mirror of
https://github.com/adulau/aha.git
synced 2024-12-31 21:26:18 +00:00
b560d8ad85
A couple of references to CONFIG_CLASSIC_RCU have survived. Although these are harmless, it is past time for them to go. The one in hardirq.h is strictly a readability problem. The two in pagemap.h appear to disable a !SMP performance optimization (which this patch re-enables). This does raise the issue as to whether pagemap.h should really be referring to the CPU implementation. Long term, I intend to make the RCU implementation driven by CONFIG_PREEMPT, at which point these should change from defined(CONFIG_TREE_RCU) to !defined(CONFIG_PREEMPT). In the meantime, is there something else that could be done in pagemap.h? Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <20090822050851.GA8414@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
453 lines
13 KiB
C
453 lines
13 KiB
C
#ifndef _LINUX_PAGEMAP_H
|
|
#define _LINUX_PAGEMAP_H
|
|
|
|
/*
|
|
* Copyright 1995 Linus Torvalds
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/hardirq.h> /* for in_interrupt() */
|
|
|
|
/*
|
|
* Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
|
|
* allocation mode flags.
|
|
*/
|
|
enum mapping_flags {
|
|
AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
|
|
AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
|
|
AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
|
|
AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
|
|
};
|
|
|
|
static inline void mapping_set_error(struct address_space *mapping, int error)
|
|
{
|
|
if (unlikely(error)) {
|
|
if (error == -ENOSPC)
|
|
set_bit(AS_ENOSPC, &mapping->flags);
|
|
else
|
|
set_bit(AS_EIO, &mapping->flags);
|
|
}
|
|
}
|
|
|
|
static inline void mapping_set_unevictable(struct address_space *mapping)
|
|
{
|
|
set_bit(AS_UNEVICTABLE, &mapping->flags);
|
|
}
|
|
|
|
static inline void mapping_clear_unevictable(struct address_space *mapping)
|
|
{
|
|
clear_bit(AS_UNEVICTABLE, &mapping->flags);
|
|
}
|
|
|
|
static inline int mapping_unevictable(struct address_space *mapping)
|
|
{
|
|
if (likely(mapping))
|
|
return test_bit(AS_UNEVICTABLE, &mapping->flags);
|
|
return !!mapping;
|
|
}
|
|
|
|
static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
|
|
{
|
|
return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
|
|
}
|
|
|
|
/*
|
|
* This is non-atomic. Only to be used before the mapping is activated.
|
|
* Probably needs a barrier...
|
|
*/
|
|
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
|
|
{
|
|
m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
|
|
(__force unsigned long)mask;
|
|
}
|
|
|
|
/*
|
|
* The page cache can done in larger chunks than
|
|
* one page, because it allows for more efficient
|
|
* throughput (it can then be mapped into user
|
|
* space in smaller chunks for same flexibility).
|
|
*
|
|
* Or rather, it _will_ be done in larger chunks.
|
|
*/
|
|
#define PAGE_CACHE_SHIFT PAGE_SHIFT
|
|
#define PAGE_CACHE_SIZE PAGE_SIZE
|
|
#define PAGE_CACHE_MASK PAGE_MASK
|
|
#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
|
|
|
|
#define page_cache_get(page) get_page(page)
|
|
#define page_cache_release(page) put_page(page)
|
|
void release_pages(struct page **pages, int nr, int cold);
|
|
|
|
/*
|
|
* speculatively take a reference to a page.
|
|
* If the page is free (_count == 0), then _count is untouched, and 0
|
|
* is returned. Otherwise, _count is incremented by 1 and 1 is returned.
|
|
*
|
|
* This function must be called inside the same rcu_read_lock() section as has
|
|
* been used to lookup the page in the pagecache radix-tree (or page table):
|
|
* this allows allocators to use a synchronize_rcu() to stabilize _count.
|
|
*
|
|
* Unless an RCU grace period has passed, the count of all pages coming out
|
|
* of the allocator must be considered unstable. page_count may return higher
|
|
* than expected, and put_page must be able to do the right thing when the
|
|
* page has been finished with, no matter what it is subsequently allocated
|
|
* for (because put_page is what is used here to drop an invalid speculative
|
|
* reference).
|
|
*
|
|
* This is the interesting part of the lockless pagecache (and lockless
|
|
* get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
|
|
* has the following pattern:
|
|
* 1. find page in radix tree
|
|
* 2. conditionally increment refcount
|
|
* 3. check the page is still in pagecache (if no, goto 1)
|
|
*
|
|
* Remove-side that cares about stability of _count (eg. reclaim) has the
|
|
* following (with tree_lock held for write):
|
|
* A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
|
|
* B. remove page from pagecache
|
|
* C. free the page
|
|
*
|
|
* There are 2 critical interleavings that matter:
|
|
* - 2 runs before A: in this case, A sees elevated refcount and bails out
|
|
* - A runs before 2: in this case, 2 sees zero refcount and retries;
|
|
* subsequently, B will complete and 1 will find no page, causing the
|
|
* lookup to return NULL.
|
|
*
|
|
* It is possible that between 1 and 2, the page is removed then the exact same
|
|
* page is inserted into the same position in pagecache. That's OK: the
|
|
* old find_get_page using tree_lock could equally have run before or after
|
|
* such a re-insertion, depending on order that locks are granted.
|
|
*
|
|
* Lookups racing against pagecache insertion isn't a big problem: either 1
|
|
* will find the page or it will not. Likewise, the old find_get_page could run
|
|
* either before the insertion or afterwards, depending on timing.
|
|
*/
|
|
static inline int page_cache_get_speculative(struct page *page)
|
|
{
|
|
VM_BUG_ON(in_interrupt());
|
|
|
|
#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
|
|
# ifdef CONFIG_PREEMPT
|
|
VM_BUG_ON(!in_atomic());
|
|
# endif
|
|
/*
|
|
* Preempt must be disabled here - we rely on rcu_read_lock doing
|
|
* this for us.
|
|
*
|
|
* Pagecache won't be truncated from interrupt context, so if we have
|
|
* found a page in the radix tree here, we have pinned its refcount by
|
|
* disabling preempt, and hence no need for the "speculative get" that
|
|
* SMP requires.
|
|
*/
|
|
VM_BUG_ON(page_count(page) == 0);
|
|
atomic_inc(&page->_count);
|
|
|
|
#else
|
|
if (unlikely(!get_page_unless_zero(page))) {
|
|
/*
|
|
* Either the page has been freed, or will be freed.
|
|
* In either case, retry here and the caller should
|
|
* do the right thing (see comments above).
|
|
*/
|
|
return 0;
|
|
}
|
|
#endif
|
|
VM_BUG_ON(PageTail(page));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Same as above, but add instead of inc (could just be merged)
|
|
*/
|
|
static inline int page_cache_add_speculative(struct page *page, int count)
|
|
{
|
|
VM_BUG_ON(in_interrupt());
|
|
|
|
#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
|
|
# ifdef CONFIG_PREEMPT
|
|
VM_BUG_ON(!in_atomic());
|
|
# endif
|
|
VM_BUG_ON(page_count(page) == 0);
|
|
atomic_add(count, &page->_count);
|
|
|
|
#else
|
|
if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
|
|
return 0;
|
|
#endif
|
|
VM_BUG_ON(PageCompound(page) && page != compound_head(page));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline int page_freeze_refs(struct page *page, int count)
|
|
{
|
|
return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
|
|
}
|
|
|
|
static inline void page_unfreeze_refs(struct page *page, int count)
|
|
{
|
|
VM_BUG_ON(page_count(page) != 0);
|
|
VM_BUG_ON(count == 0);
|
|
|
|
atomic_set(&page->_count, count);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern struct page *__page_cache_alloc(gfp_t gfp);
|
|
#else
|
|
static inline struct page *__page_cache_alloc(gfp_t gfp)
|
|
{
|
|
return alloc_pages(gfp, 0);
|
|
}
|
|
#endif
|
|
|
|
static inline struct page *page_cache_alloc(struct address_space *x)
|
|
{
|
|
return __page_cache_alloc(mapping_gfp_mask(x));
|
|
}
|
|
|
|
static inline struct page *page_cache_alloc_cold(struct address_space *x)
|
|
{
|
|
return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
|
|
}
|
|
|
|
typedef int filler_t(void *, struct page *);
|
|
|
|
extern struct page * find_get_page(struct address_space *mapping,
|
|
pgoff_t index);
|
|
extern struct page * find_lock_page(struct address_space *mapping,
|
|
pgoff_t index);
|
|
extern struct page * find_or_create_page(struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask);
|
|
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
|
|
unsigned int nr_pages, struct page **pages);
|
|
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
|
|
unsigned int nr_pages, struct page **pages);
|
|
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
|
|
int tag, unsigned int nr_pages, struct page **pages);
|
|
|
|
struct page *grab_cache_page_write_begin(struct address_space *mapping,
|
|
pgoff_t index, unsigned flags);
|
|
|
|
/*
|
|
* Returns locked page at given index in given cache, creating it if needed.
|
|
*/
|
|
static inline struct page *grab_cache_page(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
|
|
}
|
|
|
|
extern struct page * grab_cache_page_nowait(struct address_space *mapping,
|
|
pgoff_t index);
|
|
extern struct page * read_cache_page_async(struct address_space *mapping,
|
|
pgoff_t index, filler_t *filler,
|
|
void *data);
|
|
extern struct page * read_cache_page(struct address_space *mapping,
|
|
pgoff_t index, filler_t *filler,
|
|
void *data);
|
|
extern int read_cache_pages(struct address_space *mapping,
|
|
struct list_head *pages, filler_t *filler, void *data);
|
|
|
|
static inline struct page *read_mapping_page_async(
|
|
struct address_space *mapping,
|
|
pgoff_t index, void *data)
|
|
{
|
|
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
|
|
return read_cache_page_async(mapping, index, filler, data);
|
|
}
|
|
|
|
static inline struct page *read_mapping_page(struct address_space *mapping,
|
|
pgoff_t index, void *data)
|
|
{
|
|
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
|
|
return read_cache_page(mapping, index, filler, data);
|
|
}
|
|
|
|
/*
|
|
* Return byte-offset into filesystem object for page.
|
|
*/
|
|
static inline loff_t page_offset(struct page *page)
|
|
{
|
|
return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
|
|
}
|
|
|
|
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
|
|
pgoff += vma->vm_pgoff;
|
|
return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
}
|
|
|
|
extern void __lock_page(struct page *page);
|
|
extern int __lock_page_killable(struct page *page);
|
|
extern void __lock_page_nosync(struct page *page);
|
|
extern void unlock_page(struct page *page);
|
|
|
|
static inline void __set_page_locked(struct page *page)
|
|
{
|
|
__set_bit(PG_locked, &page->flags);
|
|
}
|
|
|
|
static inline void __clear_page_locked(struct page *page)
|
|
{
|
|
__clear_bit(PG_locked, &page->flags);
|
|
}
|
|
|
|
static inline int trylock_page(struct page *page)
|
|
{
|
|
return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
|
|
}
|
|
|
|
/*
|
|
* lock_page may only be called if we have the page's inode pinned.
|
|
*/
|
|
static inline void lock_page(struct page *page)
|
|
{
|
|
might_sleep();
|
|
if (!trylock_page(page))
|
|
__lock_page(page);
|
|
}
|
|
|
|
/*
|
|
* lock_page_killable is like lock_page but can be interrupted by fatal
|
|
* signals. It returns 0 if it locked the page and -EINTR if it was
|
|
* killed while waiting.
|
|
*/
|
|
static inline int lock_page_killable(struct page *page)
|
|
{
|
|
might_sleep();
|
|
if (!trylock_page(page))
|
|
return __lock_page_killable(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* lock_page_nosync should only be used if we can't pin the page's inode.
|
|
* Doesn't play quite so well with block device plugging.
|
|
*/
|
|
static inline void lock_page_nosync(struct page *page)
|
|
{
|
|
might_sleep();
|
|
if (!trylock_page(page))
|
|
__lock_page_nosync(page);
|
|
}
|
|
|
|
/*
|
|
* This is exported only for wait_on_page_locked/wait_on_page_writeback.
|
|
* Never use this directly!
|
|
*/
|
|
extern void wait_on_page_bit(struct page *page, int bit_nr);
|
|
|
|
/*
|
|
* Wait for a page to be unlocked.
|
|
*
|
|
* This must be called with the caller "holding" the page,
|
|
* ie with increased "page->count" so that the page won't
|
|
* go away during the wait..
|
|
*/
|
|
static inline void wait_on_page_locked(struct page *page)
|
|
{
|
|
if (PageLocked(page))
|
|
wait_on_page_bit(page, PG_locked);
|
|
}
|
|
|
|
/*
|
|
* Wait for a page to complete writeback
|
|
*/
|
|
static inline void wait_on_page_writeback(struct page *page)
|
|
{
|
|
if (PageWriteback(page))
|
|
wait_on_page_bit(page, PG_writeback);
|
|
}
|
|
|
|
extern void end_page_writeback(struct page *page);
|
|
|
|
/*
|
|
* Add an arbitrary waiter to a page's wait queue
|
|
*/
|
|
extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
|
|
|
|
/*
|
|
* Fault a userspace page into pagetables. Return non-zero on a fault.
|
|
*
|
|
* This assumes that two userspace pages are always sufficient. That's
|
|
* not true if PAGE_CACHE_SIZE > PAGE_SIZE.
|
|
*/
|
|
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
|
|
{
|
|
int ret;
|
|
|
|
if (unlikely(size == 0))
|
|
return 0;
|
|
|
|
/*
|
|
* Writing zeroes into userspace here is OK, because we know that if
|
|
* the zero gets there, we'll be overwriting it.
|
|
*/
|
|
ret = __put_user(0, uaddr);
|
|
if (ret == 0) {
|
|
char __user *end = uaddr + size - 1;
|
|
|
|
/*
|
|
* If the page was already mapped, this will get a cache miss
|
|
* for sure, so try to avoid doing it.
|
|
*/
|
|
if (((unsigned long)uaddr & PAGE_MASK) !=
|
|
((unsigned long)end & PAGE_MASK))
|
|
ret = __put_user(0, end);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline int fault_in_pages_readable(const char __user *uaddr, int size)
|
|
{
|
|
volatile char c;
|
|
int ret;
|
|
|
|
if (unlikely(size == 0))
|
|
return 0;
|
|
|
|
ret = __get_user(c, uaddr);
|
|
if (ret == 0) {
|
|
const char __user *end = uaddr + size - 1;
|
|
|
|
if (((unsigned long)uaddr & PAGE_MASK) !=
|
|
((unsigned long)end & PAGE_MASK))
|
|
ret = __get_user(c, end);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask);
|
|
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask);
|
|
extern void remove_from_page_cache(struct page *page);
|
|
extern void __remove_from_page_cache(struct page *page);
|
|
|
|
/*
|
|
* Like add_to_page_cache_locked, but used to add newly allocated pages:
|
|
* the page is new, so we can just run __set_page_locked() against it.
|
|
*/
|
|
static inline int add_to_page_cache(struct page *page,
|
|
struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
|
|
{
|
|
int error;
|
|
|
|
__set_page_locked(page);
|
|
error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
|
|
if (unlikely(error))
|
|
__clear_page_locked(page);
|
|
return error;
|
|
}
|
|
|
|
#endif /* _LINUX_PAGEMAP_H */
|