addr = column;
|
|
|
|
/* Set program pointer to page start */
|
|
if (!host->pagesize_2k)
|
|
send_cmd(host, NAND_CMD_READ0, false);
|
|
}
|
|
useirq = false;
|
|
break;
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
send_prog_page(host, 0, host->spare_only);
|
|
|
|
if (host->pagesize_2k) {
|
|
/* data in 4 areas datas */
|
|
send_prog_page(host, 1, host->spare_only);
|
|
send_prog_page(host, 2, host->spare_only);
|
|
send_prog_page(host, 3, host->spare_only);
|
|
}
|
|
|
|
break;
|
|
|
|
case NAND_CMD_ERASE1:
|
|
useirq = false;
|
|
break;
|
|
}
|
|
|
|
/* Write out the command to the device. */
|
|
send_cmd(host, command, useirq);
|
|
|
|
/* Write out column address, if necessary */
|
|
if (column != -1) {
|
|
/*
|
|
* MXC NANDFC can only perform full page+spare or
|
|
* spare-only read/write. When the upper layers
|
|
* layers perform a read/write buf operation,
|
|
* we will used the saved column adress to index into
|
|
* the full page.
|
|
*/
|
|
send_addr(host, 0, page_addr == -1);
|
|
if (host->pagesize_2k)
|
|
/* another col addr cycle for 2k page */
|
|
send_addr(host, 0, false);
|
|
}
|
|
|
|
/* Write out page address, if necessary */
|
|
if (page_addr != -1) {
|
|
/* paddr_0 - p_addr_7 */
|
|
send_addr(host, (page_addr & 0xff), false);
|
|
|
|
if (host->pagesize_2k) {
|
|
if (mtd->size >= 0x10000000) {
|
|
/* paddr_8 - paddr_15 */
|
|
send_addr(host, (page_addr >> 8) & 0xff, false);
|
|
send_addr(host, (page_addr >> 16) & 0xff, true);
|
|
} else
|
|
/* paddr_8 - paddr_15 */
|
|
send_addr(host, (page_addr >> 8) & 0xff, true);
|
|
} else {
|
|
/* One more address cycle for higher density devices */
|
|
if (mtd->size >= 0x4000000) {
|
|
/* paddr_8 - paddr_15 */
|
|
send_addr(host, (page_addr >> 8) & 0xff, false);
|
|
send_addr(host, (page_addr >> 16) & 0xff, true);
|
|
} else
|
|
/* paddr_8 - paddr_15 */
|
|
send_addr(host, (page_addr >> 8) & 0xff, true);
|
|
}
|
|
}
|
|
|
|
/* Command post-processing step */
|
|
switch (command) {
|
|
|
|
case NAND_CMD_RESET:
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
case NAND_CMD_READ0:
|
|
if (host->pagesize_2k) {
|
|
/* send read confirm command */
|
|
send_cmd(host, NAND_CMD_READSTART, true);
|
|
/* read for each AREA */
|
|
send_read_page(host, 0, host->spare_only);
|
|
send_read_page(host, 1, host->spare_only);
|
|
send_read_page(host, 2, host->spare_only);
|
|
send_read_page(host, 3, host->spare_only);
|
|
} else
|
|
send_read_page(host, 0, host->spare_only);
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
host->col_addr = 0;
|
|
send_read_id(host);
|
|
break;
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
break;
|
|
|
|
case NAND_CMD_ERASE2:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Define some generic bad / good block scan pattern which are used
|
|
* while scanning a device for factory marked good / bad blocks. */
|
|
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
|
|
|
|
static struct nand_bbt_descr smallpage_memorybased = {
|
|
.options = NAND_BBT_SCAN2NDPAGE,
|
|
.offs = 5,
|
|
.len = 1,
|
|
.pattern = scan_ff_pattern
|
|
};
|
|
|
|
static int __init mxcnd_probe(struct platform_device *pdev)
|
|
{
|
|
struct nand_chip *this;
|
|
struct mtd_info *mtd;
|
|
struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
|
|
struct mxc_nand_host *host;
|
|
struct resource *res;
|
|
uint16_t tmp;
|
|
int err = 0, nr_parts = 0;
|
|
|
|
/* Allocate memory for MTD device structure and private data */
|
|
host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
host->dev = &pdev->dev;
|
|
/* structures must be linked */
|
|
this = &host->nand;
|
|
mtd = &host->mtd;
|
|
mtd->priv = this;
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = &pdev->dev;
|
|
mtd->name = "mxc_nand";
|
|
|
|
/* 50 us command delay time */
|
|
this->chip_delay = 5;
|
|
|
|
this->priv = host;
|
|
this->dev_ready = mxc_nand_dev_ready;
|
|
this->cmdfunc = mxc_nand_command;
|
|
this->select_chip = mxc_nand_select_chip;
|
|
this->read_byte = mxc_nand_read_byte;
|
|
this->read_word = mxc_nand_read_word;
|
|
this->write_buf = mxc_nand_write_buf;
|
|
this->read_buf = mxc_nand_read_buf;
|
|
this->verify_buf = mxc_nand_verify_buf;
|
|
|
|
host->clk = clk_get(&pdev->dev, "nfc");
|
|
if (IS_ERR(host->clk)) {
|
|
err = PTR_ERR(host->clk);
|
|
goto eclk;
|
|
}
|
|
|
|
clk_enable(host->clk);
|
|
host->clk_act = 1;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!res) {
|
|
err = -ENODEV;
|
|
goto eres;
|
|
}
|
|
|
|
host->regs = ioremap(res->start, res->end - res->start + 1);
|
|
if (!host->regs) {
|
|
err = -ENOMEM;
|
|
goto eres;
|
|
}
|
|
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp |= NFC_INT_MSK;
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
|
|
init_waitqueue_head(&host->irq_waitq);
|
|
|
|
host->irq = platform_get_irq(pdev, 0);
|
|
|
|
err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
|
|
if (err)
|
|
goto eirq;
|
|
|
|
if (pdata->hw_ecc) {
|
|
this->ecc.calculate = mxc_nand_calculate_ecc;
|
|
this->ecc.hwctl = mxc_nand_enable_hwecc;
|
|
this->ecc.correct = mxc_nand_correct_data;
|
|
this->ecc.mode = NAND_ECC_HW;
|
|
this->ecc.size = 512;
|
|
this->ecc.bytes = 3;
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp |= NFC_ECC_EN;
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
} else {
|
|
this->ecc.size = 512;
|
|
this->ecc.bytes = 3;
|
|
this->ecc.layout = &nand_hw_eccoob_8;
|
|
this->ecc.mode = NAND_ECC_SOFT;
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp &= ~NFC_ECC_EN;
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
}
|
|
|
|
/* Reset NAND */
|
|
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
|
|
/* preset operation */
|
|
/* Unlock the internal RAM Buffer */
|
|
writew(0x2, host->regs + NFC_CONFIG);
|
|
|
|
/* Blocks to be unlocked */
|
|
writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
|
|
writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
|
|
|
|
/* Unlock Block Command for given address range */
|
|
writew(0x4, host->regs + NFC_WRPROT);
|
|
|
|
/* NAND bus width determines access funtions used by upper layer */
|
|
if (pdata->width == 2) {
|
|
this->options |= NAND_BUSWIDTH_16;
|
|
this->ecc.layout = &nand_hw_eccoob_16;
|
|
}
|
|
|
|
/* first scan to find the device and get the page size */
|
|
if (nand_scan_ident(mtd, 1)) {
|
|
err = -ENXIO;
|
|
goto escan;
|
|
}
|
|
|
|
if (mtd->writesize == 2048) {
|
|
host->pagesize_2k = 1;
|
|
this->badblock_pattern = &smallpage_memorybased;
|
|
}
|
|
|
|
if (this->ecc.mode == NAND_ECC_HW) {
|
|
switch (mtd->oobsize) {
|
|
case 8:
|
|
this->ecc.layout = &nand_hw_eccoob_8;
|
|
break;
|
|
case 16:
|
|
this->ecc.layout = &nand_hw_eccoob_16;
|
|
break;
|
|
case 64:
|
|
this->ecc.layout = &nand_hw_eccoob_64;
|
|
break;
|
|
default:
|
|
/* page size not handled by HW ECC */
|
|
/* switching back to soft ECC */
|
|
this->ecc.size = 512;
|
|
this->ecc.bytes = 3;
|
|
this->ecc.layout = &nand_hw_eccoob_8;
|
|
this->ecc.mode = NAND_ECC_SOFT;
|
|
this->ecc.calculate = NULL;
|
|
this->ecc.correct = NULL;
|
|
this->ecc.hwctl = NULL;
|
|
tmp = readw(host->regs + NFC_CONFIG1);
|
|
tmp &= ~NFC_ECC_EN;
|
|
writew(tmp, host->regs + NFC_CONFIG1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* second phase scan */
|
|
if (nand_scan_tail(mtd)) {
|
|
err = -ENXIO;
|
|
goto escan;
|
|
}
|
|
|
|
/* Register the partitions */
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
nr_parts =
|
|
parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
|
|
if (nr_parts > 0)
|
|
add_mtd_partitions(mtd, host->parts, nr_parts);
|
|
else
|
|
#endif
|
|
{
|
|
pr_info("Registering %s as whole device\n", mtd->name);
|
|
add_mtd_device(mtd);
|
|
}
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
|
|
return 0;
|
|
|
|
escan:
|
|
free_irq(host->irq, host);
|
|
eirq:
|
|
iounmap(host->regs);
|
|
eres:
|
|
clk_put(host->clk);
|
|
eclk:
|
|
kfree(host);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __devexit mxcnd_remove(struct platform_device *pdev)
|
|
{
|
|
struct mxc_nand_host *host = platform_get_drvdata(pdev);
|
|
|
|
clk_put(host->clk);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
nand_release(&host->mtd);
|
|
free_irq(host->irq, host);
|
|
iounmap(host->regs);
|
|
kfree(host);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
int ret = 0;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
|
|
if (mtd) {
|
|
ret = mtd->suspend(mtd);
|
|
/* Disable the NFC clock */
|
|
clk_disable(host->clk);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxcnd_resume(struct platform_device *pdev)
|
|
{
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
|
struct nand_chip *nand_chip = mtd->priv;
|
|
struct mxc_nand_host *host = nand_chip->priv;
|
|
int ret = 0;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
|
|
|
|
if (mtd) {
|
|
/* Enable the NFC clock */
|
|
clk_enable(host->clk);
|
|
mtd->resume(mtd);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else
|
|
# define mxcnd_suspend NULL
|
|
# define mxcnd_resume NULL
|
|
#endif /* CONFIG_PM */
|
|
|
|
static struct platform_driver mxcnd_driver = {
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
},
|
|
.remove = __exit_p(mxcnd_remove),
|
|
.suspend = mxcnd_suspend,
|
|
.resume = mxcnd_resume,
|
|
};
|
|
|
|
static int __init mxc_nd_init(void)
|
|
{
|
|
return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
|
|
}
|
|
|
|
static void __exit mxc_nd_cleanup(void)
|
|
{
|
|
/* Unregister the device structure */
|
|
platform_driver_unregister(&mxcnd_driver);
|
|
}
|
|
|
|
module_init(mxc_nd_init);
|
|
module_exit(mxc_nd_cleanup);
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
|
|
MODULE_DESCRIPTION("MXC NAND MTD driver");
|
|
MODULE_LICENSE("GPL");
|