aha/arch/x86/kernel/process.c
Vegard Nossum 2dff440525 kmemcheck: add mm functions
With kmemcheck enabled, the slab allocator needs to do this:

1. Tell kmemcheck to allocate the shadow memory which stores the status of
   each byte in the allocation proper, e.g. whether it is initialized or
   uninitialized.
2. Tell kmemcheck which parts of memory that should be marked uninitialized.
   There are actually a few more states, such as "not yet allocated" and
   "recently freed".

If a slab cache is set up using the SLAB_NOTRACK flag, it will never return
memory that can take page faults because of kmemcheck.

If a slab cache is NOT set up using the SLAB_NOTRACK flag, callers can still
request memory with the __GFP_NOTRACK flag. This does not prevent the page
faults from occuring, however, but marks the object in question as being
initialized so that no warnings will ever be produced for this object.

In addition to (and in contrast to) __GFP_NOTRACK, the
__GFP_NOTRACK_FALSE_POSITIVE flag indicates that the allocation should
not be tracked _because_ it would produce a false positive. Their values
are identical, but need not be so in the future (for example, we could now
enable/disable false positives with a config option).

Parts of this patch were contributed by Pekka Enberg but merged for
atomicity.

Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>

[rebased for mainline inclusion]
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
2009-06-15 12:40:03 +02:00

631 lines
14 KiB
C

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/prctl.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/clockchips.h>
#include <linux/random.h>
#include <trace/power.h>
#include <asm/system.h>
#include <asm/apic.h>
#include <asm/syscalls.h>
#include <asm/idle.h>
#include <asm/uaccess.h>
#include <asm/i387.h>
#include <asm/ds.h>
unsigned long idle_halt;
EXPORT_SYMBOL(idle_halt);
unsigned long idle_nomwait;
EXPORT_SYMBOL(idle_nomwait);
struct kmem_cache *task_xstate_cachep;
DEFINE_TRACE(power_start);
DEFINE_TRACE(power_end);
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
*dst = *src;
if (src->thread.xstate) {
dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
GFP_KERNEL);
if (!dst->thread.xstate)
return -ENOMEM;
WARN_ON((unsigned long)dst->thread.xstate & 15);
memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
}
return 0;
}
void free_thread_xstate(struct task_struct *tsk)
{
if (tsk->thread.xstate) {
kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
tsk->thread.xstate = NULL;
}
WARN(tsk->thread.ds_ctx, "leaking DS context\n");
}
void free_thread_info(struct thread_info *ti)
{
free_thread_xstate(ti->task);
free_pages((unsigned long)ti, get_order(THREAD_SIZE));
}
void arch_task_cache_init(void)
{
task_xstate_cachep =
kmem_cache_create("task_xstate", xstate_size,
__alignof__(union thread_xstate),
SLAB_PANIC | SLAB_NOTRACK, NULL);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
struct task_struct *me = current;
struct thread_struct *t = &me->thread;
unsigned long *bp = t->io_bitmap_ptr;
if (bp) {
struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
t->io_bitmap_ptr = NULL;
clear_thread_flag(TIF_IO_BITMAP);
/*
* Careful, clear this in the TSS too:
*/
memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
t->io_bitmap_max = 0;
put_cpu();
kfree(bp);
}
}
void flush_thread(void)
{
struct task_struct *tsk = current;
#ifdef CONFIG_X86_64
if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
if (test_tsk_thread_flag(tsk, TIF_IA32)) {
clear_tsk_thread_flag(tsk, TIF_IA32);
} else {
set_tsk_thread_flag(tsk, TIF_IA32);
current_thread_info()->status |= TS_COMPAT;
}
}
#endif
clear_tsk_thread_flag(tsk, TIF_DEBUG);
tsk->thread.debugreg0 = 0;
tsk->thread.debugreg1 = 0;
tsk->thread.debugreg2 = 0;
tsk->thread.debugreg3 = 0;
tsk->thread.debugreg6 = 0;
tsk->thread.debugreg7 = 0;
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
/*
* Forget coprocessor state..
*/
tsk->fpu_counter = 0;
clear_fpu(tsk);
clear_used_math();
}
static void hard_disable_TSC(void)
{
write_cr4(read_cr4() | X86_CR4_TSD);
}
void disable_TSC(void)
{
preempt_disable();
if (!test_and_set_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_disable_TSC();
preempt_enable();
}
static void hard_enable_TSC(void)
{
write_cr4(read_cr4() & ~X86_CR4_TSD);
}
static void enable_TSC(void)
{
preempt_disable();
if (test_and_clear_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_enable_TSC();
preempt_enable();
}
int get_tsc_mode(unsigned long adr)
{
unsigned int val;
if (test_thread_flag(TIF_NOTSC))
val = PR_TSC_SIGSEGV;
else
val = PR_TSC_ENABLE;
return put_user(val, (unsigned int __user *)adr);
}
int set_tsc_mode(unsigned int val)
{
if (val == PR_TSC_SIGSEGV)
disable_TSC();
else if (val == PR_TSC_ENABLE)
enable_TSC();
else
return -EINVAL;
return 0;
}
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss)
{
struct thread_struct *prev, *next;
prev = &prev_p->thread;
next = &next_p->thread;
if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
ds_switch_to(prev_p, next_p);
else if (next->debugctlmsr != prev->debugctlmsr)
update_debugctlmsr(next->debugctlmsr);
if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
set_debugreg(next->debugreg0, 0);
set_debugreg(next->debugreg1, 1);
set_debugreg(next->debugreg2, 2);
set_debugreg(next->debugreg3, 3);
/* no 4 and 5 */
set_debugreg(next->debugreg6, 6);
set_debugreg(next->debugreg7, 7);
}
if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
test_tsk_thread_flag(next_p, TIF_NOTSC)) {
/* prev and next are different */
if (test_tsk_thread_flag(next_p, TIF_NOTSC))
hard_disable_TSC();
else
hard_enable_TSC();
}
if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
/*
* Copy the relevant range of the IO bitmap.
* Normally this is 128 bytes or less:
*/
memcpy(tss->io_bitmap, next->io_bitmap_ptr,
max(prev->io_bitmap_max, next->io_bitmap_max));
} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
/*
* Clear any possible leftover bits:
*/
memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
}
}
int sys_fork(struct pt_regs *regs)
{
return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
int sys_vfork(struct pt_regs *regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
NULL, NULL);
}
/*
* Idle related variables and functions
*/
unsigned long boot_option_idle_override = 0;
EXPORT_SYMBOL(boot_option_idle_override);
/*
* Powermanagement idle function, if any..
*/
void (*pm_idle)(void);
EXPORT_SYMBOL(pm_idle);
#ifdef CONFIG_X86_32
/*
* This halt magic was a workaround for ancient floppy DMA
* wreckage. It should be safe to remove.
*/
static int hlt_counter;
void disable_hlt(void)
{
hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);
void enable_hlt(void)
{
hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);
static inline int hlt_use_halt(void)
{
return (!hlt_counter && boot_cpu_data.hlt_works_ok);
}
#else
static inline int hlt_use_halt(void)
{
return 1;
}
#endif
/*
* We use this if we don't have any better
* idle routine..
*/
void default_idle(void)
{
if (hlt_use_halt()) {
struct power_trace it;
trace_power_start(&it, POWER_CSTATE, 1);
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
if (!need_resched())
safe_halt(); /* enables interrupts racelessly */
else
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
trace_power_end(&it);
} else {
local_irq_enable();
/* loop is done by the caller */
cpu_relax();
}
}
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(default_idle);
#endif
void stop_this_cpu(void *dummy)
{
local_irq_disable();
/*
* Remove this CPU:
*/
set_cpu_online(smp_processor_id(), false);
disable_local_APIC();
for (;;) {
if (hlt_works(smp_processor_id()))
halt();
}
}
static void do_nothing(void *unused)
{
}
/*
* cpu_idle_wait - Used to ensure that all the CPUs discard old value of
* pm_idle and update to new pm_idle value. Required while changing pm_idle
* handler on SMP systems.
*
* Caller must have changed pm_idle to the new value before the call. Old
* pm_idle value will not be used by any CPU after the return of this function.
*/
void cpu_idle_wait(void)
{
smp_mb();
/* kick all the CPUs so that they exit out of pm_idle */
smp_call_function(do_nothing, NULL, 1);
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);
/*
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
* which can obviate IPI to trigger checking of need_resched.
* We execute MONITOR against need_resched and enter optimized wait state
* through MWAIT. Whenever someone changes need_resched, we would be woken
* up from MWAIT (without an IPI).
*
* New with Core Duo processors, MWAIT can take some hints based on CPU
* capability.
*/
void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
{
struct power_trace it;
trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
if (!need_resched()) {
if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
clflush((void *)&current_thread_info()->flags);
__monitor((void *)&current_thread_info()->flags, 0, 0);
smp_mb();
if (!need_resched())
__mwait(ax, cx);
}
trace_power_end(&it);
}
/* Default MONITOR/MWAIT with no hints, used for default C1 state */
static void mwait_idle(void)
{
struct power_trace it;
if (!need_resched()) {
trace_power_start(&it, POWER_CSTATE, 1);
if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
clflush((void *)&current_thread_info()->flags);
__monitor((void *)&current_thread_info()->flags, 0, 0);
smp_mb();
if (!need_resched())
__sti_mwait(0, 0);
else
local_irq_enable();
trace_power_end(&it);
} else
local_irq_enable();
}
/*
* On SMP it's slightly faster (but much more power-consuming!)
* to poll the ->work.need_resched flag instead of waiting for the
* cross-CPU IPI to arrive. Use this option with caution.
*/
static void poll_idle(void)
{
struct power_trace it;
trace_power_start(&it, POWER_CSTATE, 0);
local_irq_enable();
while (!need_resched())
cpu_relax();
trace_power_end(&it);
}
/*
* mwait selection logic:
*
* It depends on the CPU. For AMD CPUs that support MWAIT this is
* wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
* then depend on a clock divisor and current Pstate of the core. If
* all cores of a processor are in halt state (C1) the processor can
* enter the C1E (C1 enhanced) state. If mwait is used this will never
* happen.
*
* idle=mwait overrides this decision and forces the usage of mwait.
*/
static int __cpuinitdata force_mwait;
#define MWAIT_INFO 0x05
#define MWAIT_ECX_EXTENDED_INFO 0x01
#define MWAIT_EDX_C1 0xf0
static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
{
u32 eax, ebx, ecx, edx;
if (force_mwait)
return 1;
if (c->cpuid_level < MWAIT_INFO)
return 0;
cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
/* Check, whether EDX has extended info about MWAIT */
if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
return 1;
/*
* edx enumeratios MONITOR/MWAIT extensions. Check, whether
* C1 supports MWAIT
*/
return (edx & MWAIT_EDX_C1);
}
/*
* Check for AMD CPUs, which have potentially C1E support
*/
static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
{
if (c->x86_vendor != X86_VENDOR_AMD)
return 0;
if (c->x86 < 0x0F)
return 0;
/* Family 0x0f models < rev F do not have C1E */
if (c->x86 == 0x0f && c->x86_model < 0x40)
return 0;
return 1;
}
static cpumask_var_t c1e_mask;
static int c1e_detected;
void c1e_remove_cpu(int cpu)
{
if (c1e_mask != NULL)
cpumask_clear_cpu(cpu, c1e_mask);
}
/*
* C1E aware idle routine. We check for C1E active in the interrupt
* pending message MSR. If we detect C1E, then we handle it the same
* way as C3 power states (local apic timer and TSC stop)
*/
static void c1e_idle(void)
{
if (need_resched())
return;
if (!c1e_detected) {
u32 lo, hi;
rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
if (lo & K8_INTP_C1E_ACTIVE_MASK) {
c1e_detected = 1;
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
mark_tsc_unstable("TSC halt in AMD C1E");
printk(KERN_INFO "System has AMD C1E enabled\n");
set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
}
}
if (c1e_detected) {
int cpu = smp_processor_id();
if (!cpumask_test_cpu(cpu, c1e_mask)) {
cpumask_set_cpu(cpu, c1e_mask);
/*
* Force broadcast so ACPI can not interfere. Needs
* to run with interrupts enabled as it uses
* smp_function_call.
*/
local_irq_enable();
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
&cpu);
printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
cpu);
local_irq_disable();
}
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
default_idle();
/*
* The switch back from broadcast mode needs to be
* called with interrupts disabled.
*/
local_irq_disable();
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
local_irq_enable();
} else
default_idle();
}
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
if (pm_idle == poll_idle && smp_num_siblings > 1) {
printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
" performance may degrade.\n");
}
#endif
if (pm_idle)
return;
if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
/*
* One CPU supports mwait => All CPUs supports mwait
*/
printk(KERN_INFO "using mwait in idle threads.\n");
pm_idle = mwait_idle;
} else if (check_c1e_idle(c)) {
printk(KERN_INFO "using C1E aware idle routine\n");
pm_idle = c1e_idle;
} else
pm_idle = default_idle;
}
void __init init_c1e_mask(void)
{
/* If we're using c1e_idle, we need to allocate c1e_mask. */
if (pm_idle == c1e_idle) {
alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
cpumask_clear(c1e_mask);
}
}
static int __init idle_setup(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "poll")) {
printk("using polling idle threads.\n");
pm_idle = poll_idle;
} else if (!strcmp(str, "mwait"))
force_mwait = 1;
else if (!strcmp(str, "halt")) {
/*
* When the boot option of idle=halt is added, halt is
* forced to be used for CPU idle. In such case CPU C2/C3
* won't be used again.
* To continue to load the CPU idle driver, don't touch
* the boot_option_idle_override.
*/
pm_idle = default_idle;
idle_halt = 1;
return 0;
} else if (!strcmp(str, "nomwait")) {
/*
* If the boot option of "idle=nomwait" is added,
* it means that mwait will be disabled for CPU C2/C3
* states. In such case it won't touch the variable
* of boot_option_idle_override.
*/
idle_nomwait = 1;
return 0;
} else
return -1;
boot_option_idle_override = 1;
return 0;
}
early_param("idle", idle_setup);
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long range_end = mm->brk + 0x02000000;
return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}