mirror of
https://github.com/adulau/aha.git
synced 2025-01-04 07:03:38 +00:00
fdd858db71
This patch changes the reported error code for the responses to a command from EINVAL to EFAULT/ENOSYS, as EINVAL is reserved for non-recoverable host errors, and the responses from the SD/MMC card may be because of recoverable transmission errors in the command or in the response. Response codes in SPI mode are NOT protected by a checksum, so don't trust them. Signed-off-by: Wolfgang Muees <wolfgang.mues@auerswald.de> Acked-by: Matt Fleming <matt@console-pimps.org> Signed-off-by: Pierre Ossman <pierre@ossman.eu>
1558 lines
42 KiB
C
1558 lines
42 KiB
C
/*
|
|
* mmc_spi.c - Access SD/MMC cards through SPI master controllers
|
|
*
|
|
* (C) Copyright 2005, Intec Automation,
|
|
* Mike Lavender (mike@steroidmicros)
|
|
* (C) Copyright 2006-2007, David Brownell
|
|
* (C) Copyright 2007, Axis Communications,
|
|
* Hans-Peter Nilsson (hp@axis.com)
|
|
* (C) Copyright 2007, ATRON electronic GmbH,
|
|
* Jan Nikitenko <jan.nikitenko@gmail.com>
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/crc7.h>
|
|
#include <linux/crc-itu-t.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <linux/mmc/host.h>
|
|
#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/mmc_spi.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
|
|
/* NOTES:
|
|
*
|
|
* - For now, we won't try to interoperate with a real mmc/sd/sdio
|
|
* controller, although some of them do have hardware support for
|
|
* SPI protocol. The main reason for such configs would be mmc-ish
|
|
* cards like DataFlash, which don't support that "native" protocol.
|
|
*
|
|
* We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
|
|
* switch between driver stacks, and in any case if "native" mode
|
|
* is available, it will be faster and hence preferable.
|
|
*
|
|
* - MMC depends on a different chipselect management policy than the
|
|
* SPI interface currently supports for shared bus segments: it needs
|
|
* to issue multiple spi_message requests with the chipselect active,
|
|
* using the results of one message to decide the next one to issue.
|
|
*
|
|
* Pending updates to the programming interface, this driver expects
|
|
* that it not share the bus with other drivers (precluding conflicts).
|
|
*
|
|
* - We tell the controller to keep the chipselect active from the
|
|
* beginning of an mmc_host_ops.request until the end. So beware
|
|
* of SPI controller drivers that mis-handle the cs_change flag!
|
|
*
|
|
* However, many cards seem OK with chipselect flapping up/down
|
|
* during that time ... at least on unshared bus segments.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Local protocol constants, internal to data block protocols.
|
|
*/
|
|
|
|
/* Response tokens used to ack each block written: */
|
|
#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
|
|
#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
|
|
#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
|
|
#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
|
|
|
|
/* Read and write blocks start with these tokens and end with crc;
|
|
* on error, read tokens act like a subset of R2_SPI_* values.
|
|
*/
|
|
#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
|
|
#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
|
|
#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
|
|
|
|
#define MMC_SPI_BLOCKSIZE 512
|
|
|
|
|
|
/* These fixed timeouts come from the latest SD specs, which say to ignore
|
|
* the CSD values. The R1B value is for card erase (e.g. the "I forgot the
|
|
* card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
|
|
* reads which takes nowhere near that long. Older cards may be able to use
|
|
* shorter timeouts ... but why bother?
|
|
*/
|
|
#define r1b_timeout (HZ * 3)
|
|
|
|
/* One of the critical speed parameters is the amount of data which may
|
|
* be transfered in one command. If this value is too low, the SD card
|
|
* controller has to do multiple partial block writes (argggh!). With
|
|
* today (2008) SD cards there is little speed gain if we transfer more
|
|
* than 64 KBytes at a time. So use this value until there is any indication
|
|
* that we should do more here.
|
|
*/
|
|
#define MMC_SPI_BLOCKSATONCE 128
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Local Data Structures
|
|
*/
|
|
|
|
/* "scratch" is per-{command,block} data exchanged with the card */
|
|
struct scratch {
|
|
u8 status[29];
|
|
u8 data_token;
|
|
__be16 crc_val;
|
|
};
|
|
|
|
struct mmc_spi_host {
|
|
struct mmc_host *mmc;
|
|
struct spi_device *spi;
|
|
|
|
unsigned char power_mode;
|
|
u16 powerup_msecs;
|
|
|
|
struct mmc_spi_platform_data *pdata;
|
|
|
|
/* for bulk data transfers */
|
|
struct spi_transfer token, t, crc, early_status;
|
|
struct spi_message m;
|
|
|
|
/* for status readback */
|
|
struct spi_transfer status;
|
|
struct spi_message readback;
|
|
|
|
/* underlying DMA-aware controller, or null */
|
|
struct device *dma_dev;
|
|
|
|
/* buffer used for commands and for message "overhead" */
|
|
struct scratch *data;
|
|
dma_addr_t data_dma;
|
|
|
|
/* Specs say to write ones most of the time, even when the card
|
|
* has no need to read its input data; and many cards won't care.
|
|
* This is our source of those ones.
|
|
*/
|
|
void *ones;
|
|
dma_addr_t ones_dma;
|
|
};
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* MMC-over-SPI protocol glue, used by the MMC stack interface
|
|
*/
|
|
|
|
static inline int mmc_cs_off(struct mmc_spi_host *host)
|
|
{
|
|
/* chipselect will always be inactive after setup() */
|
|
return spi_setup(host->spi);
|
|
}
|
|
|
|
static int
|
|
mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
|
|
{
|
|
int status;
|
|
|
|
if (len > sizeof(*host->data)) {
|
|
WARN_ON(1);
|
|
return -EIO;
|
|
}
|
|
|
|
host->status.len = len;
|
|
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_device(host->dma_dev,
|
|
host->data_dma, sizeof(*host->data),
|
|
DMA_FROM_DEVICE);
|
|
|
|
status = spi_sync(host->spi, &host->readback);
|
|
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
host->data_dma, sizeof(*host->data),
|
|
DMA_FROM_DEVICE);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
|
|
unsigned n, u8 byte)
|
|
{
|
|
u8 *cp = host->data->status;
|
|
unsigned long start = jiffies;
|
|
|
|
while (1) {
|
|
int status;
|
|
unsigned i;
|
|
|
|
status = mmc_spi_readbytes(host, n);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (cp[i] != byte)
|
|
return cp[i];
|
|
}
|
|
|
|
if (time_is_before_jiffies(start + timeout))
|
|
break;
|
|
|
|
/* If we need long timeouts, we may release the CPU.
|
|
* We use jiffies here because we want to have a relation
|
|
* between elapsed time and the blocking of the scheduler.
|
|
*/
|
|
if (time_is_before_jiffies(start+1))
|
|
schedule();
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static inline int
|
|
mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
|
|
{
|
|
return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
|
|
}
|
|
|
|
static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
|
|
{
|
|
return mmc_spi_skip(host, timeout, 1, 0xff);
|
|
}
|
|
|
|
|
|
/*
|
|
* Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
|
|
* hosts return! The low byte holds R1_SPI bits. The next byte may hold
|
|
* R2_SPI bits ... for SEND_STATUS, or after data read errors.
|
|
*
|
|
* cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
|
|
* newer cards R7 (IF_COND).
|
|
*/
|
|
|
|
static char *maptype(struct mmc_command *cmd)
|
|
{
|
|
switch (mmc_spi_resp_type(cmd)) {
|
|
case MMC_RSP_SPI_R1: return "R1";
|
|
case MMC_RSP_SPI_R1B: return "R1B";
|
|
case MMC_RSP_SPI_R2: return "R2/R5";
|
|
case MMC_RSP_SPI_R3: return "R3/R4/R7";
|
|
default: return "?";
|
|
}
|
|
}
|
|
|
|
/* return zero, else negative errno after setting cmd->error */
|
|
static int mmc_spi_response_get(struct mmc_spi_host *host,
|
|
struct mmc_command *cmd, int cs_on)
|
|
{
|
|
u8 *cp = host->data->status;
|
|
u8 *end = cp + host->t.len;
|
|
int value = 0;
|
|
int bitshift;
|
|
u8 leftover = 0;
|
|
unsigned short rotator;
|
|
int i;
|
|
char tag[32];
|
|
|
|
snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
|
|
cmd->opcode, maptype(cmd));
|
|
|
|
/* Except for data block reads, the whole response will already
|
|
* be stored in the scratch buffer. It's somewhere after the
|
|
* command and the first byte we read after it. We ignore that
|
|
* first byte. After STOP_TRANSMISSION command it may include
|
|
* two data bits, but otherwise it's all ones.
|
|
*/
|
|
cp += 8;
|
|
while (cp < end && *cp == 0xff)
|
|
cp++;
|
|
|
|
/* Data block reads (R1 response types) may need more data... */
|
|
if (cp == end) {
|
|
cp = host->data->status;
|
|
end = cp+1;
|
|
|
|
/* Card sends N(CR) (== 1..8) bytes of all-ones then one
|
|
* status byte ... and we already scanned 2 bytes.
|
|
*
|
|
* REVISIT block read paths use nasty byte-at-a-time I/O
|
|
* so it can always DMA directly into the target buffer.
|
|
* It'd probably be better to memcpy() the first chunk and
|
|
* avoid extra i/o calls...
|
|
*
|
|
* Note we check for more than 8 bytes, because in practice,
|
|
* some SD cards are slow...
|
|
*/
|
|
for (i = 2; i < 16; i++) {
|
|
value = mmc_spi_readbytes(host, 1);
|
|
if (value < 0)
|
|
goto done;
|
|
if (*cp != 0xff)
|
|
goto checkstatus;
|
|
}
|
|
value = -ETIMEDOUT;
|
|
goto done;
|
|
}
|
|
|
|
checkstatus:
|
|
bitshift = 0;
|
|
if (*cp & 0x80) {
|
|
/* Houston, we have an ugly card with a bit-shifted response */
|
|
rotator = *cp++ << 8;
|
|
/* read the next byte */
|
|
if (cp == end) {
|
|
value = mmc_spi_readbytes(host, 1);
|
|
if (value < 0)
|
|
goto done;
|
|
cp = host->data->status;
|
|
end = cp+1;
|
|
}
|
|
rotator |= *cp++;
|
|
while (rotator & 0x8000) {
|
|
bitshift++;
|
|
rotator <<= 1;
|
|
}
|
|
cmd->resp[0] = rotator >> 8;
|
|
leftover = rotator;
|
|
} else {
|
|
cmd->resp[0] = *cp++;
|
|
}
|
|
cmd->error = 0;
|
|
|
|
/* Status byte: the entire seven-bit R1 response. */
|
|
if (cmd->resp[0] != 0) {
|
|
if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
|
|
& cmd->resp[0])
|
|
value = -EFAULT; /* Bad address */
|
|
else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
|
|
value = -ENOSYS; /* Function not implemented */
|
|
else if (R1_SPI_COM_CRC & cmd->resp[0])
|
|
value = -EILSEQ; /* Illegal byte sequence */
|
|
else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
|
|
& cmd->resp[0])
|
|
value = -EIO; /* I/O error */
|
|
/* else R1_SPI_IDLE, "it's resetting" */
|
|
}
|
|
|
|
switch (mmc_spi_resp_type(cmd)) {
|
|
|
|
/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
|
|
* and less-common stuff like various erase operations.
|
|
*/
|
|
case MMC_RSP_SPI_R1B:
|
|
/* maybe we read all the busy tokens already */
|
|
while (cp < end && *cp == 0)
|
|
cp++;
|
|
if (cp == end)
|
|
mmc_spi_wait_unbusy(host, r1b_timeout);
|
|
break;
|
|
|
|
/* SPI R2 == R1 + second status byte; SEND_STATUS
|
|
* SPI R5 == R1 + data byte; IO_RW_DIRECT
|
|
*/
|
|
case MMC_RSP_SPI_R2:
|
|
/* read the next byte */
|
|
if (cp == end) {
|
|
value = mmc_spi_readbytes(host, 1);
|
|
if (value < 0)
|
|
goto done;
|
|
cp = host->data->status;
|
|
end = cp+1;
|
|
}
|
|
if (bitshift) {
|
|
rotator = leftover << 8;
|
|
rotator |= *cp << bitshift;
|
|
cmd->resp[0] |= (rotator & 0xFF00);
|
|
} else {
|
|
cmd->resp[0] |= *cp << 8;
|
|
}
|
|
break;
|
|
|
|
/* SPI R3, R4, or R7 == R1 + 4 bytes */
|
|
case MMC_RSP_SPI_R3:
|
|
rotator = leftover << 8;
|
|
cmd->resp[1] = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
cmd->resp[1] <<= 8;
|
|
/* read the next byte */
|
|
if (cp == end) {
|
|
value = mmc_spi_readbytes(host, 1);
|
|
if (value < 0)
|
|
goto done;
|
|
cp = host->data->status;
|
|
end = cp+1;
|
|
}
|
|
if (bitshift) {
|
|
rotator |= *cp++ << bitshift;
|
|
cmd->resp[1] |= (rotator >> 8);
|
|
rotator <<= 8;
|
|
} else {
|
|
cmd->resp[1] |= *cp++;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* SPI R1 == just one status byte */
|
|
case MMC_RSP_SPI_R1:
|
|
break;
|
|
|
|
default:
|
|
dev_dbg(&host->spi->dev, "bad response type %04x\n",
|
|
mmc_spi_resp_type(cmd));
|
|
if (value >= 0)
|
|
value = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
if (value < 0)
|
|
dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
|
|
tag, cmd->resp[0], cmd->resp[1]);
|
|
|
|
/* disable chipselect on errors and some success cases */
|
|
if (value >= 0 && cs_on)
|
|
return value;
|
|
done:
|
|
if (value < 0)
|
|
cmd->error = value;
|
|
mmc_cs_off(host);
|
|
return value;
|
|
}
|
|
|
|
/* Issue command and read its response.
|
|
* Returns zero on success, negative for error.
|
|
*
|
|
* On error, caller must cope with mmc core retry mechanism. That
|
|
* means immediate low-level resubmit, which affects the bus lock...
|
|
*/
|
|
static int
|
|
mmc_spi_command_send(struct mmc_spi_host *host,
|
|
struct mmc_request *mrq,
|
|
struct mmc_command *cmd, int cs_on)
|
|
{
|
|
struct scratch *data = host->data;
|
|
u8 *cp = data->status;
|
|
u32 arg = cmd->arg;
|
|
int status;
|
|
struct spi_transfer *t;
|
|
|
|
/* We can handle most commands (except block reads) in one full
|
|
* duplex I/O operation before either starting the next transfer
|
|
* (data block or command) or else deselecting the card.
|
|
*
|
|
* First, write 7 bytes:
|
|
* - an all-ones byte to ensure the card is ready
|
|
* - opcode byte (plus start and transmission bits)
|
|
* - four bytes of big-endian argument
|
|
* - crc7 (plus end bit) ... always computed, it's cheap
|
|
*
|
|
* We init the whole buffer to all-ones, which is what we need
|
|
* to write while we're reading (later) response data.
|
|
*/
|
|
memset(cp++, 0xff, sizeof(data->status));
|
|
|
|
*cp++ = 0x40 | cmd->opcode;
|
|
*cp++ = (u8)(arg >> 24);
|
|
*cp++ = (u8)(arg >> 16);
|
|
*cp++ = (u8)(arg >> 8);
|
|
*cp++ = (u8)arg;
|
|
*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
|
|
|
|
/* Then, read up to 13 bytes (while writing all-ones):
|
|
* - N(CR) (== 1..8) bytes of all-ones
|
|
* - status byte (for all response types)
|
|
* - the rest of the response, either:
|
|
* + nothing, for R1 or R1B responses
|
|
* + second status byte, for R2 responses
|
|
* + four data bytes, for R3 and R7 responses
|
|
*
|
|
* Finally, read some more bytes ... in the nice cases we know in
|
|
* advance how many, and reading 1 more is always OK:
|
|
* - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
|
|
* - N(RC) (== 1..N) bytes of all-ones, before next command
|
|
* - N(WR) (== 1..N) bytes of all-ones, before data write
|
|
*
|
|
* So in those cases one full duplex I/O of at most 21 bytes will
|
|
* handle the whole command, leaving the card ready to receive a
|
|
* data block or new command. We do that whenever we can, shaving
|
|
* CPU and IRQ costs (especially when using DMA or FIFOs).
|
|
*
|
|
* There are two other cases, where it's not generally practical
|
|
* to rely on a single I/O:
|
|
*
|
|
* - R1B responses need at least N(EC) bytes of all-zeroes.
|
|
*
|
|
* In this case we can *try* to fit it into one I/O, then
|
|
* maybe read more data later.
|
|
*
|
|
* - Data block reads are more troublesome, since a variable
|
|
* number of padding bytes precede the token and data.
|
|
* + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
|
|
* + N(AC) (== 1..many) bytes of all-ones
|
|
*
|
|
* In this case we currently only have minimal speedups here:
|
|
* when N(CR) == 1 we can avoid I/O in response_get().
|
|
*/
|
|
if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
|
|
cp += 2; /* min(N(CR)) + status */
|
|
/* R1 */
|
|
} else {
|
|
cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
|
|
if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
|
|
cp++;
|
|
else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
|
|
cp += 4;
|
|
else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
|
|
cp = data->status + sizeof(data->status);
|
|
/* else: R1 (most commands) */
|
|
}
|
|
|
|
dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
|
|
cmd->opcode, maptype(cmd));
|
|
|
|
/* send command, leaving chipselect active */
|
|
spi_message_init(&host->m);
|
|
|
|
t = &host->t;
|
|
memset(t, 0, sizeof(*t));
|
|
t->tx_buf = t->rx_buf = data->status;
|
|
t->tx_dma = t->rx_dma = host->data_dma;
|
|
t->len = cp - data->status;
|
|
t->cs_change = 1;
|
|
spi_message_add_tail(t, &host->m);
|
|
|
|
if (host->dma_dev) {
|
|
host->m.is_dma_mapped = 1;
|
|
dma_sync_single_for_device(host->dma_dev,
|
|
host->data_dma, sizeof(*host->data),
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
status = spi_sync(host->spi, &host->m);
|
|
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
host->data_dma, sizeof(*host->data),
|
|
DMA_BIDIRECTIONAL);
|
|
if (status < 0) {
|
|
dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
|
|
cmd->error = status;
|
|
return status;
|
|
}
|
|
|
|
/* after no-data commands and STOP_TRANSMISSION, chipselect off */
|
|
return mmc_spi_response_get(host, cmd, cs_on);
|
|
}
|
|
|
|
/* Build data message with up to four separate transfers. For TX, we
|
|
* start by writing the data token. And in most cases, we finish with
|
|
* a status transfer.
|
|
*
|
|
* We always provide TX data for data and CRC. The MMC/SD protocol
|
|
* requires us to write ones; but Linux defaults to writing zeroes;
|
|
* so we explicitly initialize it to all ones on RX paths.
|
|
*
|
|
* We also handle DMA mapping, so the underlying SPI controller does
|
|
* not need to (re)do it for each message.
|
|
*/
|
|
static void
|
|
mmc_spi_setup_data_message(
|
|
struct mmc_spi_host *host,
|
|
int multiple,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct spi_transfer *t;
|
|
struct scratch *scratch = host->data;
|
|
dma_addr_t dma = host->data_dma;
|
|
|
|
spi_message_init(&host->m);
|
|
if (dma)
|
|
host->m.is_dma_mapped = 1;
|
|
|
|
/* for reads, readblock() skips 0xff bytes before finding
|
|
* the token; for writes, this transfer issues that token.
|
|
*/
|
|
if (direction == DMA_TO_DEVICE) {
|
|
t = &host->token;
|
|
memset(t, 0, sizeof(*t));
|
|
t->len = 1;
|
|
if (multiple)
|
|
scratch->data_token = SPI_TOKEN_MULTI_WRITE;
|
|
else
|
|
scratch->data_token = SPI_TOKEN_SINGLE;
|
|
t->tx_buf = &scratch->data_token;
|
|
if (dma)
|
|
t->tx_dma = dma + offsetof(struct scratch, data_token);
|
|
spi_message_add_tail(t, &host->m);
|
|
}
|
|
|
|
/* Body of transfer is buffer, then CRC ...
|
|
* either TX-only, or RX with TX-ones.
|
|
*/
|
|
t = &host->t;
|
|
memset(t, 0, sizeof(*t));
|
|
t->tx_buf = host->ones;
|
|
t->tx_dma = host->ones_dma;
|
|
/* length and actual buffer info are written later */
|
|
spi_message_add_tail(t, &host->m);
|
|
|
|
t = &host->crc;
|
|
memset(t, 0, sizeof(*t));
|
|
t->len = 2;
|
|
if (direction == DMA_TO_DEVICE) {
|
|
/* the actual CRC may get written later */
|
|
t->tx_buf = &scratch->crc_val;
|
|
if (dma)
|
|
t->tx_dma = dma + offsetof(struct scratch, crc_val);
|
|
} else {
|
|
t->tx_buf = host->ones;
|
|
t->tx_dma = host->ones_dma;
|
|
t->rx_buf = &scratch->crc_val;
|
|
if (dma)
|
|
t->rx_dma = dma + offsetof(struct scratch, crc_val);
|
|
}
|
|
spi_message_add_tail(t, &host->m);
|
|
|
|
/*
|
|
* A single block read is followed by N(EC) [0+] all-ones bytes
|
|
* before deselect ... don't bother.
|
|
*
|
|
* Multiblock reads are followed by N(AC) [1+] all-ones bytes before
|
|
* the next block is read, or a STOP_TRANSMISSION is issued. We'll
|
|
* collect that single byte, so readblock() doesn't need to.
|
|
*
|
|
* For a write, the one-byte data response follows immediately, then
|
|
* come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
|
|
* Then single block reads may deselect, and multiblock ones issue
|
|
* the next token (next data block, or STOP_TRAN). We can try to
|
|
* minimize I/O ops by using a single read to collect end-of-busy.
|
|
*/
|
|
if (multiple || direction == DMA_TO_DEVICE) {
|
|
t = &host->early_status;
|
|
memset(t, 0, sizeof(*t));
|
|
t->len = (direction == DMA_TO_DEVICE)
|
|
? sizeof(scratch->status)
|
|
: 1;
|
|
t->tx_buf = host->ones;
|
|
t->tx_dma = host->ones_dma;
|
|
t->rx_buf = scratch->status;
|
|
if (dma)
|
|
t->rx_dma = dma + offsetof(struct scratch, status);
|
|
t->cs_change = 1;
|
|
spi_message_add_tail(t, &host->m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write one block:
|
|
* - caller handled preceding N(WR) [1+] all-ones bytes
|
|
* - data block
|
|
* + token
|
|
* + data bytes
|
|
* + crc16
|
|
* - an all-ones byte ... card writes a data-response byte
|
|
* - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
|
|
*
|
|
* Return negative errno, else success.
|
|
*/
|
|
static int
|
|
mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
|
|
unsigned long timeout)
|
|
{
|
|
struct spi_device *spi = host->spi;
|
|
int status, i;
|
|
struct scratch *scratch = host->data;
|
|
u32 pattern;
|
|
|
|
if (host->mmc->use_spi_crc)
|
|
scratch->crc_val = cpu_to_be16(
|
|
crc_itu_t(0, t->tx_buf, t->len));
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_device(host->dma_dev,
|
|
host->data_dma, sizeof(*scratch),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
status = spi_sync(spi, &host->m);
|
|
|
|
if (status != 0) {
|
|
dev_dbg(&spi->dev, "write error (%d)\n", status);
|
|
return status;
|
|
}
|
|
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
host->data_dma, sizeof(*scratch),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
/*
|
|
* Get the transmission data-response reply. It must follow
|
|
* immediately after the data block we transferred. This reply
|
|
* doesn't necessarily tell whether the write operation succeeded;
|
|
* it just says if the transmission was ok and whether *earlier*
|
|
* writes succeeded; see the standard.
|
|
*
|
|
* In practice, there are (even modern SDHC-)cards which are late
|
|
* in sending the response, and miss the time frame by a few bits,
|
|
* so we have to cope with this situation and check the response
|
|
* bit-by-bit. Arggh!!!
|
|
*/
|
|
pattern = scratch->status[0] << 24;
|
|
pattern |= scratch->status[1] << 16;
|
|
pattern |= scratch->status[2] << 8;
|
|
pattern |= scratch->status[3];
|
|
|
|
/* First 3 bit of pattern are undefined */
|
|
pattern |= 0xE0000000;
|
|
|
|
/* left-adjust to leading 0 bit */
|
|
while (pattern & 0x80000000)
|
|
pattern <<= 1;
|
|
/* right-adjust for pattern matching. Code is in bit 4..0 now. */
|
|
pattern >>= 27;
|
|
|
|
switch (pattern) {
|
|
case SPI_RESPONSE_ACCEPTED:
|
|
status = 0;
|
|
break;
|
|
case SPI_RESPONSE_CRC_ERR:
|
|
/* host shall then issue MMC_STOP_TRANSMISSION */
|
|
status = -EILSEQ;
|
|
break;
|
|
case SPI_RESPONSE_WRITE_ERR:
|
|
/* host shall then issue MMC_STOP_TRANSMISSION,
|
|
* and should MMC_SEND_STATUS to sort it out
|
|
*/
|
|
status = -EIO;
|
|
break;
|
|
default:
|
|
status = -EPROTO;
|
|
break;
|
|
}
|
|
if (status != 0) {
|
|
dev_dbg(&spi->dev, "write error %02x (%d)\n",
|
|
scratch->status[0], status);
|
|
return status;
|
|
}
|
|
|
|
t->tx_buf += t->len;
|
|
if (host->dma_dev)
|
|
t->tx_dma += t->len;
|
|
|
|
/* Return when not busy. If we didn't collect that status yet,
|
|
* we'll need some more I/O.
|
|
*/
|
|
for (i = 4; i < sizeof(scratch->status); i++) {
|
|
/* card is non-busy if the most recent bit is 1 */
|
|
if (scratch->status[i] & 0x01)
|
|
return 0;
|
|
}
|
|
return mmc_spi_wait_unbusy(host, timeout);
|
|
}
|
|
|
|
/*
|
|
* Read one block:
|
|
* - skip leading all-ones bytes ... either
|
|
* + N(AC) [1..f(clock,CSD)] usually, else
|
|
* + N(CX) [0..8] when reading CSD or CID
|
|
* - data block
|
|
* + token ... if error token, no data or crc
|
|
* + data bytes
|
|
* + crc16
|
|
*
|
|
* After single block reads, we're done; N(EC) [0+] all-ones bytes follow
|
|
* before dropping chipselect.
|
|
*
|
|
* For multiblock reads, caller either reads the next block or issues a
|
|
* STOP_TRANSMISSION command.
|
|
*/
|
|
static int
|
|
mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
|
|
unsigned long timeout)
|
|
{
|
|
struct spi_device *spi = host->spi;
|
|
int status;
|
|
struct scratch *scratch = host->data;
|
|
unsigned int bitshift;
|
|
u8 leftover;
|
|
|
|
/* At least one SD card sends an all-zeroes byte when N(CX)
|
|
* applies, before the all-ones bytes ... just cope with that.
|
|
*/
|
|
status = mmc_spi_readbytes(host, 1);
|
|
if (status < 0)
|
|
return status;
|
|
status = scratch->status[0];
|
|
if (status == 0xff || status == 0)
|
|
status = mmc_spi_readtoken(host, timeout);
|
|
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
|
|
return status;
|
|
}
|
|
|
|
/* The token may be bit-shifted...
|
|
* the first 0-bit precedes the data stream.
|
|
*/
|
|
bitshift = 7;
|
|
while (status & 0x80) {
|
|
status <<= 1;
|
|
bitshift--;
|
|
}
|
|
leftover = status << 1;
|
|
|
|
if (host->dma_dev) {
|
|
dma_sync_single_for_device(host->dma_dev,
|
|
host->data_dma, sizeof(*scratch),
|
|
DMA_BIDIRECTIONAL);
|
|
dma_sync_single_for_device(host->dma_dev,
|
|
t->rx_dma, t->len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
status = spi_sync(spi, &host->m);
|
|
|
|
if (host->dma_dev) {
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
host->data_dma, sizeof(*scratch),
|
|
DMA_BIDIRECTIONAL);
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
t->rx_dma, t->len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
if (bitshift) {
|
|
/* Walk through the data and the crc and do
|
|
* all the magic to get byte-aligned data.
|
|
*/
|
|
u8 *cp = t->rx_buf;
|
|
unsigned int len;
|
|
unsigned int bitright = 8 - bitshift;
|
|
u8 temp;
|
|
for (len = t->len; len; len--) {
|
|
temp = *cp;
|
|
*cp++ = leftover | (temp >> bitshift);
|
|
leftover = temp << bitright;
|
|
}
|
|
cp = (u8 *) &scratch->crc_val;
|
|
temp = *cp;
|
|
*cp++ = leftover | (temp >> bitshift);
|
|
leftover = temp << bitright;
|
|
temp = *cp;
|
|
*cp = leftover | (temp >> bitshift);
|
|
}
|
|
|
|
if (host->mmc->use_spi_crc) {
|
|
u16 crc = crc_itu_t(0, t->rx_buf, t->len);
|
|
|
|
be16_to_cpus(&scratch->crc_val);
|
|
if (scratch->crc_val != crc) {
|
|
dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
|
|
"computed=0x%04x len=%d\n",
|
|
scratch->crc_val, crc, t->len);
|
|
return -EILSEQ;
|
|
}
|
|
}
|
|
|
|
t->rx_buf += t->len;
|
|
if (host->dma_dev)
|
|
t->rx_dma += t->len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* An MMC/SD data stage includes one or more blocks, optional CRCs,
|
|
* and inline handshaking. That handhaking makes it unlike most
|
|
* other SPI protocol stacks.
|
|
*/
|
|
static void
|
|
mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
|
|
struct mmc_data *data, u32 blk_size)
|
|
{
|
|
struct spi_device *spi = host->spi;
|
|
struct device *dma_dev = host->dma_dev;
|
|
struct spi_transfer *t;
|
|
enum dma_data_direction direction;
|
|
struct scatterlist *sg;
|
|
unsigned n_sg;
|
|
int multiple = (data->blocks > 1);
|
|
u32 clock_rate;
|
|
unsigned long timeout;
|
|
|
|
if (data->flags & MMC_DATA_READ)
|
|
direction = DMA_FROM_DEVICE;
|
|
else
|
|
direction = DMA_TO_DEVICE;
|
|
mmc_spi_setup_data_message(host, multiple, direction);
|
|
t = &host->t;
|
|
|
|
if (t->speed_hz)
|
|
clock_rate = t->speed_hz;
|
|
else
|
|
clock_rate = spi->max_speed_hz;
|
|
|
|
timeout = data->timeout_ns +
|
|
data->timeout_clks * 1000000 / clock_rate;
|
|
timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
|
|
|
|
/* Handle scatterlist segments one at a time, with synch for
|
|
* each 512-byte block
|
|
*/
|
|
for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
|
|
int status = 0;
|
|
dma_addr_t dma_addr = 0;
|
|
void *kmap_addr;
|
|
unsigned length = sg->length;
|
|
enum dma_data_direction dir = direction;
|
|
|
|
/* set up dma mapping for controller drivers that might
|
|
* use DMA ... though they may fall back to PIO
|
|
*/
|
|
if (dma_dev) {
|
|
/* never invalidate whole *shared* pages ... */
|
|
if ((sg->offset != 0 || length != PAGE_SIZE)
|
|
&& dir == DMA_FROM_DEVICE)
|
|
dir = DMA_BIDIRECTIONAL;
|
|
|
|
dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
|
|
PAGE_SIZE, dir);
|
|
if (direction == DMA_TO_DEVICE)
|
|
t->tx_dma = dma_addr + sg->offset;
|
|
else
|
|
t->rx_dma = dma_addr + sg->offset;
|
|
}
|
|
|
|
/* allow pio too; we don't allow highmem */
|
|
kmap_addr = kmap(sg_page(sg));
|
|
if (direction == DMA_TO_DEVICE)
|
|
t->tx_buf = kmap_addr + sg->offset;
|
|
else
|
|
t->rx_buf = kmap_addr + sg->offset;
|
|
|
|
/* transfer each block, and update request status */
|
|
while (length) {
|
|
t->len = min(length, blk_size);
|
|
|
|
dev_dbg(&host->spi->dev,
|
|
" mmc_spi: %s block, %d bytes\n",
|
|
(direction == DMA_TO_DEVICE)
|
|
? "write"
|
|
: "read",
|
|
t->len);
|
|
|
|
if (direction == DMA_TO_DEVICE)
|
|
status = mmc_spi_writeblock(host, t, timeout);
|
|
else
|
|
status = mmc_spi_readblock(host, t, timeout);
|
|
if (status < 0)
|
|
break;
|
|
|
|
data->bytes_xfered += t->len;
|
|
length -= t->len;
|
|
|
|
if (!multiple)
|
|
break;
|
|
}
|
|
|
|
/* discard mappings */
|
|
if (direction == DMA_FROM_DEVICE)
|
|
flush_kernel_dcache_page(sg_page(sg));
|
|
kunmap(sg_page(sg));
|
|
if (dma_dev)
|
|
dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
|
|
|
|
if (status < 0) {
|
|
data->error = status;
|
|
dev_dbg(&spi->dev, "%s status %d\n",
|
|
(direction == DMA_TO_DEVICE)
|
|
? "write" : "read",
|
|
status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
|
|
* can be issued before multiblock writes. Unlike its more widely
|
|
* documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
|
|
* that can affect the STOP_TRAN logic. Complete (and current)
|
|
* MMC specs should sort that out before Linux starts using CMD23.
|
|
*/
|
|
if (direction == DMA_TO_DEVICE && multiple) {
|
|
struct scratch *scratch = host->data;
|
|
int tmp;
|
|
const unsigned statlen = sizeof(scratch->status);
|
|
|
|
dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
|
|
|
|
/* Tweak the per-block message we set up earlier by morphing
|
|
* it to hold single buffer with the token followed by some
|
|
* all-ones bytes ... skip N(BR) (0..1), scan the rest for
|
|
* "not busy any longer" status, and leave chip selected.
|
|
*/
|
|
INIT_LIST_HEAD(&host->m.transfers);
|
|
list_add(&host->early_status.transfer_list,
|
|
&host->m.transfers);
|
|
|
|
memset(scratch->status, 0xff, statlen);
|
|
scratch->status[0] = SPI_TOKEN_STOP_TRAN;
|
|
|
|
host->early_status.tx_buf = host->early_status.rx_buf;
|
|
host->early_status.tx_dma = host->early_status.rx_dma;
|
|
host->early_status.len = statlen;
|
|
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_device(host->dma_dev,
|
|
host->data_dma, sizeof(*scratch),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
tmp = spi_sync(spi, &host->m);
|
|
|
|
if (host->dma_dev)
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
host->data_dma, sizeof(*scratch),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
if (tmp < 0) {
|
|
if (!data->error)
|
|
data->error = tmp;
|
|
return;
|
|
}
|
|
|
|
/* Ideally we collected "not busy" status with one I/O,
|
|
* avoiding wasteful byte-at-a-time scanning... but more
|
|
* I/O is often needed.
|
|
*/
|
|
for (tmp = 2; tmp < statlen; tmp++) {
|
|
if (scratch->status[tmp] != 0)
|
|
return;
|
|
}
|
|
tmp = mmc_spi_wait_unbusy(host, timeout);
|
|
if (tmp < 0 && !data->error)
|
|
data->error = tmp;
|
|
}
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* MMC driver implementation -- the interface to the MMC stack
|
|
*/
|
|
|
|
static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
|
|
{
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
|
int status = -EINVAL;
|
|
|
|
#ifdef DEBUG
|
|
/* MMC core and layered drivers *MUST* issue SPI-aware commands */
|
|
{
|
|
struct mmc_command *cmd;
|
|
int invalid = 0;
|
|
|
|
cmd = mrq->cmd;
|
|
if (!mmc_spi_resp_type(cmd)) {
|
|
dev_dbg(&host->spi->dev, "bogus command\n");
|
|
cmd->error = -EINVAL;
|
|
invalid = 1;
|
|
}
|
|
|
|
cmd = mrq->stop;
|
|
if (cmd && !mmc_spi_resp_type(cmd)) {
|
|
dev_dbg(&host->spi->dev, "bogus STOP command\n");
|
|
cmd->error = -EINVAL;
|
|
invalid = 1;
|
|
}
|
|
|
|
if (invalid) {
|
|
dump_stack();
|
|
mmc_request_done(host->mmc, mrq);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* issue command; then optionally data and stop */
|
|
status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
|
|
if (status == 0 && mrq->data) {
|
|
mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
|
|
if (mrq->stop)
|
|
status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
|
|
else
|
|
mmc_cs_off(host);
|
|
}
|
|
|
|
mmc_request_done(host->mmc, mrq);
|
|
}
|
|
|
|
/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
|
|
*
|
|
* NOTE that here we can't know that the card has just been powered up;
|
|
* not all MMC/SD sockets support power switching.
|
|
*
|
|
* FIXME when the card is still in SPI mode, e.g. from a previous kernel,
|
|
* this doesn't seem to do the right thing at all...
|
|
*/
|
|
static void mmc_spi_initsequence(struct mmc_spi_host *host)
|
|
{
|
|
/* Try to be very sure any previous command has completed;
|
|
* wait till not-busy, skip debris from any old commands.
|
|
*/
|
|
mmc_spi_wait_unbusy(host, r1b_timeout);
|
|
mmc_spi_readbytes(host, 10);
|
|
|
|
/*
|
|
* Do a burst with chipselect active-high. We need to do this to
|
|
* meet the requirement of 74 clock cycles with both chipselect
|
|
* and CMD (MOSI) high before CMD0 ... after the card has been
|
|
* powered up to Vdd(min), and so is ready to take commands.
|
|
*
|
|
* Some cards are particularly needy of this (e.g. Viking "SD256")
|
|
* while most others don't seem to care.
|
|
*
|
|
* Note that this is one of the places MMC/SD plays games with the
|
|
* SPI protocol. Another is that when chipselect is released while
|
|
* the card returns BUSY status, the clock must issue several cycles
|
|
* with chipselect high before the card will stop driving its output.
|
|
*/
|
|
host->spi->mode |= SPI_CS_HIGH;
|
|
if (spi_setup(host->spi) != 0) {
|
|
/* Just warn; most cards work without it. */
|
|
dev_warn(&host->spi->dev,
|
|
"can't change chip-select polarity\n");
|
|
host->spi->mode &= ~SPI_CS_HIGH;
|
|
} else {
|
|
mmc_spi_readbytes(host, 18);
|
|
|
|
host->spi->mode &= ~SPI_CS_HIGH;
|
|
if (spi_setup(host->spi) != 0) {
|
|
/* Wot, we can't get the same setup we had before? */
|
|
dev_err(&host->spi->dev,
|
|
"can't restore chip-select polarity\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *mmc_powerstring(u8 power_mode)
|
|
{
|
|
switch (power_mode) {
|
|
case MMC_POWER_OFF: return "off";
|
|
case MMC_POWER_UP: return "up";
|
|
case MMC_POWER_ON: return "on";
|
|
}
|
|
return "?";
|
|
}
|
|
|
|
static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
|
|
{
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
|
|
|
if (host->power_mode != ios->power_mode) {
|
|
int canpower;
|
|
|
|
canpower = host->pdata && host->pdata->setpower;
|
|
|
|
dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
|
|
mmc_powerstring(ios->power_mode),
|
|
ios->vdd,
|
|
canpower ? ", can switch" : "");
|
|
|
|
/* switch power on/off if possible, accounting for
|
|
* max 250msec powerup time if needed.
|
|
*/
|
|
if (canpower) {
|
|
switch (ios->power_mode) {
|
|
case MMC_POWER_OFF:
|
|
case MMC_POWER_UP:
|
|
host->pdata->setpower(&host->spi->dev,
|
|
ios->vdd);
|
|
if (ios->power_mode == MMC_POWER_UP)
|
|
msleep(host->powerup_msecs);
|
|
}
|
|
}
|
|
|
|
/* See 6.4.1 in the simplified SD card physical spec 2.0 */
|
|
if (ios->power_mode == MMC_POWER_ON)
|
|
mmc_spi_initsequence(host);
|
|
|
|
/* If powering down, ground all card inputs to avoid power
|
|
* delivery from data lines! On a shared SPI bus, this
|
|
* will probably be temporary; 6.4.2 of the simplified SD
|
|
* spec says this must last at least 1msec.
|
|
*
|
|
* - Clock low means CPOL 0, e.g. mode 0
|
|
* - MOSI low comes from writing zero
|
|
* - Chipselect is usually active low...
|
|
*/
|
|
if (canpower && ios->power_mode == MMC_POWER_OFF) {
|
|
int mres;
|
|
u8 nullbyte = 0;
|
|
|
|
host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
|
|
mres = spi_setup(host->spi);
|
|
if (mres < 0)
|
|
dev_dbg(&host->spi->dev,
|
|
"switch to SPI mode 0 failed\n");
|
|
|
|
if (spi_write(host->spi, &nullbyte, 1) < 0)
|
|
dev_dbg(&host->spi->dev,
|
|
"put spi signals to low failed\n");
|
|
|
|
/*
|
|
* Now clock should be low due to spi mode 0;
|
|
* MOSI should be low because of written 0x00;
|
|
* chipselect should be low (it is active low)
|
|
* power supply is off, so now MMC is off too!
|
|
*
|
|
* FIXME no, chipselect can be high since the
|
|
* device is inactive and SPI_CS_HIGH is clear...
|
|
*/
|
|
msleep(10);
|
|
if (mres == 0) {
|
|
host->spi->mode |= (SPI_CPOL|SPI_CPHA);
|
|
mres = spi_setup(host->spi);
|
|
if (mres < 0)
|
|
dev_dbg(&host->spi->dev,
|
|
"switch back to SPI mode 3"
|
|
" failed\n");
|
|
}
|
|
}
|
|
|
|
host->power_mode = ios->power_mode;
|
|
}
|
|
|
|
if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
|
|
int status;
|
|
|
|
host->spi->max_speed_hz = ios->clock;
|
|
status = spi_setup(host->spi);
|
|
dev_dbg(&host->spi->dev,
|
|
"mmc_spi: clock to %d Hz, %d\n",
|
|
host->spi->max_speed_hz, status);
|
|
}
|
|
}
|
|
|
|
static int mmc_spi_get_ro(struct mmc_host *mmc)
|
|
{
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
|
|
|
if (host->pdata && host->pdata->get_ro)
|
|
return !!host->pdata->get_ro(mmc->parent);
|
|
/*
|
|
* Board doesn't support read only detection; let the mmc core
|
|
* decide what to do.
|
|
*/
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int mmc_spi_get_cd(struct mmc_host *mmc)
|
|
{
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
|
|
|
if (host->pdata && host->pdata->get_cd)
|
|
return !!host->pdata->get_cd(mmc->parent);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static const struct mmc_host_ops mmc_spi_ops = {
|
|
.request = mmc_spi_request,
|
|
.set_ios = mmc_spi_set_ios,
|
|
.get_ro = mmc_spi_get_ro,
|
|
.get_cd = mmc_spi_get_cd,
|
|
};
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* SPI driver implementation
|
|
*/
|
|
|
|
static irqreturn_t
|
|
mmc_spi_detect_irq(int irq, void *mmc)
|
|
{
|
|
struct mmc_spi_host *host = mmc_priv(mmc);
|
|
u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
|
|
|
|
mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
struct count_children {
|
|
unsigned n;
|
|
struct bus_type *bus;
|
|
};
|
|
|
|
static int maybe_count_child(struct device *dev, void *c)
|
|
{
|
|
struct count_children *ccp = c;
|
|
|
|
if (dev->bus == ccp->bus) {
|
|
if (ccp->n)
|
|
return -EBUSY;
|
|
ccp->n++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mmc_spi_probe(struct spi_device *spi)
|
|
{
|
|
void *ones;
|
|
struct mmc_host *mmc;
|
|
struct mmc_spi_host *host;
|
|
int status;
|
|
|
|
/* MMC and SD specs only seem to care that sampling is on the
|
|
* rising edge ... meaning SPI modes 0 or 3. So either SPI mode
|
|
* should be legit. We'll use mode 0 since the steady state is 0,
|
|
* which is appropriate for hotplugging, unless the platform data
|
|
* specify mode 3 (if hardware is not compatible to mode 0).
|
|
*/
|
|
if (spi->mode != SPI_MODE_3)
|
|
spi->mode = SPI_MODE_0;
|
|
spi->bits_per_word = 8;
|
|
|
|
status = spi_setup(spi);
|
|
if (status < 0) {
|
|
dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
|
|
spi->mode, spi->max_speed_hz / 1000,
|
|
status);
|
|
return status;
|
|
}
|
|
|
|
/* We can use the bus safely iff nobody else will interfere with us.
|
|
* Most commands consist of one SPI message to issue a command, then
|
|
* several more to collect its response, then possibly more for data
|
|
* transfer. Clocking access to other devices during that period will
|
|
* corrupt the command execution.
|
|
*
|
|
* Until we have software primitives which guarantee non-interference,
|
|
* we'll aim for a hardware-level guarantee.
|
|
*
|
|
* REVISIT we can't guarantee another device won't be added later...
|
|
*/
|
|
if (spi->master->num_chipselect > 1) {
|
|
struct count_children cc;
|
|
|
|
cc.n = 0;
|
|
cc.bus = spi->dev.bus;
|
|
status = device_for_each_child(spi->dev.parent, &cc,
|
|
maybe_count_child);
|
|
if (status < 0) {
|
|
dev_err(&spi->dev, "can't share SPI bus\n");
|
|
return status;
|
|
}
|
|
|
|
dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
|
|
}
|
|
|
|
/* We need a supply of ones to transmit. This is the only time
|
|
* the CPU touches these, so cache coherency isn't a concern.
|
|
*
|
|
* NOTE if many systems use more than one MMC-over-SPI connector
|
|
* it'd save some memory to share this. That's evidently rare.
|
|
*/
|
|
status = -ENOMEM;
|
|
ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
|
|
if (!ones)
|
|
goto nomem;
|
|
memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
|
|
|
|
mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
|
|
if (!mmc)
|
|
goto nomem;
|
|
|
|
mmc->ops = &mmc_spi_ops;
|
|
mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
|
|
mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
|
|
mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
|
|
mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
|
|
mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
|
|
|
|
mmc->caps = MMC_CAP_SPI;
|
|
|
|
/* SPI doesn't need the lowspeed device identification thing for
|
|
* MMC or SD cards, since it never comes up in open drain mode.
|
|
* That's good; some SPI masters can't handle very low speeds!
|
|
*
|
|
* However, low speed SDIO cards need not handle over 400 KHz;
|
|
* that's the only reason not to use a few MHz for f_min (until
|
|
* the upper layer reads the target frequency from the CSD).
|
|
*/
|
|
mmc->f_min = 400000;
|
|
mmc->f_max = spi->max_speed_hz;
|
|
|
|
host = mmc_priv(mmc);
|
|
host->mmc = mmc;
|
|
host->spi = spi;
|
|
|
|
host->ones = ones;
|
|
|
|
/* Platform data is used to hook up things like card sensing
|
|
* and power switching gpios.
|
|
*/
|
|
host->pdata = mmc_spi_get_pdata(spi);
|
|
if (host->pdata)
|
|
mmc->ocr_avail = host->pdata->ocr_mask;
|
|
if (!mmc->ocr_avail) {
|
|
dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
|
|
mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
|
|
}
|
|
if (host->pdata && host->pdata->setpower) {
|
|
host->powerup_msecs = host->pdata->powerup_msecs;
|
|
if (!host->powerup_msecs || host->powerup_msecs > 250)
|
|
host->powerup_msecs = 250;
|
|
}
|
|
|
|
dev_set_drvdata(&spi->dev, mmc);
|
|
|
|
/* preallocate dma buffers */
|
|
host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
|
|
if (!host->data)
|
|
goto fail_nobuf1;
|
|
|
|
if (spi->master->dev.parent->dma_mask) {
|
|
struct device *dev = spi->master->dev.parent;
|
|
|
|
host->dma_dev = dev;
|
|
host->ones_dma = dma_map_single(dev, ones,
|
|
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
|
|
host->data_dma = dma_map_single(dev, host->data,
|
|
sizeof(*host->data), DMA_BIDIRECTIONAL);
|
|
|
|
/* REVISIT in theory those map operations can fail... */
|
|
|
|
dma_sync_single_for_cpu(host->dma_dev,
|
|
host->data_dma, sizeof(*host->data),
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
/* setup message for status/busy readback */
|
|
spi_message_init(&host->readback);
|
|
host->readback.is_dma_mapped = (host->dma_dev != NULL);
|
|
|
|
spi_message_add_tail(&host->status, &host->readback);
|
|
host->status.tx_buf = host->ones;
|
|
host->status.tx_dma = host->ones_dma;
|
|
host->status.rx_buf = &host->data->status;
|
|
host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
|
|
host->status.cs_change = 1;
|
|
|
|
/* register card detect irq */
|
|
if (host->pdata && host->pdata->init) {
|
|
status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
|
|
if (status != 0)
|
|
goto fail_glue_init;
|
|
}
|
|
|
|
/* pass platform capabilities, if any */
|
|
if (host->pdata)
|
|
mmc->caps |= host->pdata->caps;
|
|
|
|
status = mmc_add_host(mmc);
|
|
if (status != 0)
|
|
goto fail_add_host;
|
|
|
|
dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
|
|
dev_name(&mmc->class_dev),
|
|
host->dma_dev ? "" : ", no DMA",
|
|
(host->pdata && host->pdata->get_ro)
|
|
? "" : ", no WP",
|
|
(host->pdata && host->pdata->setpower)
|
|
? "" : ", no poweroff",
|
|
(mmc->caps & MMC_CAP_NEEDS_POLL)
|
|
? ", cd polling" : "");
|
|
return 0;
|
|
|
|
fail_add_host:
|
|
mmc_remove_host (mmc);
|
|
fail_glue_init:
|
|
if (host->dma_dev)
|
|
dma_unmap_single(host->dma_dev, host->data_dma,
|
|
sizeof(*host->data), DMA_BIDIRECTIONAL);
|
|
kfree(host->data);
|
|
|
|
fail_nobuf1:
|
|
mmc_free_host(mmc);
|
|
mmc_spi_put_pdata(spi);
|
|
dev_set_drvdata(&spi->dev, NULL);
|
|
|
|
nomem:
|
|
kfree(ones);
|
|
return status;
|
|
}
|
|
|
|
|
|
static int __devexit mmc_spi_remove(struct spi_device *spi)
|
|
{
|
|
struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
|
|
struct mmc_spi_host *host;
|
|
|
|
if (mmc) {
|
|
host = mmc_priv(mmc);
|
|
|
|
/* prevent new mmc_detect_change() calls */
|
|
if (host->pdata && host->pdata->exit)
|
|
host->pdata->exit(&spi->dev, mmc);
|
|
|
|
mmc_remove_host(mmc);
|
|
|
|
if (host->dma_dev) {
|
|
dma_unmap_single(host->dma_dev, host->ones_dma,
|
|
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
|
|
dma_unmap_single(host->dma_dev, host->data_dma,
|
|
sizeof(*host->data), DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
kfree(host->data);
|
|
kfree(host->ones);
|
|
|
|
spi->max_speed_hz = mmc->f_max;
|
|
mmc_free_host(mmc);
|
|
mmc_spi_put_pdata(spi);
|
|
dev_set_drvdata(&spi->dev, NULL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct spi_driver mmc_spi_driver = {
|
|
.driver = {
|
|
.name = "mmc_spi",
|
|
.bus = &spi_bus_type,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = mmc_spi_probe,
|
|
.remove = __devexit_p(mmc_spi_remove),
|
|
};
|
|
|
|
|
|
static int __init mmc_spi_init(void)
|
|
{
|
|
return spi_register_driver(&mmc_spi_driver);
|
|
}
|
|
module_init(mmc_spi_init);
|
|
|
|
|
|
static void __exit mmc_spi_exit(void)
|
|
{
|
|
spi_unregister_driver(&mmc_spi_driver);
|
|
}
|
|
module_exit(mmc_spi_exit);
|
|
|
|
|
|
MODULE_AUTHOR("Mike Lavender, David Brownell, "
|
|
"Hans-Peter Nilsson, Jan Nikitenko");
|
|
MODULE_DESCRIPTION("SPI SD/MMC host driver");
|
|
MODULE_LICENSE("GPL");
|